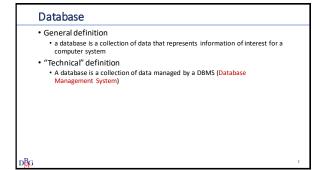
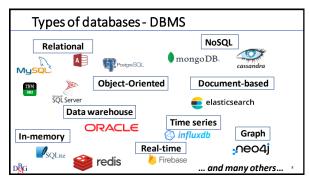

Information
management


Information is recorded and exchanged in different forms

Over time, different methods and formats to organize and codify information have been introduced



7

9

Data Base Management System - DBMS • A DBMS (Data Base Management System) is a software system able to manage collections of data that are • large • shared • persistent ensuring their reliability and privacy

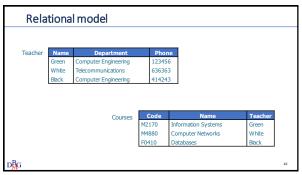
8

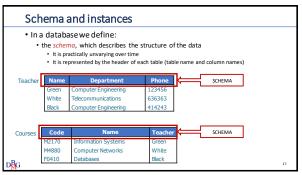
DBMS characteristics • Far greater dimension than the central memory available data management in secondary memory • Data sharing between applications and user: a database is an integrated resource, shared by several company sectors reduction of data redundancy • reduction of data inconsistency · competing access control mechanism

10 11

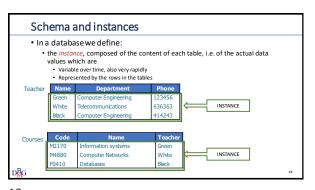
DBMS or file system? • "Simplified" approach to data: data stored in a persistent mode in the mass/secondary memory inside a file • it is possible to memorize and look for data simple access mechanisms (sequential reading) • simple sharing mechanisms (read only sharing, blocking write access rights) $\bullet \ \mathsf{DBMS} \, \mathsf{extends} \, \mathsf{the} \, \mathsf{functionalities} \, \mathsf{of} \, \mathsf{the} \, \mathsf{file} \, \mathsf{system}, \mathsf{providing} \, \mathsf{more}$ integrated services

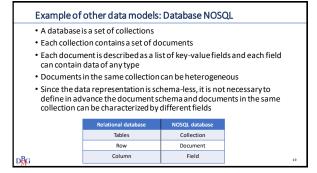
 $D_{G}^{B}G$

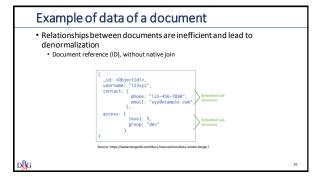

Data model Introduction to databases $D_{G}^{B}G$

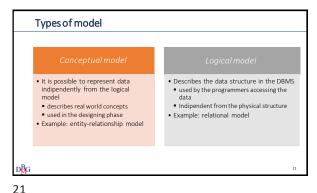

12 13

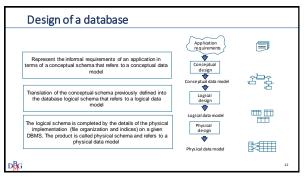
Data model • A data model is a set of concepts utilized for organizing data of interest and describing its structure in a way that is understood by a • Elementary data types (integer, character, ...) Structuring mechanism for defining more complex structures (record builder,

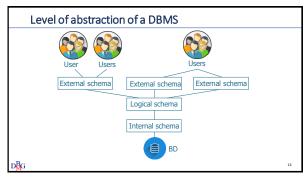

Types of data models • Relational model · Most widespread data model Data are organized into sets of homogeneous (fixed structure) records and represented as tables • Before the relational model, other models closer to the physical structures of storing were used · Hierarchical model, network model • Since the relational model Object model, XML, database NOSQL, ...


14 15




16 17




18 19

20

22 23

Standard three-level ANSI/SPARC architecture for DBMS

- · Logical schema
- Description of the database using the logical model of the DBMS
- Internal schema
 - · Representation of the logical schema on the physical storage structure
- External schema
 - Description of parts of the database, called "views", which reflect the point of view of particular users
 - Defined on the logical model

24

Data independence Introduction to databases

Data independence

- $\bullet \ \mathsf{Data} \ \mathsf{independence} \ \mathsf{guarantees} \ \mathsf{that} \ \mathsf{users} \ \mathsf{and} \ \mathsf{application} \ \mathsf{software}$ which utilize a database can ignore the designing details used in the construction of the database
- It is a consequence of dividing the design process at different abstraction levels
- Levels of data independence:
 - Physical independence
 - Logical independence

26

Data independence

- Physical independence
 - · Enables interaction with the DBMS independently from the physical structure
- Access to a (logical or external level) relationship always takes place in the same way, independently of how data is actually stored
- It is possible to change the way the data is physically stored without affecting or changing the software applications using them

27

25

Data independence

- · Logical independence
 - Enables interaction with the external level independently of the logical level • It is possible to change the logical level maintaining the external structures
 - unaltered (as long as the correspondences are unaltered)
 - It is possible to add new views or alter existing views without changing the logical schema

Data access languages

- User-friendly interfaces that enable specific queries without using a textual language
- Interactive languages (es., SQL, DSL)
- $\bullet \ \ Command similar to interactive commands introduced into traditional$ programming (C, C++, COBOL, Java, Python, ...), so-called host
- ORM (Object-Relational Mapping): mapping objects into programming languages with database tables/documents
- Commands similar to interactive commands introduced into ad hoc programming languages, often with specific functionalities (generation of graphs, printed documents, complex pages, etc.)

30

Data access languages · Languages are divided into two categories • Data Definition Languages (DDL) used to define the logical, external and physical schemas, and access authorizations Data Manipulation Languages (DML) used for querying and updating database instances

 D_{G}^{B} 31

Users

- Database administrator: in charge of (centralized) control and management of the databse
 - guarantees sufficient performance
 - ensures system reliability
 - manages authorizations and access to data
- Designers and programmers: they define and realize
 - the structure of the database
- the programmes accesing the database
- Users: they use the database for their activities
 - end users: they use transactions, i.e. programmes that carry out predefined activities
 - casual users: they formulate queries (or updates) which are not predefined by the interactive access languages of the database

32

Transactions

- Applications that carry out frequent predefined activities
- Example
- · Flight bookings
- Bank transfers
- E-commerce purchase
- Generally realized by introducing SQL into a host language

Advantages and disadvantages of **DBSM**

Introduction to databases

34

DBMS advantages · Data as a common resource of the whole organization • Reduction of redundancies and inconsistencies · Unified and precise data model of facts of interest to the Possible centralized control of data · standardization, economies of scale · Data independence

DBMS disadvantages These are expensive, complex products that require direct investment purchasing the product indirect investments purchasing the necessary hardware and software resources adapting existing applications training personnel They provide a set of services in an integrated form it is not possible to separate out unused services, which increases costs and may reduce performance