

 Scalable fault-tolerant distributed system for
Big Data
 Distributed Data Storage

 Distributed Data Processing

 Borrowed concepts/ideas from the systems
designed at Google (Google File System for
Google’s MapReduce)

 Open source project under the Apache license
▪ But there are also many commercial implementations

(e.g., Cloudera, Hortonworks, MapR)

3

 Dec 2004 – Google published a paper about GFS
 July 2005 – Nutch uses MapReduce
 Feb 2006 – Hadoop becomes a Lucene

subproject
 Apr 2007 – Yahoo! runs it on a 1000-node cluster
 Jan 2008 – Hadoop becomes an Apache Top

Level Project
 Jul 2008 – Hadoop is tested on a 4000 node

cluster

4

 Feb 2009 – The Yahoo! Search Webmap is a
Hadoop application that runs on more than
10,000 core Linux cluster

 June 2009 – Yahoo! made available the source
code of its production version of Hadoop

 In 2010 Facebook claimed that they have the
largest Hadoop cluster in the world with 21
PB of storage
 On July 27, 2011 they announced the data has

grown to 30 PB.

5

 Amazon
 Facebook
 Google
 IBM
 Joost
 Last.fm
 New York Times
 PowerSet
 Veoh
 Yahoo!
 OpenAI
 …..

6

7

8

9

10

 Hadoop
 Designed for Data intensive workloads

 Usually, no CPU demanding/intensive tasks
 HPC (High-performance computing)
 A supercomputer with a high-level computational

capacity
▪ Performance of a supercomputer is measured in

floating-point operations per second (FLOPS)

 Designed for CPU intensive tasks

 Usually it is used to process “small” data sets

11

 Core components of Hadoop:
 Distributed Big Data Processing Infrastructure based

on the MapReduce programming paradigm
▪ Provides a high-level abstraction view

▪ Programmers do not need to care about task scheduling and
synchronization

▪ Fault-tolerant
▪ Node and task failures are automatically managed by the Hadoop

system

 HDFS (Hadoop Distributed File System)
▪ High availability distributed storage

▪ Fault-tolerant

12

Switch

Rack 1

13

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

Switch

Rack 1

14

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

Switch

Rack 1

15

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

HDFS

Switch

Rack 1

16

Switch

Rack M

Server 1 Server 2

Mem

CPU

C0 C1

C7 C2

Disk

Mem

CPU

C6 C4

C5 C3

Disk

Server N-1 Server N

Mem

CPU

C2 C1

C6 C7

Disk

Mem

CPU

C0 C4

C5 C3

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

HDFS

 Separates the what from the how

 Hadoop programs are based on the MapReduce
programming paradigm

 MapReduce abstracts away the “distributed” part
of the problem (scheduling, synchronization, etc)

▪ Programmers focus on what

 The distributed part (scheduling, synchronization,
etc) of the problem is handled by the framework

▪ The Hadoop infrastructure focuses on how

17

 But an in-depth knowledge of the Hadoop
framework is important to develop efficient
applications

 The design of the application must exploit data
locality and limit network usage/data sharing

18

 HDFS
 Standard Apache Hadoop distributed file system
 Provides global file namespace
 Stores data redundantly on multiple nodes to provide

persistence and availability
▪ Fault-tolerant file system

 Typical usage pattern
 Huge files (GB to TB)
 Data is rarely updated
 Reads and appends are common

▪ Usually, random read/write operations are not performed

19

 Each file is split in “chunks/blocks” that are
spread across the servers
 Each chuck is replicated on different servers (usually

there are 3 replicas per chunk)
▪ Ensures persistence and availability
▪ To increase persistence and availability, replicas are stored in

different racks, if it is possible

 Each chunk/block contains a part of the content of
one single file
▪ You cannot have the content of two files in the same

chunk/block

 Typically each chunk is 64-128MB

20

Switch

Rack 1

21

Switch

Rack M

Server 1 Server 2

Mem

CPU

C0 C1

C7 C2

Disk

Mem

CPU

C6 C4

C5 C3

Disk

Server N-1 Server N

Mem

CPU

C2 C1

C6 C7

Disk

Mem

CPU

C0 C4

C5 C3

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

 The Master node, a.k.a. Name Nodes in HDFS, is
a special node/server that
 Stores HDFS metadata

▪ E.g., the mapping between the name of a file and the location
of its chunks

 Might be replicated
 Client applications: file access through HDFS

APIs
 Talk to the master node to find data/chuck servers

associated with the file of interest

 Connect to the selected chunk servers to access data

22

 Many Hadoop-related projects/systems are
available
 Hive

▪ A distributed relational database, based on MapReduce, for
querying data stored in HDFS by means of a query language
based on SQL

 HBase
▪ A distributed column-oriented database that uses HDFS for

storing data

 Pig
▪ A data flow language and execution environment, based on

MapReduce, for exploring very large datasets

23

 Sqoop

▪ A tool for efficiently moving data from traditional
relational databases and external flat file sources to
HDFS

 ZooKeeper

▪ A distributed coordination service. It provides primitives
such as distributed locks

 ….

 Each project/system addresses one specific
class of problems
 24

 Input

 A large textual file of words

 Problem

 Count the number of times each distinct word
appears in the file

 Output

 A list of pairs <word, number>, counting the
number of occurrences of each specific word in
the input file

 Case 1: Entire file fits in main memory

 Case 1: Entire file fits in main memory
 A traditional single node approach is probably the

most efficient solution in this case
▪ The complexity and overheads of a distributed system

affects the performance when files are “small”
▪ “small” depends on the resources you have

 Case 1: Entire file fits in main memory
 A traditional single node approach is probably the

most efficient solution in this case
▪ The complexity and overheads of a distributed system

affects the performance when files are “small”
▪ “small” depends on the resources you have

 Case 2: File too large to fit in main memory

 Case 1: Entire file fits in main memory
 A traditional single node approach is probably the

most efficient solution in this case
▪ The complexity and overheads of a distributed system

affects the performance when files are “small”
▪ “small” depends on the resources you have

 Case 2: File too large to fit in main memory
 How can we split this problem in a set of (almost)

independent sub-tasks, and

 execute them in parallel on a cluster of servers?

 Suppose that

 The cluster has 3 servers

 The content of the input file is

▪ “Toy example file for Hadoop. Hadoop running
example.”

 The input file is split into 2 chunks

 The number of replicas is 1

31

32

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for Hadoop.
Hadoop running
example.

33

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

34

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

 The problem can be easily parallelized

1. Each server processes its chunk of data and
counts the number of times each word appears
in its own chunk

▪ Each server can execute its sub-task independently from
the other servers of the cluster
 synchronization is not needed in this phase

▪ The output generated from each chunk by each server
represents a partial result

35

36

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

37

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

send data
through the
network

38

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

<toy, 1>
<example, 2>
<file, 1>
<for, 1>
<hadoop, 2>
<running, 1>

send data
through the
network

2. Each server sends its local (partial) list of pairs
<word, number of occurrences in its chunk> to a
server that is in charge of aggregating all local
results and computing the global result

▪ The server in charge of computing the global result
needs to receive all the local (partial) results to compute
and emit the final list

  A synchronization operation is needed in this phase

 Case 2: File too large to fit in main memory
 Suppose that
 The file size is 100 GB and the number of distinct

words occurring in it is at most 1,000

 The cluster has 101 servers

 The file is spread acr0ss 100 servers and each of
these servers contains one (different) chunk of the
input file
▪ i.e., the file is optimally spread across 100 servers (each

server contains 1/100 of the file in its local hard drives)

 Each server reads 1 GB of data from its local hard
drive (it reads one chunk from HDFS)
 Few seconds

 Each local list consists of at most 1,000 pairs
(because the number of distinct words is 1,000)
 Few MBs

 The maximum amount of data sent on the
network is 100 x size of local list (number of
servers x local list size)
 Some MBs

 We can define scalability along two dimensions

 In terms of data:

▪ Given twice the amount of data, the word count algorithm
takes approximately no more than twice as long to run

▪ Each server processes 2 x data => 2 x execution time to compute local
list

 In terms of resources

▪ Given twice the number of servers, the word count algorithm
takes approximately no more than half as long to run

▪ Each server processes ½ x data => ½ x execution time to compute
local list

42

 The time needed to send local results to the
node in charge of computing the final result
and the computation of the final result are
considered negligible in this running example

 Frequently, this assumption is not true

 It depends

▪ on the complexity of the problem

▪ on the ability of the developer to limit the amount of
data sent on the network

43

 Scale “out”, not “up”

 Increase the number of servers, avoiding to upgrade
the resources (CPU, memory) of the current ones

 Move processing to data

 The network has a limited bandwidth

 Process data sequentially, avoid random access

 Seek operations are expensive

 Big data applications usually read and analyze all
input records/objects

▪ Random access is useless

 44

 Traditional distributed systems (e.g., HPC)
move data to computing nodes (servers)

 This approach cannot be used to process TBs of
data

▪ The network bandwidth is limited

 Hadoop moves code to data

 Code (few KB) is copied and executed on the
servers where the chunks of data are stored

 This approach is based on “data locality”

45

 Hadoop/MapReduce is designed for

 Batch processing involving (mostly) full scans of
the input data

 Data-intensive applications

▪ Read and process the whole Web (e.g., PageRank
computation)

▪ Read and process the whole Social Graph (e.g.,
LinkPrediction, a.k.a. “friend suggestion”)

▪ Log analysis (e.g., Network traces, Smart-meter data, ..)

46

 Hadoop/MapReduce is not the panacea for all
Big Data problems

 Hadoop/MapReduce does not feet well

 Iterative problems

 Recursive problems

 Stream data processing

 Real-time processing

47

48

 The MapReduce programming paradigm is
based on the basic concepts of Functional
programming

 MapReduce “implements” a subset of
functional programming
 The programming model appears quite limited

and strict
▪ Everything is based on two “functions” with predefined

signatures
▪ Map and Reduce

49

 Solving complex problems is difficult
 However, there are several important

problems that can be adapted to MapReduce
 Log analysis

 PageRank computation

 Social graph analysis

 Sensor data analysis

 Smart-city data analysis

 Network capture analysis

50

 MapReduce is based on two main “building
blocks”

 Map and Reduce functions

 Map function

 It is applied over each element of an input data set
and emits a set of (key, value) pairs

 Reduce function

 It is applied over each set of (key, value) pairs
(emitted by the map function) with the same key and
emits a set of (key, value) pairs  Final result

51

 Input

 A textual file (i.e., a list of words)

 Problem

 Count the number of times each distinct word
appears in the file

 Output

 A list of pairs <word, number of occurrences in the
input file>

52

 The input textual file is considered as a list of
words L

53

54

L = [toy, example, toy, example , hadoop]

[…] denotes a list. (k, v) denotes a key-value pair.

55

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[…] denotes a set. (k, v) denotes a key-value pair.

Apply a function
on each element

56

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1])

[…] denotes a list. (k, v) denotes a key-value pair.

Group by key

57

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[(toy, 2) , (example, 2), (hadoop, 1)]

[…] denotes a list. (k, v) denotes a key-value pair.

Apply a function
on each group

(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1])

58

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[(toy, 2) , (example, 2), (hadoop, 1)]

Map
phase

Reduce
phase

Shuffle and
Sort phase

[…] denotes a list. (k, v) denotes a key-value pair.

(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1])

 The input textual file is considered as a list of
words L

59

 The input textual file is considered as a list of
words L

 A key-value pair (w, 1) is emitted for each
word w in L

 i.e., the map function is
 m(w) = (w, 1)

 A new list of (key, value) pairs Lm is generated

60

 The key-value pairs in Lm are aggregated by
key (i.e., by word w in our example)

 One group Gw is generated for each word w

 Each group Gw is a key-list pair (w, [list of values])
where [list of values] contains all the values of the
pairs associated with the word w

▪ i.e., [list of values] is a list of [1, 1, 1, …] in our example

▪ Given a group Gw, the number of ones [1, 1, 1, …] is equal
to the occurrences of word w in the input file

61

 A key-value pair (w, sum Gw.[list of values]) is
emitted for each group Gw

 i.e., the reduce function is
 r(Gw) = (w, sum(Gw.[list of values]))

 The list of emitted pairs is the result of the
word count problem

 One pair (word w, num. of occurrences) for each
word in our running example

62

 The Map phase can be viewed as a
transformation over each element of a data set

 This transformation is a function m defined by
developers

 m is invoked one time for each input element

 Each invocation of m happens in isolation

▪ The application of m to each element of a data set can be
parallelized in a straightforward manner

63

 The Reduce phase can be viewed as an
aggregate operation
 The aggregate function is a function r defined by

developers

 r is invoked one time for each distinct key and
aggregates all the values associated with it

 Also the reduce phase can be performed in
parallel and in isolation
▪ Each group of key-value pairs with the same key can be

processed in isolation

64

 The shuffle and sort phase is always the same

 i.e., group the output of the map phase by key

 It does not need to be defined by developers

 It is already provided by the Hadoop system

65

 Key-value pair is the basic data structure in
MapReduce

 Keys and values can be: integers, float, strings, …

 They can also be (almost) arbitrary data structures
defined by the designer

 Both input and output of a MapReduce
program are lists of key-value pairs

 Note that also the input is a list of key-value pairs

66

 The design of MapReduce involves

 Imposing the key-value structure on the input and
output data sets

▪ E.g., for a collection of Web pages, input keys may be
URLs and values may be their HTML content

67

 The map and reduce functions are formally
defined as follows:

 map: (k1, v1) → [(k2, v2)]

 reduce: (k2, [v2]) → [(k3, v3)]

 Since the input data set is a list of key-value
pairs, the argument of the map function is a
key-value pair

 68 […] denotes a list. (k, v) denotes a key-value pair

 Map function

 map: (k1, v1) → [(k2, v2)]

 The argument of the map function is a key-
value pair

 Note that the map function

 Returns a list of key-value pairs for each input
pair

▪ The list can be empty

69 […] denotes a list. (k, v) denotes a key-value pair

 Reduce function

 reduce: (k2, [v2]) → [(k3, v3)]

 Note that the reduce function

 Is invoked once for each distinct key

 Receives the complete list of values [v2]
associated with a specific key k2

 Returns a list of key-value pairs for each input

▪ The list can be empty

70 […] denotes a list. (k, v) denotes a key-value pair

 In many applications, the key part of the
input data set is ignored

 i.e., usually the map function does not consider
the key of its key-value pair argument

▪ E.g., word count problem

 Some specific applications exploit also the
keys of the input data

 E.g., keys can be used to uniquely identify
records/objects

71

Input file: a textual document with one word per line
The map function is invoked over each word of the input file

map(key, value):
 // key: offset of the word in the file
 // value: a word of the input document
 emit(value, 1)

reduce(key, values):
 // key: a word; values: a list of integers
 occurrences = 0
 for each c in values:
 occurrences = occurrences + c

 emit(key, occurrences)

72

