




 Scalable fault-tolerant distributed system for 
Big Data 
 Distributed Data Storage  

 Distributed Data Processing  

 Borrowed concepts/ideas from the systems 
designed at Google (Google File System for 
Google’s MapReduce)  

 Open source project under the Apache license 
▪ But there are also many commercial implementations 

(e.g., Cloudera, Hortonworks, MapR)    
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 Dec 2004 – Google published a paper about GFS 
 July 2005 – Nutch uses MapReduce 
 Feb 2006 – Hadoop becomes a Lucene 

subproject 
 Apr 2007 – Yahoo! runs it on a 1000-node cluster 
 Jan 2008 – Hadoop becomes an Apache Top 

Level Project 
 Jul 2008 – Hadoop is tested on a 4000 node 

cluster 
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 Feb 2009 – The Yahoo! Search Webmap is a 
Hadoop application that runs on more than 
10,000 core Linux cluster 

 June 2009 – Yahoo! made available the source 
code of its production version of Hadoop 

 In 2010 Facebook claimed that they have the 
largest Hadoop cluster in the world with 21 
PB of storage 
 On July 27, 2011 they announced the data has 

grown to 30 PB. 
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 Amazon 
 Facebook 
 Google 
 IBM 
 Joost 
 Last.fm 
 New York Times 
 PowerSet 
 Veoh 
 Yahoo! 
 OpenAI 
 ….. 
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 Hadoop 
 Designed for Data intensive workloads 

 Usually, no CPU demanding/intensive tasks  
 HPC (High-performance computing) 
 A supercomputer with a high-level computational 

capacity 
▪ Performance of a supercomputer is measured in 

floating-point operations per second (FLOPS) 

 Designed for CPU intensive tasks 

 Usually it is used to process “small” data sets 
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 Core components of Hadoop: 
 Distributed Big Data Processing Infrastructure based 

on the MapReduce programming paradigm 
▪ Provides a high-level abstraction view 

▪ Programmers do not need to care about task scheduling and 
synchronization 

▪ Fault-tolerant 
▪ Node and task failures are automatically managed by the Hadoop 

system 

 HDFS (Hadoop Distributed File System) 
▪ High availability distributed storage 

▪ Fault-tolerant 
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 Separates the what from the how 

 Hadoop programs are based on the MapReduce 
programming paradigm 

 MapReduce abstracts away the “distributed” part 
of the problem (scheduling, synchronization, etc) 

▪ Programmers focus on what 

 The distributed part (scheduling, synchronization, 
etc) of the problem is handled by the framework 

▪ The Hadoop infrastructure focuses on how 
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 But an in-depth knowledge of the Hadoop 
framework is important to develop efficient 
applications 

 The design of the  application must exploit data 
locality and limit network usage/data sharing 
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 HDFS  
 Standard Apache Hadoop distributed file system 
 Provides global file namespace 
 Stores data redundantly on multiple nodes to provide 

persistence and availability 
▪ Fault-tolerant file system 

 Typical usage pattern 
 Huge files (GB to TB) 
 Data is rarely updated 
 Reads and appends are common  

▪ Usually, random read/write operations are not performed 
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 Each  file is split in “chunks/blocks” that are 
spread across the servers 
 Each chuck is replicated on different servers (usually 

there are 3 replicas per chunk) 
▪ Ensures persistence and availability 
▪ To increase persistence and availability, replicas are stored in 

different racks, if it is possible 

 Each chunk/block contains a part of the content of 
one single file 
▪ You cannot have the content of two files in the same 

chunk/block 

 Typically each chunk is 64-128MB 
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 The Master node, a.k.a. Name Nodes in HDFS, is 
a special node/server that 
 Stores HDFS metadata 

▪ E.g., the mapping between the name of a file and the location 
of its chunks 

 Might be replicated 
 Client applications: file access through HDFS 

APIs 
 Talk to the master node to find data/chuck servers 

associated with the file of interest  

 Connect to the selected chunk servers to access data 
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 Many Hadoop-related projects/systems are 
available 
 Hive 

▪ A distributed relational database, based on MapReduce, for 
querying data stored in HDFS by means of a query language 
based on SQL 

 HBase 
▪ A distributed column-oriented database that uses HDFS for 

storing data 

 Pig 
▪ A data flow language and execution environment, based on 

MapReduce, for exploring very large datasets  
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 Sqoop 

▪ A tool for efficiently moving data from traditional 
relational databases and external flat file sources to 
HDFS 

 ZooKeeper 

▪ A distributed coordination service. It provides primitives 
such as distributed locks  

 …. 

 Each project/system addresses one specific 
class of problems 
 24 





 Input 

 A large textual file of words 

 Problem 

 Count the number of times each distinct word 
appears in the file 

 Output 

 A list of pairs <word, number>, counting the 
number of occurrences of each specific word in 
the input file 

 



 Case 1: Entire file fits in main memory 
  

 
  

  
  

  
 

  

  
 



 Case 1: Entire file fits in main memory 
 A traditional single node approach is probably the 

most efficient solution in this case 
▪ The complexity and overheads of a distributed system 

affects the performance when files are “small” 
▪ “small” depends on the resources you have 
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 Case 1: Entire file fits in main memory 
 A traditional single node approach is probably the 

most efficient solution in this case 
▪ The complexity and overheads of a distributed system 

affects the performance when files are “small” 
▪ “small” depends on the resources you have 

 Case 2: File too large to fit in main memory 
 How can we split this problem in a set of (almost) 

independent sub-tasks, and  

 execute them in parallel on a cluster of servers? 



 Suppose that 

 The cluster has 3 servers 

 The content of the input file is 

▪ “Toy example file for Hadoop. Hadoop running 
example.” 

 The input file is split into 2 chunks 

 The number of replicas is 1 
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 The problem can be easily parallelized 

1. Each server processes its chunk of data and 
counts the number of times each word appears 
in its own chunk 

▪ Each server can execute its sub-task independently from 
the other servers of the cluster 
 synchronization is not needed in this phase 

▪ The output generated from each chunk by each server 
represents a partial result 
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2. Each server sends its local (partial) list of pairs 
<word, number of occurrences in its chunk> to a 
server that is in charge of aggregating all local 
results and computing the global result 

▪ The server in charge of computing the global result 
needs to receive all the local (partial) results to compute 
and emit the final list 

  A synchronization operation is needed in this phase 



 Case 2: File too large to fit in main memory 
 Suppose that 
 The file size is 100 GB and the number of distinct 

words occurring in it is at most 1,000 

 The cluster has 101 servers 

 The file is spread acr0ss 100 servers and each of 
these servers contains one (different) chunk of the 
input file 
▪ i.e., the file is optimally spread across 100 servers (each 

server contains 1/100 of the file in its local hard drives)  

 



 Each server reads 1 GB of data from its local hard 
drive (it reads one chunk from HDFS) 
 Few seconds 

 Each local list consists of at most 1,000 pairs 
(because the number of distinct words is 1,000) 
 Few MBs 

  The maximum amount of data sent on the 
network is 100 x size of local list (number of 
servers x local list size) 
 Some MBs 



 We can define scalability along two dimensions 

 In terms of data: 

▪ Given twice the amount of data, the word count algorithm 
takes approximately no more than twice as long to run 

▪ Each server processes 2 x data => 2 x execution time to compute local 
list 

 In terms of resources 

▪ Given twice the number of servers, the word count algorithm 
takes approximately no more than half as long to run 

▪ Each server processes ½ x data => ½ x execution time to compute 
local list 
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 The time needed to send local results to the 
node in charge of computing the final result 
and the computation of the final result are 
considered negligible in this running example  

 Frequently, this assumption is not true 

 It depends  

▪ on the complexity of the problem  

▪ on the ability of the developer to limit the amount of 
data sent on the network 
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 Scale “out”, not “up” 

 Increase the number of servers, avoiding to upgrade 
the resources (CPU, memory) of the current ones 

 Move processing to data 

 The network has a limited bandwidth 

 Process data sequentially, avoid random access 

 Seek operations are expensive  

 Big data applications usually read and analyze all 
input records/objects 

▪ Random access is useless 
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 Traditional distributed systems (e.g., HPC) 
move data to computing nodes (servers) 

 This approach cannot be used to process TBs of 
data 

▪ The network bandwidth is limited 

 Hadoop moves code to data 

 Code (few KB) is copied and executed on the 
servers where the chunks of data are stored 

 This approach is based on “data locality” 
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 Hadoop/MapReduce is designed for 

 Batch processing involving (mostly) full scans of 
the  input data 

 Data-intensive applications 

▪ Read and process the whole Web (e.g., PageRank 
computation)  

▪ Read and process the whole Social Graph (e.g., 
LinkPrediction, a.k.a. “friend suggestion”) 

▪ Log analysis (e.g., Network traces, Smart-meter data, ..) 
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 Hadoop/MapReduce is not the panacea for all 
Big Data problems 
 

 Hadoop/MapReduce does not feet well 

 Iterative problems 

 Recursive problems 

 Stream data processing 

 Real-time processing 
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 The MapReduce programming paradigm is 
based on the basic concepts of Functional 
programming 

 MapReduce “implements” a subset of 
functional  programming 
 The programming model appears quite limited 

and strict 
▪ Everything is based on two “functions” with  predefined 

signatures 
▪ Map and Reduce 
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 Solving complex problems is difficult 
 However, there are several important 

problems that can be adapted to MapReduce 
 Log analysis 

 PageRank computation  

 Social graph analysis 

 Sensor data analysis 

 Smart-city data analysis 

 Network capture analysis 
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 MapReduce is based on two main “building 
blocks” 

 Map and Reduce functions 

 Map function 

 It is applied over each element of an input data set 
and emits a set of (key, value) pairs 

 Reduce function 

 It is applied over each set of (key, value) pairs 
(emitted by the map function) with the same key and 
emits a set of (key, value) pairs  Final result 
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 Input 

 A textual file (i.e., a list of words) 

 Problem 

 Count the number of times each distinct word 
appears in the file 

 Output 

 A list of pairs <word, number of occurrences in the 
input file>  
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 The input textual file is considered as a list of 
words L 
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L = [toy, example, toy, example , hadoop] 

[…] denotes a list. (k, v) denotes a key-value pair. 
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Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

[…] denotes a set. (k, v) denotes a key-value pair. 

Apply a function 
on each element 
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Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1]) 

[…] denotes a list. (k, v) denotes a key-value pair. 

Group by key 



57 

Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

[ (toy, 2) , (example, 2), (hadoop, 1) ] 

[…] denotes a list. (k, v) denotes a key-value pair. 

Apply a function 
on each group 

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1]) 
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Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

[ (toy, 2) , (example, 2), (hadoop, 1) ] 

Map 
phase 

Reduce 
phase 

Shuffle and  
Sort phase 

[…] denotes a list. (k, v) denotes a key-value pair. 

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1]) 



 The input textual file is considered as a list of 
words L 
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 The input textual file is considered as a list of 
words L 

 A key-value pair (w, 1) is emitted for each 
word w in L 

 i.e., the map function is  
   m(w) = (w, 1) 

 A new list of (key, value) pairs Lm is generated 
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 The key-value pairs in Lm are aggregated by 
key (i.e., by word w in our example) 

 One group Gw is generated for each word w 

 Each group Gw is a key-list pair (w, [list of values]) 
where [list of values] contains all the values of the 
pairs associated with the word w  

▪ i.e., [list of values] is a list of [1, 1, 1, …] in our example  

▪ Given a group Gw, the number of ones [1, 1, 1, …] is equal 
to the occurrences of word w in the input file  
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 A key-value pair (w, sum Gw.[list of values]) is 
emitted for each group Gw 

 i.e., the reduce function is 
  r(Gw) = (w, sum(Gw.[list of values]) ) 

 The list of emitted pairs is the result of the 
word count problem 

 One pair (word w, num. of occurrences) for each 
word in our running example  
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 The Map phase can be viewed as a 
transformation over each element of a data set 

 This transformation is a function m defined by 
developers 

 m is invoked one time for each input element 

 Each invocation of m happens in isolation 

▪ The application of m to each element of a data set can be  
parallelized in a straightforward manner 
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 The Reduce phase can be viewed as an 
aggregate operation 
 The aggregate function is a function r defined by 

developers 

 r is invoked one time for each distinct key and 
aggregates all the values associated with it 

 Also the reduce phase can be performed in 
parallel and in isolation 
▪ Each group of key-value pairs with the same key can be 

processed in isolation 
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 The shuffle and sort phase is always the same 

 i.e., group the output of the map phase by key 

 It does not need to be defined by developers 

 It is already provided by the Hadoop system 
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 Key-value pair is the basic data structure in 
MapReduce 

 Keys and values can be: integers, float, strings, … 

 They can also be (almost) arbitrary data structures 
defined by the designer 

 Both input and output of a MapReduce 
program are lists of key-value pairs 

 Note that also the input is a list of key-value pairs 
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 The design of MapReduce involves 

 Imposing the key-value structure on the input and 
output data sets 

▪ E.g., for a collection of Web pages, input keys may be 
URLs and values may be their HTML content 
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 The map and reduce functions are formally 
defined as follows: 

 map: (k1, v1) → [(k2, v2)] 

 reduce: (k2, [v2]) → [(k3, v3)] 

 Since the input data set is a list of key-value 
pairs, the argument of the map function is a 
key-value pair 
 
 
 68 […] denotes a list. (k, v) denotes a key-value pair 



 Map function 

 map: (k1, v1) → [(k2, v2)] 

 The argument of the map function is a key-
value pair 

 Note that the map function 

 Returns a list of key-value pairs for each input 
pair 

▪ The list can be empty 

 

69 […] denotes a list. (k, v) denotes a key-value pair 



 Reduce function 

 reduce: (k2, [v2]) → [(k3, v3)] 

 Note that the reduce function  

 Is invoked once for each distinct key 

 Receives the complete list of values [v2] 
associated with a specific key k2  

 Returns a list of key-value pairs for each input 

▪ The list can be empty 

 

70 […] denotes a list. (k, v) denotes a key-value pair 



 In many applications, the key part of the 
input data set is ignored 

 i.e., usually the map function does not consider 
the key of its key-value pair argument 

▪ E.g., word count problem 

 Some specific applications exploit also the 
keys of the input data 

 E.g., keys can be used to uniquely identify 
records/objects 
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Input file: a textual document with one word per line 
The map function is invoked over each word of the input file 
 
map(key, value): 
 // key: offset of the word in the file  
 // value: a word of the input document 
 emit(value, 1) 
 
reduce(key, values): 
 // key: a word; values: a list of integers 
 occurrences = 0 
 for each c in values: 
   occurrences = occurrences + c 
 
 emit(key, occurrences) 
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