

Version #1

Big data processing and analytics
September 21, 2023

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark application.

RDDs associated with the input files

inputRDD1 = sc.textFile("TempReadings1.txt")

inputRDD2 = sc.textFile("TempReadings2.txt")

Union inputRDD1 and inputRDD2

inputRDD = inputRDD1.union(inputRDD2)

Select the content of the field temperature

tempsRDD = inputRDD.map(lambda line: float(line.split(",")[1]))

Select high temperatures

highTempsRDD = tempsRDD.filter(lambda temp: temp>40)

Select low temperatures

lowTempsRDD = tempsRDD.filter(lambda temp: temp<-20)

 Suppose the input files TempReadings1.txt and TempReadings2.txt are read from

HDFS. Suppose you execute this Spark application only 1 time. Which one of the

following statements is true?

 a) This application reads the content of TempReadings1.txt 0 times and the content

of TempReadings2.txt 0 times

 b) This application reads the content of TempReadings1.txt 1 time and the content of

TempReadings2.txt 1 time

 c) This application reads the content of TempReadings1.txt 4 times and the content

of TempReadings2.txt 4 times

Version #1

 d) This application reads the content of TempReadings1.txt 5 times and the content

of TempReadings2.txt 5 times

 2. (2 points) Consider the input HDFS folder myFolder. myFolder contains the following

two files:

 ProfilesItaly.txt

o The text file ProfilesItaly.txt contains the following four lines:

Luca,Rome

Luca,Rome

Luca,Turin

Carmen,Milan

 ProfilesFrance.txt

o The text file ProfilesFrance.txt contains the following four lines:

Danilo,Paris

Carmen,Paris

Pablo,Nice

Pablo,Nice

Suppose you are using a Hadoop cluster that can run up to 5 instances of the mapper

class in parallel. Suppose the HDFS block size is 512MB. Suppose to execute a

MapReduce application for Hadoop that analyzes the content of myFolder. Suppose the

map phase emits, overall, the following key-value pairs (the key part is a name while the

value part is the length of the name):

(Luca,4)

(Luca,4)

(Luca,4)

(Carmen,6)

(Danilo,6)

(Carmen,6)

(Pablo,5)

(Pablo,5)

Suppose the number of instances of the reducer class is set to 6. Suppose the reduce

method of the reducer class sums the values associated with each key and emits one

pair (name, sum values) for each key for which the sum is less than 11. Specifically,

suppose the following pairs are overall emitted by the reduce phase:

(Danilo,6)

(Pablo,10)

Considering all the reducer class instances, how many times is the reduce method

invoked?

Version #1

 a) 2

 b) 4

 c) 6

 d) 8

Part II

OnlineTVSeries is an international company operating worldwide. OnlineTVSeries is

specialized in streaming television series on demand. It manages several television series

and has millions of customers. Statistics about the television series and the customers are

computed based on the following input data files, which have been collected in the

company's latest twenty years of activity.

 Customers.txt

o Customers.txt is a textual file containing information about the customers of

OnlineTVSeries. There is one line for each customer. The total number of

customers is greater than 300,000,000. Customers.txt is large. Its content

cannot be stored in one in-memory Java/Python variable.

o Each line of Customers.txt has the following format

 CID,Name,Surname,City,Country

where CID is the customer’s unique identifier, Name and Surname are

his/her name and surname, respectively, and City and Country are the

city and country where he/she lives, respectively.

 For example, the following line

CID10,John,Bianco,Turin,Italy

means that the name and surname of the customer with identifier CID10

are John and Bianco, respectively, and he lives in Turin (Italy).

 TVSeries.txt

o TVSeries.txt is a textual file containing information about the television series

(TV series) streamed on OnlineTVSeries. There is one line for each TV series.

The total number of television series stored in TVSeries.txt is greater than

100,000. TVSeries.txt is large. Its content cannot be stored in one in-memory

Java/Python variable.

o Each line of TVSeries.txt has the following format

 SID,Title,Genre

where SID is the TV series’s unique identifier, Title is its title, and Genre

is its genre.

 For example, the following line

SID15,Friends,Comedy

means that the TV series with SID SID15 is titled Friends and is a

Comedy television series.

Note that each television series is associated with one single genre.

Version #1

 Episodes.txt

o Episodes.txt is a textual file containing information about the episodes of the

television series. There is one line for each episode. The total number of

episodes stored in Episodes.txt is greater than 3,000,000. Episodes.txt is large.

Its content cannot be stored in one in-memory Java/Python variable.

o Each line of Episodes.txt has the following format

 SID,SeasonNumber,EpisodeNumber,Title, OriginalAirDate

where SID is the identifier of the TV series the episode belongs to and

SeasonNumber is the number of the season this episode is part of.

EpisodeNumber is the number of this episode in the season number

SeasonNumber of the TV series identified by SID. Each episode is

uniquely identified by the triplet (SID, SeasonNumber, EpisodeNumber),

i.e., the triplet (SID, SeasonNumber, EpisodeNumber) is the “primary key”

of this file. Finally, Title is the episode's title, while OriginalAirDate is the

date on which the episode was aired/broadcast for the first time.

OriginalAirDate is a date in the format YYYY/MM/DD.

 For example, the following line

SID15,2,7,The One with the Blackout,1994/11/03

means that the 7th episode of the 2nd season of the television series with

SID SID15 is titled “The One with the Blackout” and was

aired/broadcast for the first time on November 3, 1994.

 CustomerWatched.txt

o CustomerWatched.txt is a textual file containing information about who watched

which episodes. A new line is inserted in CustomerWatched.txt every time a

customer watches an episode. CustomerWatched.txt contains the historical data

about the last 20 years. CustomerWatched.txt is large and cannot be stored in

one in-memory Java/Python variable.

o Each line of CustomerWatched.txt has the following format

 CID,StartTimestamp,SID,SeasonNumber,EpisodeNumber

where CID is the identifier of the customer who started watching the

episode identified by the triplet (SID, SeasonNumber, EpisodeNumber) at

the time StartTimestamp. StartTimestamp is a timestamp in the format

YYYY/MM/DD-HH:MM.

 For example, the following line

CID10,2022/11/07-21:40,SID15,1,7

means that at 21:40 on November 7, 2022, the customer with id CID10

started watching the episode identified by the triplet (SID15,1,7).

Note that each customer can watch many episodes in different timestamps, and

each episode can be watched by many customers. Moreover, the same customer

can watch each episode several times (a new line associated with a different

Version #1

StartTimestamp is inserted in CustomerWatched.txt for each visualization of the

same episode by the same customer). Note that each pair (CID, StartTimestamp)

occurs at most one time in CustomerWatched.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of OnlineTVSeries are interested in performing some statistics on the
television series.

Design a single application, based on MapReduce and Hadoop, and write the

corresponding Java code to address the following point:

1. Number of long and short seasons for each television series. This application computes

the number of long and short seasons for each television series. A season is "long" if it
is composed of more than ten episodes. Conversely, a season is "short" if it comprises
at most ten episodes (i.e., between one and ten). Store the result in the HDFS output

folder (one television series per output line). Each output line contains the SID of one
TV series, the number of long seasons for that TV series, and the number of short
seasons for that TV series.

Suppose that the input is Episodes.txt and has already been set. Suppose that the name

of the output folder has already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce methods.

setup and cleanup if needed). The content of the Driver must not be reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with the
first job and which are associated with the second job.

 If you need personalized classes, report for each of them:
o the name of the class

o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it

o do not report the get and set methods. Suppose they are "automatically
defined"

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

Version #1

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of OnlineTVSeries asked you to develop one single application to address

all the analyses they are interested in. The application has six arguments: the input files

Customers.txt, TVSeries.txt, Episodes.txt, and CustomerWatched.txt, and the two output

folders “outPart1/” and “outPart2/”, which are associated with the outputs of Points 1 and 2,

respectively.

Specifically, design a single application, based on Spark, and write the corresponding code

to address the following two points:

1. The average number of episodes per season for each comedy TV series. The first part

of this Spark application considers only the comedy television series (genre equal to

comedy). It computes the average number of episodes per season for each comedy TV

series. Store the result in the first HDFS output folder. The output contains one line for

each comedy TV series. Each output line is formatted as follows:

SID, Average number of episodes per season for the TV series SID

2. For each TV series, identify the customers who watched at least one episode of each

season. The second part of the Spark application considers all television series. It

selects, for each television series, the customers who watched at least one episode of

each season of that TV series. Store the result in the second HDFS output folder using

the following format:

 SID, CID of the customer who watched at least one episode of each season

of the TV series SID

Note that all television series have been procedure for at least one season.

Example Part 2

For the sake of simplicity, in this example, suppose there are only the following three
customers: CID1, CID2, and CID3.

For the sake of simplicity, in this example, suppose there are only the following three
television series: SID1, SID2, and SID3.

Suppose that (i) SID1 has been produced for 2 seasons, (ii) SID2 has been produced
for 4 seasons, and (iii) SID3 has been produced for 1 season.

The following table reports for each season of the example TV series the customers
who watched at least one episode of that season:

Version #1

 Customers

SID TV
Series

Season
number

CID1 CID2 CID3

SID1
1

Watched AT LEAST ONE
episode of the season

Watched NO episodes of

the season

Watched AT LEAST ONE
episode of the season

2
Watched AT LEAST ONE

episode of the season
Watched NO episodes of

the season

Watched AT LEAST ONE
episode of the season

SID2

1
Watched AT LEAST ONE

episode of the season
Watched NO episodes of

the season

Watched NO episodes of

the season

2
Watched NO episodes of

the season

Watched AT LEAST ONE
episode of the season

Watched NO episodes of

the season

3
Watched NO episodes of

the season

Watched AT LEAST ONE
episode of the season

Watched NO episodes of

the season

4
Watched AT LEAST ONE

episode of the season
Watched AT LEAST ONE

episode of the season
Watched NO episodes of

the season

SID3 1
Watched NO episodes of

the season
Watched NO episodes of

the season
Watched AT LEAST ONE

episode of the season

For this small example, the second output folder will contain the following three lines:

SID1,CID1

SID1,CID3

SID3,CID3

 You do not need to report imports. Focus on the content of the main method.

 Suppose both JavaSparkContext sc and SparkSession ss have been already set.

 If you need personalized classes, report for each of them:
o the name of the class

o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if you

override it

o do not report the get and set methods. Suppose they are "automatically defined"

