
  

     

Big data processing and analytics 
February 5, 2024 

Student ID ______________________________________________________________  

First Name ______________________________________________________________  

Last Name ______________________________________________________________  

The exam is open book 

Part I 

Answer the following questions. There is only one right answer for each question. 

1. (2 points) Consider the following MapReduce application for Hadoop. 

DriverBigData.java 

/* Driver class */ 
 package it.polito.bigdata.hadoop;  
 import ….; 

  

public class DriverBigData extends Configured implements Tool { 
   @Override 
   public int run(String[] args) throws Exception { 
     int exitCode; 
     Configuration conf = this.getConf(); 
     Job job = Job.getInstance(conf); 
     job.setJobName("Exercise 05/02/2024 - Question 1"); 

  
    // Set input and output paths 
     FileInputFormat.addInputPath(job, new Path("inputFolder/")); 

     FileOutputFormat.setOutputPath(job, new Path("outputFolder/")); 

    // Set driver class 

     job.setJarByClass(DriverBigData.class);     

    // Set job input format 

     job.setInputFormatClass(TextInputFormat.class); 

    // Set job output format 

     job.setOutputFormatClass(TextOutputFormat.class); 

        

    // Set mapper class 

     job.setMapperClass(MapperBigData.class);  



  

     

    // Set map output key and value classes 
     job.setMapOutputKeyClass(Text.class);  

     job.setMapOutputValueClass(NullWritable.class);  

    // Set reduce class 

     job.setReducerClass(ReducerBigData.class);  

    // Set reduce output key and value classes 
     job.setOutputKeyClass(IntWritable.class); 

     job.setOutputValueClass(NullWritable.class); 

    // Set the number of reducers to 3 

     job.setNumReduceTasks(3);       

    // Execute the job and wait for completion 
     if (job.waitForCompletion(true)==true) 
      exitCode=0; 
     else 

      exitCode=1;     

    return exitCode; 

   } 

  /* Main of the driver */ 
   public static void main(String args[]) throws Exception { 
     int res = ToolRunner.run(new Configuration(), new DriverBigData(), args); 
     System.exit(res); 
   } 

 } 

------------------------------------------------------------------------------------------------------ 

MapperBigData.java 

/* Mapper class */ 
 package it.polito.bigdata.hadoop;  
 import …; 

class MapperBigData extends 
   Mapper<LongWritable, // Input key type 
    Text,   // Input value type 
    Text,   // Output key type 
    NullWritable> {  // Output value type  

   

 protected void map(LongWritable key,  
    Text value,  
    Context context) throws IOException, InterruptedException { 
   // Emit the pair (value, NullWritable) 
   context.write(new Text(value), NullWritable.get());  
  } 

 } 

------------------------------------------------------------------------------------------------------ 



  

     

ReducerBigData.java 

/* Reducer class */ 
 package it.polito.bigdata.hadoop;  

 import …; 

class ReducerBigData extends 
   Reducer<Text,      // Input key type 
    NullWritable,    // Input value type 
    IntWritable,  // Output key type 

    NullWritable> { // Output value type 

// Define count 

 int count; 

protected void setup(Context context) { 
   // Initialize count 
   count = 0; 

 } 

protected void reduce(Text key,  
   Iterable<NullWritable> values,  
   Context context) throws IOException, InterruptedException { 
              // Increment count 
   count++; 

 } 

protected void cleanup(Context context) throws IOException, InterruptedException 

 {            
  // Emit the pair (count, NullWritable)) 
   context.write(new IntWritable(count), NullWritable.get()); 
 } 

 } 

  

Suppose that inputFolder contains the files Cities1.txt and Cities2.txt. Suppose the 

HDFS block size is 512 MB.  

Content of Cities1.txt and Cities2.txt: 

Filename (size and number of lines)  Content 

Cities1.txt (77 bytes – 10 lines) Tokyo 

Delhi 

Shanghai 

São Paulo 

Mexico City 

Cairo 

Mumbai 

Beijing 

Dhaka 



  

     

Osaka 

Cities2.txt (56 bytes – 6 lines) Tokyo 

Delhi 

New York City 

Karachi 

Buenos Aires 

Istanbul 

  

Suppose we run the above MapReduce application (note that the input folder is set 

to inputFolder/).  

What is a possible output generated by running the above application?  

a) The content of the output folder is as follows. 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00000 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00001 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00002 

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS 

The content of the three part files is as follows.  

Filename (number of lines)  Content 

part-r-00000 (1 line) 3 

part-r-00001 (1 line) 7 

part-r-00002 (1 line) 4 

  

 

 

b) The content of the output folder is as follows. 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00000 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00001 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00002 

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS 

The content of the three part files is as follows.  



  

     

Filename (number of lines) Content 

part-r-00000 (1 line) 5 

part-r-00001 (1 line) 7 

part-r-00002 (1 line) 4 

  

c) The content of the output folder is as follows. 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00000 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00001 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00002 

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS 

The content of the three part files is as follows.  

Filename (number of lines)   Content 

part-r-00000 (1 line) 10 

part-r-00001 (1 line) 6 

part-r-00002 (1 line) 0 

  

d) The content of the output folder is as follows. 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00000 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00001 

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00002 

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS 

The content of the three part files is as follows.  

Filename (number of lines) Content 

part-r-00000 (1 line) 16 

part-r-00001 (1 line) 16 

part-r-00002 (1 line) 16 

 

 

  



  

     

2.  (2 points) Consider the following Spark application. 

package it.polito.bigdata.spark; 
import …; 

 
public class SparkDriver { 
 public static void main(String[] args) { 
   SparkConf conf = new SparkConf().setAppName("Exam 24/02/05"); 
   JavaSparkContext sc = new JavaSparkContext(conf); 

     

JavaRDD<String> robotsRDD = sc.textFile("Robots.txt"); 

  

 

// Compute the number of robots in Robots.txt and print it on stdout 
System.out.println("Robots in Robot.txt: "+robotsRDD.count()); 

// Compute the number of distinct countries in Robots.txt and  
// print it on stdout 
System.out.println("Distinct countries in Robot.txt: "+robotsRDD  
     .map(line -> new String(line.split(",")[1])) 
     .distinct() 

     .count()); 

JavaRDD<String> countriesRDD = sc.textFile("Countries.txt"); 

// Compute the number of countries/lines occurring in Countries.txt  

System.out.println("Countries in Countries.txt:"+countriesRDD.count()); 

// Map the content of robotsRDD to (Country, +1) 
JavaPairRDD<String, Integer> CountryOneRobotRDD = robotsRDD 
   .mapToPair(line ->  

   new Tuple2<String,  Integer>(line.split(",")[1], 1)); 

// Map the content of countriesRDD to (Country, +0) 
  JavaPairRDD<String, Integer> AllCountriesRDD = countriesRDD 
    .mapToPair(line -> 

    new Tuple2<String, Integer>(line.split(",")[0], 0)); 

// Union CountryOneRobotRDD and AllCountriesRDD 
 JavaPairRDD<String, Integer>CountriesValuesRDD = 

   CountryOneRobotRDD.union(AllCountriesRDD); 

// Compute the number of robots per country 
  JavaPairRDD<String, Integer> CountriesNumRobotRDD = 

    CountriesValuesRDD .reduceByKey((v1, v2) -> v1+v2); 

// Compute the maximum number of robots per country and print it on stdout 
  int totalRobots = CountriesNumRobotRDD.values() 

    .reduce((v1, v2) -> Math.max(v1, v2)); 

System.out.println("Maximum number of robots per country: "+totalRobots);  



  

     

// Close the Spark context 
  sc.close(); 
  } 

} 

  

Suppose the input files Robots.txt and Countries.txt are read from HDFS. Suppose 

this Spark application is executed only 1 time. Which one of the following 

statements is true?  

a) This application reads the content of Robots.txt 1 time. 

b) This application reads the content of Robots.txt 3 times. 

c) This application reads the content of Robots.txt 4 times. 

d) This application reads the content of Robots.txt 5 times. 

 

 

 

  



  

     

Part II  
  

AstroPoli is an international organization that gathers observations of Near-Earth Objects 

(NEOs), which are celestial bodies observed around the planet. The organization provides 

a set of statistics about observations based on the following input data files, which have 

been collected in the latest 20 years of activity of the organization.  

 Observatories.txt 

o Observatories.txt is a textual file containing the information about the 

observatories sharing their data with AstroPoli. There is one line for each 

observatory and the total number of observatories, including also private 

amateur observatories, is greater than 100,000,000. This file is large and you 

cannot suppose the content of Observatory.txt can be stored in one in-

memory Java variable.  

o Each line in the Observatories.txt has the following format: 

ObservatoryID,Name,Lat,Lon,Country,Continent,Amateur 

where ObservatoryID is a unique identifier for the observatory, Name is its 

registered name, Lat and Lon are the latitude and longitude of the 

observatory, Country and Continent are the country and the continent where 

the observatory is located, respectively, and Amateur specifies if the 

observatory is an amateur one or not (Amateur is a string being either “True” 

or “False”). 

o For example, the following line 

OB202,Galileo Observatory,41.9028,12.4964,Italy,Europe,False 

means that Observatory OB202 is named Galileo Observatory, it has 

coordinates 41.9028 and 12.4964, it is in Italy (Europe), and it is not an 

amateur observer (False). 

 NEObjects.txt 

o NEObjects.txt is a textual file containing information about the NEOs 

monitored by the network observatories. A new line is inserted in 

NEObjects.txt every time a new NEO is detected. There is only one line for 

each NEO.  NEObjects.txt contains the historical data about the latest 20 

years. This file is big and you cannot suppose the content of NEObjects.txt 

can be stored in one in-memory Java variable.  

o Each line of NEObjects.txt has the following format: 

NEOID,Dimension,MaterialStrength,alreadyFallen 

where NEOID is a unique ID associated with the NEO, and Dimension and 

MaterialStrength are quantitative information associated with it. Dimension 

and MaterialStrength are numerical values ranging from 1 to 10. 

alreadyFallen is a string and indicates whether the object has already fallen 

(“True”) or not (“False”). 

o For example, the following line 

NEO301,7,9,True 



  

     

means that the NEO NEO301 has a dimension of 7, a strength of 9, and it 

has already fallen (True). 

 Observations.txt  

o Observations.txt is a textual file containing information about the 

observations gathered by AstroPoli. There is one line for each observation 

and the total number of observations is greater than 10,000,000,000. This file 

is large and you cannot suppose the content of Observations.txt can be 

stored in one in-memory Java variable.  

o Each line of Observations.txt has the following format 

NEOID,ObservatoryID,ObsDateTime,EclipticLat,EclipticLon,EstimatedDistan

ce 

o where NEOID is the ID of the observed NEO, ObservatoryID is the ID of the 

observatory in which the observation has been performed, ObsDateTime is 

the UTC timestamp associated with the observation, EclipticLat and 

EclipticLon indicate the sky coordinates at which the instruments looked, and 

EstimatedDistance is the estimated distance from the Earth surface in AU (1 

Astronomical Unit = conventional distance from Earth to Sun). UTC means 

that all the timestamps are in the same time-zone reference. The 

ObdDateTime format is “YYYY-MM-DD\tHH:MM:SS”. 

o For example, the following line 

NEO301,OB202,2023-07-15 04:30:00,38.9072,-77.0370,1.4 

means that the NEO NEO301 was observed by observatory OB202 at an 

estimated distance from Earth of 1.4 AU pointing at coordinates 38.9072 and 

-77.0370 on July 15, 2023, at 4:30 (2023-07-15 04:30:00).  

One observatory can observe multiple times the same NEO, with a different 

timestamp, and the same NEO can be observed my multiple observatories 

simultaneously. An observatory can make more observations associated to 

different NEOs simultaneously. 

  

  



  

     

Exercise 1 – MapReduce and Hadoop (8 points)  

Exercise 1.1 

The managers of AstroPoli are interested in performing some analyses about amateur 

observatories.   

Design a single application, based on MapReduce and Hadoop, and write the 

corresponding Java code, to address the following point:  

1. Countries with the highest number of amateur observatories. The application 

considers only the amateur observatories and, for each country, computes the 

number of amateur observatories. Finally, it finds the country with the highest 

number of amateur observatories and stores it in the output folder. If more countries 

are associated with the maximum number of amateur observatories, sort the 

countries in alphabetical order and select the first. Store the top country and the 

associated number of amateur observatories in the output HDFS folder (output pair 

(Country, Number of amateur observatories in that country)). 

Suppose that the input is Observatories.txt and it has already been set. Suppose that also 

the name of the output folder has already been set.  

 Write only the content of the Mapper and Reducer classes (map and reduce 

methods. setup and cleanup if needed). The content of the Driver must not be 

reported. 

 Use the following two specific multiple-choice questions to specify the number of 

instances of the reducer class for each job. 

 If your application is based on two jobs, specify which methods are associated with 

the first job and which are associated with the second job.  

 If you need personalized classes, report for each of them:  

o the name of the class, 

o attributes/fields of the class (data type and name), 

o personalized methods (if any), e.g., the content of the toString() method if 

you override it, 

o do not report the get and set methods. Suppose they are "automatically 

defined". 

 

 

Answer the following two questions to specify the number of jobs (one or two) and 

the number of instances of the reducer classes. 

Exercise 1.2 - Number of instances of the reducer - Job 1 

Select the number of instances of the reducer class of the first Job 

(a) 0 

(b) exactly 1 

(c) any number >=1 (i.e., the reduce phase can be parallelized) 

 



  

     

Exercise 1.3 - Number of instances of the reducer - Job 2 

Select the number of instances of the reducer class of the second Job 

(a) One single job is needed 

(b) 0 

(c) exactly 1 

(d) any number >=1 (i.e., the reduce phase can be parallelized) 

  



  

     

Exercise 2 – Spark and RDDs (19 points)  

You are required to develop a single Spark-based application based on RDDs or Spark 

SQL to address the following AstroPoli tasks. The application takes the paths of the input 

files Observatories.txt, NEObjects.txt, Observations.txt, and two output folders (associated 

with the outputs of the following points 1 and 2, respectively). 

1. Number of observations for the Most Relevant NEOs from 2023. Considering only 

the observations starting from 2023, the application aims to calculate the number of 

observations associated with the Most Relevant NEOs. The Most Relevant NEOs 

are the NEOs that (i) have not already fallen and (ii) are characterized by a 

dimension exceeding the average dimension considering all the registered NEOs in 

the “NEObjects.txt” file. Calculate the number of observations starting from 2023 for 

each Most Relevant NEO, sort the result by this number in descending order, and 

store the result in the first HDFS output folder. Consider only the Most Relevant 

NEOs that have been observed at least one time starting from 2023 in this first part 

of the application. The first HDFS output folder must contain information in the 

format "NEOID,Number of observations starting from 2023" for the Most Relevant 

NEOs (one line for each Most Relevant NEO). 

 

2. The Most Relevant NEOs observed by few observatories starting from 2023. The 

second part of this application considers only the Most Relevant NEOs observed by 

less than 10 unique observatories starting from the year 2023. For each Most 

Relevant NEO of that subset, store in the second HDFS output folder its identifier 

(NEOID) and the identifiers (ObservatoryIDs) of the unique observatories that 

observed it starting from the year 2023 (one pair (NEOID, ObservatoryID) per 

output line). For each of the selected Most Relevant NEOs never observed starting 

from 2023, store the pair (NEOID, "NONE") in the output folder. The output format 

of each output line is “NEOID, ObservatoryID”. Report the string "NONE" instead of 

the ObservatoryID for each of the selected Most Relevant NEOs never observed 

starting from 2023. 

 

 You do not need to write Java imports. Focus on the content of the main method. 

 Suppose both JavaSparkContext sc and SparkSession ss have already been set. 

 Only if you use Spark SQL, suppose the first line of all files contains the header 

information/the name of the attributes. Suppose, instead, there are no header lines 

if you use RDDs.  

 If you need personalized classes, report for each of them:  

o the name of the class, 

o attributes/fields of the class (data type and name), 

o personalized methods (if any), e.g., the content of the toString() method if 

you override it, 

o do not report the get and set methods. Suppose they are "automatically 

defined". 

 


