Data preparation for document data

Document representation

- A document might be modeled in different ways
 - The choice heavily affects the quality of the mining result
- The most common representation models a document as a set of features
 - Each feature might represent a set of characters, a word, a term, a concept

Document processing

It is the activity to generate a structured data representation of document data

It includes five sequential steps

- Document splitting
- Tokenization
- Case normalization
- Stopword removal
- Stemming

Document splitting

- Based on the data analytics goal, documents can be split into
 - sentences, paragraphs, or analyzed in their entire content
- Short documents are typically not split
 - e.g., emails or social posts
- Long documents can be
 - broken up into sections or paragraphs
 - analyzed as a whole

Tokenization

- It is the process of breaking text into sentences or text into tokens (i.e., words)
 - Identify sentence boundaries based on punctuation, capitalization
 - Separate words in sentences
 - Language-dependent

Case normalization

- This step converts each token to completely upper-case or lowercase characters
 - Capitalization helps human readers differentiate, for example, between nouns and proper nouns and can be useful for automated algorithms as well
 - However, an upper-case word at the beginning of the sentence should be treated no differently than the same word in lower case appearing elsewhere in a document

Stemming

- Reduce a word to its root form (i.e., the stem)
 - It includes the identification and removal of prefixes, suffixes, and pluralization
- It operates on a single word without knowledge of the context
 - It cannot discriminate between words which have different meanings depending on the part of speech
- Stemmers are
 - Easy to implement
 - Available for most spoken languages
 - Run significantly faster than lemmatization and POS tagging algorithms

Stopword elimination

- "Stop words" refers to the most common words in a language
 - E.g., prepositions, articles, conjunctions in English
- Stop words are filtered out before or after processing of textual data
 - They are likely to have little semantic meaning

Stopword elimination

- There is no single universal list of stop words used by all natural language processing tools
- Any group of words can be chosen as the stop words for a given purpose
 - different search engines use different stop word lists
 - Some of them remove lexical words, such as "want", from a query in order to improve performance
- Some tools specifically avoid removing these stop words to support phrase search

Weighted document representation

Text representation: feature vectors

- Most data mining algorithms are unable to directly process textual data in their original form
 - documents are transformed into a more manageable representation
- Documents are represented by feature vectors
- A feature is simply an entity without internal structure
 - A dimension of the feature space
- A document is represented as a vector in this space
 - a collection of features and their weights

Each document becomes a term vector

- each term is a component (attribute) of the vector
- the value of each component is the number of times the corresponding term occurs in the document

		team	coach	pla y	ball	score	game	ח <u>א</u> .	lost	timeout	season
Document 1		3	0	5	0	2	6	0	2	0	2
Document 2		0	7	0	2	1	0	0	3	0	0
Document 3		0	1 0 0 1 2 2		2	0	3	0			
From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006											

Bag-of-word representation

- All words in a document are considered as separate features
 - the dimension of the feature space is equal to the number of different words in the entire document collection
- The feature vector of a document consists of a set of weights, one for each distinct word
- The methods for giving weights to the features may vary

Binary

- One, if the corresponding word is present in the document
- Zero, otherwise
- Occurrences of all words have the same importance
- Simple document frequency
 - The number of times in which the corresponding word occurs in the document
 - Most frequent words are not always representative of the document content

- More complex weighting schemes are possible to take into account the frequency of the word
 - in the document
 - in the section/paragraph
 - in the category (for indexed documents)
 - in the collection of documents

- Term frequency inverse document frequency (tf-idf)
 - Tf-idf of term t in document d of collection D (consisting of m documents)

tf-idf(t) = freq(t, d) * log(m/freq(t, D))

- Terms occurring frequently in a single document but rarely in the whole collection are preferred
- Suitable for
 - A single document consisting of many sections or subsections
 - A collection of *heterogeneous* documents

Tf-idf matrix example

- Most common words (e.g., "model") have low values
- Peculiar words (e.g., "medlin", "micro", "methodolog") have high values

										-		-	•				•				
major	malform	materi	matric	matrix	mean	measur	mechan	medicin	medium	medlin	method	methodolog	micro	microarch	migrat	mo	model	molecular	morbid	moreov	morta
0	0	0.153	0.051	0.021	0	0	0	0	0	0	0.051	0.069	0.072	0	0.020	0	0.034	0.072	0	0.072	0.063
0.032	0.032	0.048	0.032	0.020	0.032	0.032	0.032	0.064	0.032	0.032	0.048	0.043	0.023	0.032	0.018	0.032	0.022	0.023	0.095	0.023	0.033
0	0	0	0	0.016	0	0.077	0.077	0	0	0	0.039	0.026	0	0.077	0.007	0.077	0	0	0	0	0.016
0.085	0.171	0	0	0	0	0	0	0	0.171	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.153	0.051	0.021	0	0	0	0	0	0	0.051	0.069	0.072	0	0.020	0	0.034	0.072	0	0.072	0.063
0	0	0	0.052	0	0.105	0	0	0.052	0	0.052	0	0.035	0	0	0.020	0	0.035	0	0	0	0.022
0.093	0	0	0	0.039	0	0	0	0.093	0	0.093	0	0	0	0	0.018	0	0	0	0	0	0
0.077	0	0.154	0	0.032	0	0	0	0.077	0	0.077	0	0	0	0	0.030	0	0.052	0	0	0	0.032

Document-Term matrix X

- Local weight l_{ij}
- Global weight g_j

•
$$X_{ij} = I_{ij} * g_j$$

