
Part II

1

2

 Are used to reorganize/split in subsets the
input data

 Binning

 Shuffling

 The output of an application based on an
organization pattern is usually the input of
another application(s)

3

Binning

4

 Goal
 Organize/move the input records into categories

 Intent
 Partition a big data set into distinct, smaller data

sets (“bins”) containing similar records
▪ Each partition is usually the input of a following analysis

 Motivation
 The input data set contains heterogonous data,

but each data analysis usually is focused only on a
specific subsets of your data

5

 Based on a Map-only job
 Driver
 Sets the list of “bins/output files” by means of

MultipleOutputs
 Mappers
 For each input (key, value) pair, select the output

bin/file associated with it and emit a (key,value) in
that file
▪ key of the emitted pair = key of the input pair

▪ value of the emitted pair = value of the input pair

 No combiner or reducer is used in this pattern

6

7

Mapper

Mapper

Mapper

(record_idX, recordX)
(record_idU, recordU)
(record_idY, recordY)
….

(record_idZ, recordZ)
(record_idW, recordW)
(record_idA, recordA)
….

….
….
….
….

Bin1-m-0000

Bin2-m-0000

….

BinN-m-0000

….
….
….
….

Bin1-m-0001

Bin2-m-0001

….

BinN-m-0001

Shuffling

8

 Goal

 Randomize the order of the data (records)

 Motivation

 Randomize the order of the data

▪ For anonymization reasons

▪ For selecting a subset of random data (records)

9

 Mappers

 Emit one (key, value) for each input record

▪ key is a random key (i.e., a random number)

▪ value is the input record

 Reducers

 Emit one (key, value) pair for each value in [list-of-
values] of the input (key, [list-of-values]) pair

10

11

Mapper

Reducer

Mapper

Mapper

Reducer

(random key, input record1)
(random key, input record2)
……

(input recordj, null)
(input record2, null)
….

(input record1, null)
(input recordk, null)
….

(offset, input record1)
(offset, input record2)
….

(offset, input recordi)
(offset, input recordk)
….

….
….
….

12

 Are used to organize the workflow of a
complex application executing many jobs

 Job Chaining

13

Job Chaining

14

 Goal

 Execute a sequence of jobs (synchronizing them)

 Intent

 Manage the workflow of complex applications based
on many phases (iterations)

▪ Each phase is associated with a different MapReduce Job (i.e.,
one sub-application)

▪ The output of a phase is the input of the next one

 Motivation

 Real application are usually based on many phases

15

 The (single) Driver

 Contains the workflow of the application

 Executes the jobs in the proper order

 Mappers, reducers, and combiners

 Each phase of the complex application is
implement by a MapReduce Job

▪ i.e., it is associated with a mapper, a reducer (and a
combiner if it is useful)

16

17

Job1

Input data set

Output Job1

Job2

Output Job2

Jobn

Final output

 More complex workflows, which execute jobs
in parallel, can also be implemented

 However, the synchronization of the jobs
become more complex

18

19

 Are use to implement the join operators of
the relational algebra (i.e., the join operators
of traditional relational databases)

 Reduce side join

 Map side join

20

 We will focus on the natural join
 However, the pattern is analogous for the

other types of joins (theta-, semi-, outer-join)

21

Reduce side natural join

22

 Goal

 Join the content of two relations (i.e., relational
tables)

▪ Both tables are large

 Motivation

 The join operation is useful in many applications

23

 There are two mapper classes

 One mapper class for each table

 Mappers

 Emit one (key, value) pair for each input record

▪ Key is the value of the common attribute(s)

▪ Value is the concatenation of the name of the table of
the current record and the content of the current record

24

 Suppose you want to join the following tables
 Users with schema userid, name, surname

 Likes with schema userid, movieGenre
 The record
 userid=u1, name=Paolo, surname=Garza of the Users

table will generate the pair
▪ (userid=u1, “Users:name=Paolo,surname=Garza”)

 While the record
▪ userid=u1, movieGenre=horror of the Likes table will

generate the pair

▪ (userid=u1, “Likes:movieGenre=horror”)

25

 Reducers

 Iterate over the values associated with each key
(value of the common attributes) and compute
the “local natural join” for the current key

▪ Generate a copy for each pair of values such that one
record is a record of the first table and the other is the
record of the other table

26

 For instance, the (key, [list of values]) pair

 (userid=u1,[“User:name=Paolo,surname=Garza”,
“Likes:movieGenre=horror”,
“Likes:movieGenre=adventure”] will generate the
following output (key,value) pairs
▪ (userid=u1,“name=Paolo,surname=Garza, genre=horror”)

▪ (userid=u1,“name=Paolo,surname=Garza, genre=adventure”)

27

28

Mapper A

Mapper A

Mapper B

Relation A (Table A)
(offset, recordA1)
(offset, recordA2)
(offset, recordA3)
….

Relation B (Table B)
(offset, recordB1)
(offset, recordB2)
….

 Mapper B

….

….

Reducer

Reducer

(common attributes, table name + record)
(common attributes, table name + record)
……

(null, Ai join Bj)
(null, Ak join Bl)
….

(null, Ai join Bj)
(null, Ak join Bl)
….

Map side natural join

29

 Goal

 Join the content of two relations (i.e., relational
tables)

▪ One table is large

▪ The other is small enough to be completely loaded in
main memory

 Motivation

 The join operation is useful in many applications
and frequently one of the two tables is small

30

 Map-only job
 Mapper class

 Processes the content of the large table

▪ Receives one input (key,value) pair for each record of
the large table and joins it with the “small” table

 The distributed cache approach is used to
“provide” a copy of the small table to all
mappers

31

 Each mapper

 Performs the “local natural join” between the
current record (of the large table) it is processing
and the records of the small table (that is in the
distributed cache)

▪ The content of the small table (file) is loaded in the main
memory of each mapper during the execution of its
setup method

32

Mapper A

Mapper A

Relation A (Table A)
(offset, recordA1)
(offset, recordA2)
(offset, recordA3)
….

Relation B (Table B)
(offset, recordB1)
(offset, recordB2)
….

….

(null, Ai join Bj)
(null, Ak join Bl)
….

(null, Ai join Bj)
(null, Ak join Bl)
….

Distributed cache

33

Theta-join, Semi-join, Outer-join

34

 The SQL language is characterized by many
types of joins
 Theta-join
 Semi-join
 Outer-join

 The same patterns used for implementing the
natural join can be used also for the other SQL
joins
 The “local join” in the reducer of the reduce side

natural join (in the mapper of the map side natural
join) is substituted with the type of join of interest
(theta-, semi-, or outer-join)

35

