Introduction to Hadoop and
MapReduce




Apache Hadoop



Apache Hadoop

Scalable fault-tolerant distributed system for
Big Data

Distributed Data Storage

Distributed Data Processing

Borrowed concepts/ideas from the systems
designed at Google (Google File System for
Google’s MapReduce)

Open source project under the Apache license

But there are also many commercial implementations
(e.g., Cloudera, Hortonworks, MapR)



Hadoop History

Dec 2004 — Google published a paper about GFS
July 2005 — Nutch uses MapReduce

Feb 2006 — Hadoop becomes a Lucene
subproject

Apr 2007 —Yahoo! runs it on a 1000-node cluster
Jan 2008 — Hadoop becomes an Apache Top
Level Project

Jul 2008 — Hadoop is tested on a 4000 node
cluster



Hadoop History

Feb 2009 —TheYahoo! Search Webmap is a
Hadoop application that runs on more than
10,000 core Linux cluster

June 2009 —Yahoo! made available the source
code of its production version of Hadoop

n 2010 Facebook claimed that they have the
argest Hadoop cluster in the world with 21
PB of storage

On July 27, 2011 they announced the data has
grown to 30 PB.




Who uses/used Hadoop?

Amazon
Facebook
Google
IBM
Joost
_ast.fm
New York Times
PowerSet
Veoh
Yahoo!
OpenAl
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Job posted by OpenAl

Analytics Data Engineer, Applied Engineering
OpenAl San Francisco, California, United States
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In This Role, You Will

Design, build and manage our data pipelines, ensuring all user event data is seamlessly integrated into our data
warehouse.

Develop canonical datasets to track key product metrics including user growth, engagement, and revenue.
Work collaboratively with various teams, including, Infrastructure, Data Science, Product, Marketing, Finance,
and Research to understand their data needs and provide solutions.

Implement robust and fault-tolerant systems for data ingestion and processing.

Participate in data architecture and engineering decisions, bringing your strong experience and knowledge to
bear.

Ensure the security, integrity, and compliance of data according to industry and company standards.

You Might Thrive In This Role If You

e Have 3+ years of experience as a data engineer and 8+ years of any software engineering experience(including
data engineering).

e Proficiency in at least one programming language commonly used within Data Engineering, such as Python,
Scala, or Java.

¢ Solid understanding of Spark and ability to write, debug and optimize Spark code.



Job posted by OpenAl

Analytics Data Engineer, Applied Engineering
OpenAl San Francisco, California, United States
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In This Role, You Will

¢ Design, build and manage our data pipelines, ensuring all user event data is seamlessly integrated into our data
warehouse.

» Develop canonical datasets to track key product metrics including user growth, engagement, and revenue.

e Work collaboratively with various teams, including, Infrastructure, Data Science, Product, Marketing, Finance,
and Research to understand their data needs and provide solutions.

¢ Implement robust and fault-tolerant systems for data ingestion and processing.

 Participate in data architecture and engineering decisions, bringing your strong experience and knowledge to
bear.

e Ensure the security, integrity, and compliance of data according to industry and company standards.

You Might Thrive In This Role If You

e Have 3+ years of experience as a data engineer and 8+ years of any software engineering experience(including
data engineering).

e Proficiency in at least one programming language commonly used within Data Engineering, such as Python,
Scala, or Java.

e Experience with distributed processing technologies and frameworks, such as Hadoop, Flink and distributed

storage systems (e.g., HDFS, S3).
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Job posted by OpenAl

Analytics Data Engineer, Applied Engineering
OpenAl San Francisco, California, United States

For US Based Candidates: Pursuant to the San Francisco Fair Chance Ordinance, we will consider qualified applicants
with arrest and conviction records.

We are committed to providing reasonable accommodations to applicants with disabilities, and requests can be made
via this link.

OpenAl Global Applicant Privacy Policy

At OpenAl, we believe artificial intelligence has the potential to help people solve immense global challenges, and we
want the upside of Al to be widely shared. Join us in shaping the future of technology.

Posted on Sep 26, 2023.
D

See less ~

Set alert For similar jobs (Q Set alert)

Data Engineer, San Francisco, CA
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Hadoop vs. HPC

Hadoop
Designed for Data intensive workloads

Usually, no CPU demanding/intensive tasks

HPC (High-performance computing)
A supercomputer with a high-level computational
capacity

Performance of a supercomputeris measured in
floating-point operations per second (FLOPS)

Designed for CPU intensive tasks

Usually it is used to process “"small” data sets

11



Hadoop: main components

Core components of Hadoop:

Distributed Big Data Processing Infrastructure based
on the MapReduce programming paradigm

Provides a high-level abstraction view

Programmers do not need to care about task scheduling and
synchronization

Fault-tolerant

Node and task failures are automatically managed by the Hadoop
system

HDFS (Hadoop Distributed File System)

High availability distributed storage
Fault-tolerant
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Hadoop: main components
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Distributed Big Data Processing
Infrastructure

Separates the what from the how
Hadoop programs are based on the MapReduce
programming paradigm
MapReduce abstracts away the “distributed” part
of the problem (scheduling, synchronization, etc)

Programmers focus on what

The distributed part (scheduling, synchronization,
etc) of the problem is handled by the framework

The Hadoop infrastructure focuses on how



Distributed Big Data Processing
Infrastructure

But an in-depth knowledge of the Hadoop
framework is important to develop efficient
applications

The design of the application must exploit data
locality and limit network usage/data sharing



HDFS

HDFS

Standard Apache Hadoop distributed file system
Provides global file namespace

Stores data redundantly on multiple nodes to provide
persistence and availability

Fault-tolerant file system

Typical usage pattern
Huge files (GB to TB)
Data is rarely updated

Reads and appends are common
Usually, random read/write operations are not performed
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HDFS

Each file is split in “chunks/blocks” that are
spread across the servers
Each chuck is replicated on different servers (usually
there are 3 replicas per chunk)

Ensures persistence and availability

To increase persistence and availability, replicas are stored in
different racks, if it is possible

Each chunk/block contains a part of the content of
one single file

You cannot have the content of two files in the same
chunk/block

Typically each chunk is 64-128MB
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HDFS
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HDFS

The Master node, a.k.a. Name Nodes in HDFS, is
a special node/server that

Stores HDFS metadata

E.g., the mapping between the name of a file and the location
of its chunks

Might be replicated

Client applications: file access through HDFS
APIs

Talk to the master node to find data/chuck servers
associated with the file of interest

Connect to the selected chunk servers to access data
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Hadoop ecosystem

Many Hadoop-related projects/systems are
available
Hive
A distributed relational database, based on MapReduce, for

querying data stored in HDFS by means of a query language
based on SQL

HBase

A distributed column-oriented database that uses HDFS for
storing data

Pig
A data flow language and execution environment, based on
MapReduce, for exploring very large datasets
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Hadoop ecosystem

Sqoop
A tool for efficiently moving data from traditional

relational databases and external flat file sources to
HDFS

ZooKeeper

A distributed coordination service. It provides primitives
such as distributed locks

Each project/system addresses one specific
class of problems

24



MapReduce: introduction



Warm up: Word Count

Input
A large textual file of words
Problem

Countthe number of times each distinct word
appears in the file

Output

A list of pairs <word, number>, counting the
number of occurrences of each specific word in
the input file



Word Count

Case 1: Entire file fits in main memory



Word Count

Case 1: Entire file fits in main memory

A traditional single node approach is probably the
most efficient solution in this case

The complexity and overheads of a distributed system
affects the performance when files are “small”

"small” depends on the resources you have
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Case 1: Entire file fits in main memory

A traditional single node approach is probably the
most efficient solution in this case

The complexity and overheads of a distributed system
affects the performance when files are “small”

"small” depends on the resources you have

Case 2: File too large to fit in main memory



Word Count

Case 1: Entire file fits in main memory

A traditional single node approach is probably the
most efficient solution in this case

The complexity and overheads of a distributed system
affects the performance when files are “small”

"small” depends on the resources you have

Case 2: File too large to fit in main memory

How can we split this problem in a set of (almost)
iIndependent sub-tasks, and

execute them in parallel on a cluster of servers?



Word Count with a very large file

Suppose that
The cluster has 3 servers

The content of the input file is

“Toy example file for Hadoop. Hadoop running
example.”

The input file is split into 2 chunks
The number of replicas is 1



Word Count with a very large file

CPU

Toy example

file for Hadoop. CPU

Hadoop running
example.

CPU
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Word Count with a very large file

Toy example

file for Hadoop.

Hadoop running
example.

CPU

Toy example
file for

"

CPU

Hadoop.
Hadoop running
example.

P

B
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Word Count with a very large file

Toy example

file for Hadoop.

Hadoop running
example.

CPU

Toy example
file for

"

CPU

Hadoop.
Hadoop running
example.

P

B

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>
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Word Count with a very large file

The problem can be easily parallelized

Each server processes its chunk of data and
counts the number of times each word appears
in its own chunk

Each server can execute its sub-task independently from
the other servers of the cluster
— synchronization is not needed in this phase

The output generated from each chunk by each server
represents a partial result
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Word Count with a very large file
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Word Count with a very large file
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through the
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<running, 1>
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Word Count with a very large file

Toy example

file for Hadoop.
Hadoop running
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CPU
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<for, 1>
<hadoop, 2>
<running, 1>
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Word Count with a very large file

Each server sends its local (partial) list of pairs
<word, number of occurrences in its chunk>to a
server that is in charge of aggregating all local
results and computing the global result

The server in charge of computing the global result
needs to receive all the local (partial) results to compute
and emit the final list

— A synchronization operation is needed in this phase



Word Count: a more realistic
example

Case 2: File too large to fit in main memory
Suppose that

The file size is 100 GB and the number of distinct
words occurring in it is at most 1,000

The cluster has 101 servers

The file is spread across 100 servers and each of
these servers contains one (different) chunk of the
input file
i.e., the file is optimally spread across 100 servers (each
server contains 1/100 of the file in its local hard drives)



Word Count: complexity

Each server reads 1 GB of data from its local hard
drive (it reads one chunk from HDFS)
Few seconds
Each local list consists of at most 1,000 pairs
(because the number of distinct words is 1,000)
Few MBs
The maximum amount of data sent on the
network is 100 x size of local list (number of
servers x local list size)

Some MBs



Word Count: scalability

We can define scalability along two dimensions

In terms of data:

Given twice the amount of data, the word count algorithm
takes approximately no more than twice aslongto run

Each server processes 2 x data => 2 x execution time to compute local
list
In terms of resources

Given twice the number of servers, the word count algorithm
takes approximately no more than half as long to run

Each server processes ¥2 x data => %2 x execution time to compute
local list
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Word Count: scalability

The time needed to send local results to the
node in charge of computing the final result
and the computation of the final result are
considered negligible in this running example
Frequently, this assumption is not true

It depends

on the complexity of the problem

on the ability of the developer to limit the amount of
data sent on the network
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MapReduce-approach key ideas

Scale “out”, not “up”

Increase the number of servers, avoiding to upgrade
the resources (CPU, memory) of the current ones

Move processing to data

The network has a limited bandwidth
Process data sequentially, avoid random access
Seek operations are expensive

Big data applications usually read and analyze all
input records/objects

Random access is useless

A



Data locality

Traditional distributed systems (e.g., HPC)
move data to computing nodes (servers)

This approach cannot be used to process TBs of
data

The network bandwidth is limited
Hadoop moves code to data

Code (few KB) is copied and executed on the
servers where the chunks of data are stored

This approach is based on “data locality”
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Hadoop and MapReduce

Hadoop/MapReduce is designed for

Batch processing involving (mostly) full scans of
the input data

Data-intensive applications

Read and process the whole Web (e.g., PageRank
computation)

Read and process the whole Social Graph (e.g.,
LinkPrediction, a.k.a. “friend suggestion”)

Log analysis (e.g., Network traces, Smart-meter data, ..)
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Hadoop and MapReduce

Hadoop/MapReduce is not the panacea for all
Big Data problems

Hadoop/MapReduce does not feet well
lterative problems
Recursive problems
Stream data processing
Real-time processing

47



The MapReduce Programming
Paradigm



MapReduce and Functional
programming

The MapReduce programming paradigm is
based on the basic concepts of Functional
programming

MapReduce “implements” a subset of
functional programming

The programming model appears quite limited
and strict

Everythingis based on two “functions” with predefined
signatures

Map and Reduce
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What can we do with MapReduce?

Solving complex problems is difficult
However, there are several important
problems that can be adapted to MapReduce

Log analysis

PageRank computation

Social graph analysis

Sensor data analysis

Smart-city data analysis

Network capture analysis



Building blocks: Map and Reduce

MapReduce is based on two main “building
blocks”

Map and Reduce functions
Map function
It is applied over each element of an input data set
and emits a set of (key, value) pairs
Reduce function
It is applied over each set of (key, value) pairs

(emitted by the map function) with the same key and
emits a set of (key, value) pairs — Final result



Word count running example

Input
A textual file (i.e., a list of words)
Problem

Countthe number of times each distinct word
appears in the file

Output

A list of pairs <word, number of occurrences in the
input file>



Word count running example

The input textual file is considered as a list of
words L
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Word count running example

L = [toy, example, toy, example , hadoop]

[...]denotes a list. (k, v) denotes a key-value pair.
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Word count running example

L = [toy, example, toy, example , hadoop]

Apply a function
on each element

L, =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

[...]denotes a set. (k, v) denotes a key-value pair. 55



Word count running example

L = [toy, example, toy, example , hadoop]

]

L, =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

N

(toy, [+1, +1])  (example, [+1, +1])  (hadoop, [+1])

[...]denotes a list. (k, v) denotes a key-value pair.
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Word count running example

L = [toy, example, toy, example , hadoop]

]

L, =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

NS

(toy, [+1, +1])  (example, [+1, +1])  (hadoop, [+1])

Apply a function
on each group

[ (toy, 2), (example, 2), (hadoop, 1)]

[...]denotes a list. (k, v) denotes a key-value pair. 57



Word count running example

L = [toy, example, toy, example , hadoop]

S/ N\

L., =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

Shuffle and
Sort phase

(toy, [+1, +1])  (example, [+1, +1])  (hadoop, [+1])

Reduce
l phase

[ (toy, 2), (example, 2), (hadoop, 1)]

[...]denotes a list. (k, v) denotes a key-value pair. 58



Word count running example

The input textual file is considered as a list of
words L
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Word count running example

The input textual file is considered as a list of
words L

A key-value pair (w, 1) is emitted for each
word win L

i.e., the map function is
m(w) = (w, 1)

A new list of (key, value) pairs L, is generated



Word count running example

The key-value pairsin L, are aggregated by
key (i.e., by word w in our example)

One group G, is generated for each word

Each group G, is a key-list pair (w, [list of values])
where [list of values] contains all the values of the
pairs associated with the word

i.e., [list of values]isalist of [1, 1, 1, ...] in our example

Given agroup G, the numberof ones [z, 1, 1, ...] is equal
to the occurrences of word w in the input file



Word count running example

A key-value pair (w, sum G .[list of values]) is
emitted for each group

i.e., the reduce function s
r(G,)=(w, sum(G, .[list of values]))
The list of emitted pairs is the result of the
word count problem

One pair (word w, num. of occurrences) for each
word in our running example



MapReduce: Map

The Map phase can be viewed as a
transformation over each element of a data set

This transformation is a function m defined by
developers

m is invoked one time for each input element
Each invocation of m happens inisolation

The application of m to each element of a data set can be
parallelized in a straightforward manner
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MapReduce: Reduce

The Reduce phase can be viewed as an
aggregate operation

The aggregate function is a function r defined by
developers

ris invoked one time for each distinct key and
aggregates all the values associated with it

Also the reduce phase can be performed in
parallel and inisolation

Each group of key-value pairs with the same key can be
processed in isolation
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MapReduce: Shuffle and Sort

The shuffle and sort phase is always the same
i.e., group the output of the map phase by key
It does not need to be defined by developers
It is already provided by the Hadoop system
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Data Structures

Key-value pairis the basic data structure in
MapReduce
Keys and values can be: integers, float, strings, ...

They can also be (almost) arbitrary data structures
defined by the designer

Both input and output of a MapReduce
program are lists of key-value pairs

Note that also the input is a list of key-value pairs
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Data Structures

The design of MapReduce involves

Imposing the key-value structure on the input and
output data sets

E.g., for a collection of Web pages, input keys may be
URLs and values may be their HTML content
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Formal definition of Map and
Reduce functions

The map and reduce functions are formally
defined as follows:

map: (k1, va) — [(k2, v2)]

reduce: (k2, [v2]) — [(k3, v3)]
Since the input data set is a list of key-value

pairs, the argument of the map function is a
key-value pair

[...] denotes a list. (k, v) denotes a key-value pair 68



Formal definition of Map and
Reduce functions

Map function
map: (k1, vi) — [(k2, v2)]
The argument of the map function is a key-

value pair
Note that the map function
Returns a list of key-value pairs for each input
pair
The list can be empty

[...] denotes a list. (k, v) denotes a key-value pair
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Formal definition of Map and
Reduce functions

Reduce function
reduce: (k2, [v2]) — [(k3, v3)]
Note that the reduce function
Is invoked once for each distinct key

Receives the complete list of values [v2]
associated with a specific key k2

Returns a list of key-value pairs for each input
= The list can be empty

[...] denotes a list. (k, v) denotes a key-value pair



MapReduce Algorithms

In many applications, the key part of the
input data set isignored

i.e., usually the map function does not consider
the key of its key-value pair argument

E.g., word count problem
Some specific applications exploit also the

keys of the input data

E.g., keys can be used to uniquely identify
records/objects



Word Count using MapReduce:
Pseudocode

Input file: a textual document with one word per line
The map function is invoked over each word of the input file

map(key, value):
// key: offset of the word in the file
// value: a word of the input document
emit(value, 1)

reduce(key, values):
// key: a word; values: a list of integers
occurrences =0
for each cin values:
occurrences = 0CCUrrences + ¢

emit(key, occurrences)
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