Association Rules
Fundamentals

Elena Baralis, Silvia Chiusano, Tania Cerquitelli
Politecnico di Torino

Association rules

= Objective

= extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket
counter

TID

Items

1

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

a|f | W N

Coke, Diapers, Milk

= Association rule

diapers = beer

= 2% of transactions contains
both items

= 30% of transactions
containing diapers also
contains beer

Association rule mining

= A collection of transactions is given

= a transaction is a set of items TID | Items
= items in a transaction are 1 | Bread. Coke. Milk
not ordered 2 Beer, Bread
" ASSOCIatIOn rUIe 3 Beer, Coke, Diapers, Milk
. A’ B = C 4 Beer, Bread, Diapers, Milk
=« A, B = items in the rule body ; :
5 Coke, Diapers, Milk

= C = item in the rule head

= [he = means co-occurrence
= ot causality

= Example
= coke, diapers = milk

Dl |

Transactional formats

= Association rule extraction is an exploratory technigue that can be
applied to any data type

= A transaction can be any set of items
= Market basket data
« Textual data

= Structured data

Transactional formats

= Textual data i =
= A document is a transaction
= Words in a document are items in the transaction
= Data example
= Docl: algorithm analysis customer data mining relationship
= Doc2: customer data management relationship
= Doc3: analysis customer data mining relationship social
= Rule example
customer, relationship = data, mining

DG 5

Transactional formats

= Structured data

= A table row is a transaction N oS
= Pairs (attribute, value) are items in the transaction - e R
s Data examp|e Refund Marital Taxable E—

Status Income Cheat

No Married |< 80K No

= [ransaction
Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No

= Rule example
Refund=No, MaritalStatus=Married = Cheat = No

DW Example from: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 6

Definitions

Itemsetis a set including one or more items
= Example: {Beer, Diapers}

k-itemsetis an itemset that contains k items

Support count (#) is the frequency of occurrence of an itemset
« Example: #{Beer,Diapers} = 2

Supportis the fraction of transactions that contain an itemset

= Example: sup({Beer, Diapers}) = 2/5

TID

Items

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

| | W N

Coke, Diapers, Milk

Freqguent itemset is an itemset whose support is greater than or equal to a m/insup threshold

Rule quality metrics

= Given the association rule
A=0B
= A, B are itemsets

= Supportis the fraction of transactions containing both A and B

#{A,B}
IT|

= |T]| is the cardinality of the transactional database
= a priori probability of itemset AB
= rule frequency in the database
= Confidenceis the frequency of B in transactions containing A

Sup(A,B)
Sup(A)

= conditional probability of finding B having found A
« strength” of the “="

DG 8

Rule quality metrics: example

= From itemset {Milk, Diapers} the following rules may be derived

= Rule: Milk = Diapers TID | Items
= Support 1 Bread, Coke, Milk
sup=#{Milk,Diapers}/#trans. =3/5=60%
= confidence
conf=#{Milk,Diapers}/#{Milk}=3/4=75%

Beer, Bread

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

v | W DN

= Rule: Diapers = Milk
= Same support
s=60%
= confidence
conf=#{Milk,Diapers}/#{Diapers}=3/3
=100%

Coke, Diapers, Milk

Dl |

Association rule extraction

= Given a set of transactions T, association rule mining is the
extraction of the rules satisfying the constraints

= support = minsup threshold
= confidence = minconfthreshold

= The result is
= complete (a//rules satisfying both constraints)
= correct (only the rules satisfying both constraints)

= May add other more complex constraints

B
DvG]

Association rule extraction

= Brute-force approach

= enumerate all possible permutations (i.e., association rules)
= compute support and confidence for each rule
= prune the rules that do not satisfy the minsup and minconf constraints

= Computationally unfeasible
= Given an itemset, the extraction process may be split

« first generate frequent itemsets
= hext generate rules from each frequent itemset

= Example
= Itemset
{Milk, Diapers} sup=60%
= Rules
Milk = Diapers (conf=75%)
Diapers = Milk (conf=100%)

B
pfiG :

Association rule extraction

(1) Extraction of frequent itemsets

= many different techniques
= level-wise approaches (Apriori, ...)
= approaches without candidate generation (FP-growth, ...)
= other approaches

= most computationally expensive step
= limit extraction time by means of support threshold

(2) Extraction of association rules

= generation of all possible binary partitioning of each frequent itemset
= possibly enforcing a confidence threshold

B
DNG -

Frequent Itemset Generation

Given d items, there
are 29 possible

candidate itemsets

13

From: Tan,Steinbach, Kumar, Introduction

to Data Mining, McGraw Hill 2006

Frequent Itemset Generation

= Brute-force approach
= each itemset in the lattice is a candidate frequent itemset

= Scan the database to count the support of each candidate
= match each transaction against every candidate
= Complexity ~ O(|T| 29w)
« |T| is number of transactions
= d is number of items
= W is transaction length

B
DYG .

Improving Efficiency

= Reduce the number of candidates
= Prune the search space
= complete set of candidates is 24
= Reduce the number of transactions
= Prune transactions as the size of itemsets increases
= reduce |T}|
= Reduce the number of comparisons
= Equal to |T| 2d
= Use efficient data structures to store the candidates or transactions

B
oMU]

The Apriori Principle

"If an itemset is frequent, then all of its subsets must also
be frequent”

= The support of an itemset can never exceed the support of
any of its subsets

= [t holds due to the antimonotone property of the support
measure

= Given two arbitrary itemsets A and B
if A € B then sup(A) = sup(B)

s [t reduces the number of candidates

B
DNG ‘

The Apriori Principle

From: Tan,Steinbach, Kumar, Introduction

to Data Mining, McGraw Hill 2006

17

Pruned

- e =

Found to be
Infrequent

Apriori Algorithm [Agro4]

= Level-based approach
= at each iteration extracts itemsets of a given length k

= Two main steps for each level

= (1) Candidate generation

= Join Step
generate candidates of length k+1 by joining frequent itemsets of length k

= Prune Step

apply Apriori principle: prune length k+1 candidate itemsets that contain at least one k-
itemset that is not frequent

= (2) Frequent itemset generation
= Scan DB to count support for k+1 candidates
= prune candidates below minsup

B
DNG ;

Apriori Algorithm [Agro4]

= Pseudo-code
(.. Candidate itemset of size k

L, : frequent itemset of size k

L, = {frequent items};
for (k=1; [, '=T; k++) do
begin
Ci+; = candidates generated from L;

for each transaction ¢in database do
increment the count of all candidates in .., that are contained in ¢

L..; = candidates in (., satisfying minsup
end
return U, Lk,

19

DG

Generating Candidates

= Sort L, candidates in lexicographical order

= For each candidate of length k
= Self-join with each candidate sharing same L,_; prefix
= Prune candidates by applying Apriori principle
= Example: given L;={abc, abd, acd, ace, bcd}
= Self-join
= abcd from abcand abd

= gcde from acd and ace
= Prune by applying Apriori principle
= dcdeis removed because ade, cde are not in L;

« C~={abcd}

B
DMG _

Apriori Algorithm: Example
Example DB

TID ltems
{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B,C,E}

minsup>1

B
OMG ;

—

© 00 NO O WDN

RN
o

Generate candidate 1-itemsets

DG

Example DB
TID ltems
1 {A,B}
2 {B,C,D}
3 | {ACD,E}
4 {A,D,E}
5 {A,B,C}
6 | {AB,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}
minsup>1

1st DB
scan

C;

itemsets

{A}
{B}
{C}
{D}
{E}

W 01 N 00 N|C

22

Prune infrequent candidates in C,
Example DB

DG

TID

ltems

—

5\©OO\ICDU'I-I>OOI\)

{A,B}
{B,C,D}
{A,C,D,E}
{A.D,E}
{A.B,C)
{A.B,C,D}
{B,C}
{A.B,C)
{A,B,D}
{B,C,E}

minsup>1

1st DB
scan

= All itemsets in set C, are frequent

C;

itemsets

{A}
{B}
{C}
{D}
{E}

W 01 N 00 N|C

‘ L= (G

according to minsup>1

23

Generate candidates from L,

Ly

G

itemsets

itemsets

{A}
{B}
{C}
{D}
{E}

W O1 N 00 N|C

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{B.E}
{C,D}
{C,E}
{D,E}

24

Count support for candidates in G,

Ly

G

itemsets

itemsets

{A}
{B}
{C}
{D}
{E}

W O1 N 00 N|C

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{B.E}
{C,D}
{C,E}
{D,E}

2nd
DB
SCan

G

itemsets

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B,D}
{B.E}
{C,D}
{C,E}
{D,E}

(¢))
I\)I\DOOAOOCDI\)J;J;O'I%

25

Prune infrequent candidates in C,

Ly

G

itemsets

itemsets

{A}
{B}
{C}
{D}
{E}

W O1 N 00 N|C

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{B.E}
{C,D}
{C,E}
{D,E}

2nd
DB
SCan

G

itemsets

L,

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B,D}

(07}
ooovl\a.h.hcn_g

itemsets

{C,D}
{C,E}
{D,E}

NN W

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{C,D}
{C,E}
{D,E}

%)
mewc»m-h-hm_g

26

Generate candidates from L,

LZ C3

itemsets| sup itemsets
{AB} | 5 {A,B,C}
{AC} | 4 {A,B,D}
Eﬁ,g ‘21 {A,B,E}

, {A,C,D}
{BC} | 6 ‘ {A,C,E}
{B,D} | 3 {A,D,E}
{CD} | 3 {B,C,D}
{CE} | 2 {C,D,E}
{D,E} | 2

B
OMu _

Apply Aeriori principle on C;
2 C

DG

itemsets

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{C,D}
{C,E}
{D,E}

n
wawmm.h.hcn_g

=

3

itemsets

{A,B,C}
{A,B,D}

{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

= Prune {A,B,E}

= Its subset {B,E} is infrequent ({B,E} is not in L))

28

Count suLpport for

itemsets

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{C,D}
{C,E}
{D,E}

n
wawmm.h.hcn_g

=

Cs

itemsets

{A,B,C}
{A,B,D}

{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

3rd
DB
SCan

=

Cs

candidates in C;

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

»
—\I\)I\)—‘I\)I\)oo_g

29

Prune infrequent candidates in G,

DG

L;

itemsets

{A,B}
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{C,D}
{C,E}
{D,E}

n
I\)I\)OJQJCDI\)LAU'I%

=

Cs

itemsets

{A,B,C}
{A,B,D}

{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

3rd
DB
SCan

=

Cs

itemsets

{A,B,C}
{A,B,D}
{A,C,D}

e
I\)I\)OO_O

Ls

itemsets

{A,D,E}
{B,C,D}

N

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

7))
c
NNNN(JJ_O

= {A,C,E} and {C,D,E} are actually infrequent
=« They are discarded from C;

30

Generate candidates from L;

Ls
itemsets
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

Cy

‘ itemsets
{A,B,C,D}

7))
c
NNNN(JJ_O

B :
DG

Apply Apriori principle on C,

Ls
itemsets
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

Cy

‘ itemsets
{A,B,C,D}

7))
c
I\)I\)I\)I\)OJ_O

= Check if {A,C,D} and {B,C,D} belong to L;
= L;contains all 3-itemset subsets of {A,B,C,D}
= {A,B,C,D} is potentially frequent

B .
DG

Count support for candidates in C,

Ls
itemsets
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

q itemsets ‘ itemsets [sup |
{A,B,C,D} {A,B,C,D}| 1

7))
c
NNNN(JJ_O

B
DM ”

Prune infrequent candidates in C,

Ls
itemsets
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

itemsets [sup |

‘ itemsets
{A,B,C,D}

7))
c
I\)I\)I\)I\)CJO_D

= {A,B,C,D} is actually infrequent
= {A,B,C,D} is discarded from C,

B y
DG

Final set of frequent itemsets

DG

Example DB

Ly

TID ltems

itemsets|sup

—

{A,B}
{B,C,D}
{A,C,D,E}
{A.D,E}
{A.B,C)
{A.B,C,D}
{B,C}
{A.B,C)
{A,B,D}
{B,C,E}

5\©OO\ICDU1-I>OOI\)

{A}
{B}
{C}
{D}
{E}

minsup>1

L,

itemsets| sup

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

NN NN W

{A,B} 3
{A,C}
{A,D}
{A.E}
{B,C}
{B.D}
{C,D}
{C,E}
{D,E}

NDNWWOODNB~D

35

Counting Support of Candidates

= Scan transaction database to count support of each itemset
« total number of candidates may be large
= one transaction may contain many candidates

= Approach [Agro4]

= candidate itemsets are stored in a hash-tree

« /eaf node of hash-tree contains a list of itemsets and counts
= /nterior node contains a hash table

= subset function finds all candidates contained in a transaction
=« Mmatch transaction subsets to candidates in hash tree

B
DvG ”

Performance Issues in Apriori

= Candidate generation

»« Candidate sets may be huge
= 2-itemset candidate generation is the most critical step

= extracting long frequent intemsets requires generating all frequent
subsets

= Multiple database scans
= 1+ 1 scans when longest frequent pattern length is n

B
DNG 7

Factors Affecting Performance

= Minimum support threshold
= |ower support threshold increases number of frequent itemsets
= larger number of candidates
= larger (max) length of frequent itemsets
= Dimensionality (number of items) of the data set
= Mmore space is heeded to store support count of each item
= if number of frequent items also increases, both computation and I/O costs may also
increase

= Size of database
= Since Apriori makes multiple passes, run time of algorithm may increase with number of
transactions
= Average transaction width
= transaction width increases in dense data sets

= Mmay increase max length of frequent itemsets and traversals of hash tree
= number of subsets in a transaction increases with its width

B
DvG ”

Improving Apriori Efficiency

= Hash-based itemset counting [Yu95]

= A k-itemset whose corresponding hashing bucket count is below the threshold cannot be
frequent

= Transaction reduction [Yu95]

= A transaction that does not contain any frequent k-itemset is useless in subsequent scans

= Partitioning [Sav96]

= Any itemset that is potentially frequent in DB must be frequent in at least one of the
partitions of DB

B
pfiG :

Improving Apriori Efficiency

= Sampling [Toi96]

= Mmining on a subset of given data, lower support threshold + a method to determine the
completeness

= Dynamic Itemset Counting [Motw98]

= add new candidate itemsets only when all of their subsets are estimated to be frequent

40

FP-growth Algorithm [Han00]

= Exploits a main memory compressed representation of the
database, the FP-tree

= high compression for dense data distributions
= less so for sparse data distributions

= complete representation for frequent pattern mining
= enforces support constraint
= Frequent pattern mining by means of FP-growth
= recursive visit of FP-tree
= applies divide-and-conquer approach
= decomposes mining task into smaller subtasks
= Only two database scans
= count item supports + build FP-tree

B
DNE} 41

FP-tree construction

Exampl
ple DB = (1) Count item support and prune
TID | ltems items below minsup threshold
; éA(,:Bg) = (2) Build Header Table by sorting
{B,C,D} items in decreasing support order
3 {A,C,D,E}
4 {A,D,E} Header Table
5 {A,B,C} ltem | sup
6 {A,B,C,D} {B}| 8
7 {B,C} {A}| 7
8 | {AB,C} {C}| 7
9 {A,B,D} {D}| 5
10 {B,C,E} {E} | 3
minsup>1

B
DYG b

FP-tree construction

Example DB _
= ; = (1) Count item support and prune
1 Xrgs items below minsup threshold
5 é C g) = (2) Build Header Table by sorting
3 i\C IS é items in decreasing support order
A { { A[’) é}} = (3) Create FP-tree
5 { A,B,C} For each transaction ¢in DB
S = order transaction ¢items in
6 tA.B,C,Dj decreasing support order
/ {B,C} = Same order as Header Table
8 {A,B,C} = insert transaction ¢in FP-tree
9 {A,B,D} = Use existing path for common prefix
10 {B,C,E} = Create new branch when path
— becomes different
minsup>1

B
DNE} 43

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
1 {A,B} 1 {BA}

FP-tree

Header Table i}

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

B 44
DG

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
2 | {B,C,D} 2 | {B,C,D}

FP-tree

Header Table

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

B 45
DG

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
3 {ACD,E} 3 |{ACD,E}

Header Table } "P-tree
ltem| sup B:2
B} 8
{A} | 7 /\
{C}| 7 A:1l C:1
{D}| 5
{E}| 3 /
D:1

B 46
DG

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
4 | {ADE} 4 | {ADE}

{} FP-tree

Header Table

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
5 | {BAC}

5 | {AB,C}

Header Table

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

D\?/Q E:l e

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
6 [{B,ACD}

6 |{AB,CD}

Header Table

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

49

FP-tree construction

Transaction

TID

ltems

/

{B,C}

Header Tab

€

ltem

sup

{B}
{A}
{C}
{D}
{E}

8

14
14
5
3

Sorted transaction

=

TID

ltems

/

1B,C}

A:3

/

C:2

D:1

{} FP-tree

D:1

\

A:2

C:1

E:1

D:1

E:1

50

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
8 | {BAC}

8 | {ABC}

Header Table

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

B : : 51
DNVG

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
9 | {BAD}

9 | {ABD}

Header Table

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

D\!\B/Q D:1 E:1 N

FP-tree construction

Transaction Sorted transaction

TID | Items ‘ TID | Items
10 | {B,C,E}

10| {B,C,E}

Header Table

ltem| sup
{B}| 8

{A}| 7
{CH| 7
{D}| 5
{E} | 3

D\!\B/Q D:1 E:1 ,

Final FP-tree

0 FP-tree
Header Table =
ltem | sup P »B:8| __------- > A:2
{BY| 8 p[----77" R /\
A 7
{CY| 7 k-~ T »AS5r--22---nC:3r------- " C:1 o D:1
{D} 5 \ \\‘ A I'I
{E} 3 3 \\\ \\ /,’ Il/’ Sa II
Lo »Ci3r” DA:1-->D:1' E:lr [Di1p ~Ei1
\\\ \\"—:1_’// //// * E:l %
B Item pointers are used to assist
DW frequent itemset generation >4

FP-growth Algorithm

= Scan Header Table from lowest support item up

= For each item i in Header Table extract frequent itemsets including
item i and items preceding it in Header Table

= (1) build Conditional Pattern Base for item i (i-CPB)
= Select prefix-paths of item i from FP-tree

= (2) recursive invocation of FP-growth on i-CPB

B
DvG "

Example

= Consider item D and extract frequent itemsets including
= D and supported combinations of items A, B, C

Header Tab

ltem

sup

{B}
{A}

{C}

{E}

FP-tree

56

Conditional Pattern Base of D
= (1) Build D-CPB

= Select prefix-paths of item D from FP-tree

Header Table //{—%
ltem|sup| ______ »B:8| 0 aa----- A2
(B}] 8 |

{A} | 7
{C}

{E}

Frequent
itemset:
D, sup(D) =5

'\ L7 »E:1r

Conditional Pattern Base of C

Header Tab

FP-tree

ltem|sup| ______Jeal -
{B}| 8
{A}| 7
-------- »"C:1
{E} J,
D-CPB . |D:1
‘ Items ‘sup ‘ \
S E:

E:1

58

Conditional Pattern Base of

Header Table FP-tree
ltem| sup ---—-AB8| @ ------- A:2
By 8 [N 7
{A}| 7 1. _
Cy| 7 b - ASt- - Ci3 - Dl
{E}] 3 [\ "'
D-CPB “‘ ". N C:3 , , : RA!
Items |sup | ! ; ; ; .’I
{ BIAIC} 1 :\ \\\ / / I \ /',
ok e

~
~ -
S -

59

Conditional Pattern Base of

Header Tab FP-tree

tem sup| _____JIgw&l <@ --- > A2

{B}| 8

Ay 7 |

Cl| 7 S ---YCGS3------- »C: 1 y D:1
EH 3 [N l /'

D-CPB . |D:1F” »E:l
Items |sup ! /
{(BAC: | 1 \
{BA} | 1 SElr
[Bc [1]

B 60
DG

Conditional Pattern Base of

Header Table FP-tree
ltem|sup| _____J|mal 0 -
(BY| 8 f------- T B<l T
AL 7 1)

Cl 7 F~. "7 YA:5T- - 2Ci3 -

Er] 3 [\ / ,

D-CPB \ \ NC3[|~

Items |sup | b ,
{(BACY| 1 |[I % , \ /
BAY | 1 |~ D S MEal
{BC} | 1
o] '

61

Conditional Pattern Base of

Header Table FP-tree -
ltem|sup| _____J|msl 0 -

(BY| 8 f------- T B<l T

AL 7 1

Cil 7 -~ -

-
- -

e) o

D-CPB ' \ MC:3]~

L ~|petfopity |ELf [l AE1
Items |sup | b ¥ £ /
BACH[1 [i S
{(BAy | 1 |~ ™Di1p-” S YL

{B,C} | 1

{ACy |1 | TTmeee---o]

[® 1]
DG

62

Conditional Pattern Base of D
= (1) Build D-CPB

= Select prefix-paths of item D from FP-tree

b-CPB D-conditional (3] ° clg;_céllr’ggnal
Items |sup Header Table T~
{BACH | 1 Item| sup -->A4| __----MBl
{BA} |1 Al 4 -7 T
BCr | 1 ‘ {BY| 3 [---*B:2| /»Cl--4C:1
{ACH | 1 <] 3 |)
{A} 1 e b

= (2) Recursive invocation of FP-growth on D-CPB

B
DM ”

Conditional Pattern Base of DC
=« (1) Build DC-CPB

= Select prefix-paths of item C from D-conditional FP-tree

D-CPB D-conditional 1) DC;;.?ngnal
Items |sup Header Table
{BAC} | 1 Item|sup | .--~|A4| _.----
BAr | 1 {AY| 4 t--77
BCr | 1 ‘ {B}| 3 ---
®o |1 | e
{A} |1 - ’ DC-CPB
Items |sup
{AB} | 1
Frequent itemset: {A} 1
DC, sup(DC) = 3 {B} 1

B
DYG o

Conditional Pattern Base of DC

= (1) Build DC-CPB

= Select prefix-paths of item C from D-conditional FP-tree

DC-CPB DC-conditional) DC-conditional
Items |sup Header Table T~ FP-tree
{AB} |1 Item | sup A2 4Bl

{Ay | 1 ‘ Ay 2 -
{B} 1 {BY| 2 t---o__. 51 R

= (2) Recursive invocation of FP-growth on DC-CPB

B
OMG)

Conditional Pattern Base of DCB

= (1) Build DCB-CPB

= Select prefix-paths of item B from DC-conditional FP-tree

DC-CPB DC-conditional) DC-conditional
Items |sup Header Table FP-tree
{AB} |1 Item | sup -

{A} |1
{B} |1

l ’ DCB-CPB

Items |sup
Frequent itemset: {A} 1
DCB, sup(DCB) = 2

B
OMu]

Conditional Pattern Base of DCB

= (1) Build DCB-CPB

= Select prefix-paths of item B from DC-conditional FP-tree

Iltje(,f,icpfup = Item A is infrequent in DCB-CPB
{A} ‘ = Ais removed from DCB-CPB

1
= DCB-CPB is empty

= (2) The search backtracks to DC-CPB

B
MG _

Conditional Pattern Base of DCA

= (1) Build DCA-CPB

= Select prefix-paths of item A from DC-conditional FP-tree

DC-CPB DC-conditional { } DC-conditional
Items |sup Header Table FP-tree

{A,B} Item

1
'e
{A} | 1 ‘-»
By |1 {B} |

_ DCA-CPB is empty
Frequent itemset: (no transactions)

DCA, sup(DCA) = 2
= (2) The search backtracks to D-CBP J

B
DM :

Conditional Pattern Base of DB

= (1) Build DB-CPB

= Select prefix-paths of item B from D-conditional FP-tree

D-CPB D-conditional 1) 0 Clg;fc“rggnal
Items |sup Header Table
{BAC} | 1 Item | sup
{B,A} 1 {A}
{B,C} 1 ‘
{A,C} 1
{A} 1

Frequent itemset:
DB, sup(DB) = 3

B
DM §

Conditional Pattern Base of DB

= (1) Build DB-CPB

= Select prefix-paths of item B from D-conditional FP-tree

DB-conditional

DB-CPB Header Table {3
Items |[sup Items |sup DB-conditional
{A} | 2 ‘ Ay |2 L--+A2 FP-tree

= (2) Recursive invocation of FP-growth on DB-CPB

B
DMG _

Conditional Pattern Base of DBA

= (1) Build DBA-CPB

= Select prefix-paths of item A from DB-conditional FP-tree

DB-conditional
DB-CPB Header Table

Items |sup Items |sup DB-conditional
Ay | 2 ‘ FP-tree

_ DBA-CPB is empty
Frequent itemset: (no transactions)

DBA, sup(DBA) = 2
= (2) The search backtracks to D-CBP J

B
DMG _

Conditional Pattern Base of DA

= (1) Build DA-CPB
= Select pBegE%paths of item A from D-conditional FP-traen_ 1 ditional
- D-conditional {}

FP-tree
Items |sup Header Table
{B,A,C} | 1 B:1
{B,A} 1
{B,C} 1 C:1
{A,C} 1
{A} 1

DA-CPB is empty
(no transactions)

Frequent itemset: 1

DA, sup(DA) = 4 The search ends

B 7
DG

Frequent itemsets with prefix D

= Frequent itemsets including D and supported combinations of items

B,A,C

Example DB

ltems

_l
A —
S ©®NOOEWN =T

{AB}
{B,C,D}
{A,C,D,E}
{AD,E}
{AB,C}
{A,B,C,D}
{B,C}
{AB,C}
{A,B,D}
{B.C,E}

itemsets

(A.D}
(B.D}
m | cD

{A,B,D}
{A,C,D}
{B,C,D}

(7))
Nl\)l\)oooo.hcn_g

minsup>1

/3

Other approaches

= Many other approaches to frequent itemset extraction
= May exploit a different database representation

represent the tidset of each item [Zak00]

Horizontal
Data Layout Vertical Data Layout

ltems B C D E
A,B,E
B,C,D
C,E
A,CD
A,B,C,D
AE
A,B
A,B,C
A,C,D
B

2 1
4 3
5 6
9

O~NON -
O© ook~ wWDN

©Ooo~NOO O |>

@OO\ICDm-hQJI\)—\a

—
o

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

74

g
@)
(@l
(@l
>
(0]

O

O

fd
C

S
Q
>

&
S
(D)

S
Q
()

n ©
C 9
O o
._..mm
= O
S S
D 5

Q
er
i QO
o ©
B

3
O E
© 2
pe
E £
OS
O

)
)
Q
)
| -
Q
Q.
-
T}
=
)
C
)
)
)

[oNeolololNelolNolelolall i U s

OO OO0 O0OO0OO0OO0OO ™™™«

OO OO0 O0OO0OO0ODO0OO0O ™™™ ™«

OO OO 000000 ™™™«

OO OO OO0 O0OO0O0O ™™™

OO OO OO0 O0OO0OO0O ™™™

OO OO OO0 O0OO0OO0O ™™™

OO0 OO0 ST™vr@mrvwvw OO OOoOOo

T 000000000 O0o

11111 OO OO0 O0OO0OO0OOo0OOo

T 000000000 O0o

11111 OO OO0 O0OO0OO0OOoOOo

11111 OO OO0 O0OO0OO0OOoOOo

11111 [eNeoNololoNololNolNoNo

11111 OO OO0 O0OO0OOOOo

11111 [eNeNeololoNololNolNo ol

11111 [oNeoNeololoNololNolNo o

11111 [eoNeoNeloloNolololNo o

o
-
O
(<2
(&}
oo
(&}
[~ |
(&}
o]
(&}
0|
(&}
<
(&
o]
(&)
o]
(&)
— |
(&)
=
-
0|
[=2]
1]
oo
[11]
[~ |
(11]
o]
[11]
10
11]
< |
11]
o0 |
11]
o]
[11]
—
11]
=
-~
<
(<]
<
(-]
<
N~
<
({<]
<
n
<
<
<
(5]
<
[|
<
=]
-

—|fo [[w]o|~ oo | 2T 2[T]L

— =l

+)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

10
=1

= Number of frequent itemsets =3 x

= A compact representation is needed

75

Maximal Frequent Itemset

An itemset is frequent maximal if none of its immediate supersets
is frequent

Maximal
Itemsets

Infrequent
Itemsets <«

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

76

Closed Itemset

= An itemset is closed if none of its immediate
supersets has the same support as the itemset

itemset | sup

TID ltems {A} 4
1 (A,B} {B}
2 {B,C,D} {C}
3 {A,B,C,D} {D}
4 {A,B,D}
5 {A,B,C,D} {A’B}

{A,D}
{B,C}
{B,D}
{C,D}

5
3
4
4
{AC} | 2
3
3
4
3

itemset su
{A,B,C} 2
{A,B,D} 3
{A,C,D} 2
{B,C,D} 3
{A,B,C,D} 2

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

77

Maximal vs Closed Itemsets

DG

TID | ltems
1 ABC
2 ABCD
3 BCE
4 ACDE
9 DE

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

78

Maximal vs Closed Frequent Itemsets

Closed but
not maximal

Minimum support = 2

Closed and
maximal

Closed =9

Maximal =4

y ‘ From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

79

Maximal vs Closed Itemsets

Frequent
[temsets

Closed
Frequent
ltemsets

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

80

Effect of Support Threshold

= Selection of the appropriate minsup threshold is not
obvious
« If minsup is too high

= itemsets including rare but interesting items may be lost
example: pieces of jewellery (or other expensive products)

« If minsup is too low
= it may become computationally very expensive
« the number of frequent itemsets becomes very large

B
DMG _

Interestingness Measures

= A large number of pattern may be extracted
= rank patterns by their interestingness

= Objective measures
= rank patterns based on statistics computed from data
= initial framework [Agr94] only considered support and confidence
= Oother statistical measures available
= Subjective measures

= rank patterns according to user interpretation [Silb98]
= interesting if it contradicts the expectation of a user
= interesting if it is actionable

B :
DYG 8

Confidence measure: always reliable?

= 5000 high school students are given
= 3750 eat cereals

. 3000 play baSket cereals baSZlEJE(})tO = ba::l;gg toga7|50
= 2000 eat cereals and play basket

not cereals

1000 250 1250
total 3000 2000 5000
s Rule

play basket = eat cereals
sup = 40%, conf = 66,7%
is misleading because eat cereals has sup 75% (>66,7%)

= Problem caused by high frequency of rule head
= Negative correlation

DG

83

Correlation or lift

rA=0B
Correlation = P8 _ conf(r)
P(A)P(B) sup(B)

= Statistical independence
= Correlation =1

= Positive correlation
= Correlation > 1

= Negative correlation
= Correlation < 1

B
DYG o

Example

= Association rule

play basket — eat cereals
has corr = 0.89

= hegative correlation
= but rule

play basket = not (eat cereals)
has corr = 1,34

B
DM "

| Measure Formula
1 | ¢-eoefficient P(A,B)—P(A)P(B)
el T BUAgsBr)4 $on oy PUAZ) P(4;) P(Bx)
2 | Goodman Hrusials (3 p(:. B);(X E) o PAmam P
3 Odds ratio (Q) WP(Z_:B) L
) P(A,B)P(AB)—P(A,B)P(A,B) _ a—1
4 | Yule's @ P(A,B)P(AB)+P(A,B)P(A,B) _ atl
; +/P(A B)P(AB)—+/P(A,B)P(A,B) _ /a1
b | YuesY \/P(A,B)P(AB)++/P(AB)P(A,B) _ Vatl
P(A,B)+P(A,B)—P(A)P(B)—P(A)P(B)
6 | Kappa {«) —P(APB)-PHPE)
. 2 25 P(AiBj) log }!(A—..)';h(i?
7 | Mutual Information (M) | —oi— 54,7108 (A= 5, P(B;) log PE;)
P(B|4a = P(Bl4
8 | J-Measure (.J) max (P(A, B) log(Z5042) + P(AB) log(8L,
P(A|B - P(A|B
P4, B) log("H75") + P(AB) log(550
9 | Gini index (G) max (P(A) [P(B|A)? + P(B|A)’] + P(A)[P(B|A)" + P(B|4)"]
—P(B)* — P(B)*,
P(B)[P(A|B)® + P(4|B)"] + P(B)[P(4|B)’ + P(A|B)’]
—P(4)* - P(A)")
10 | Support (s) P(A,B)
11 | Confidence (c) max{P{B|A), P(A|B))
NP(4,B)+1 NP(AB)+1
12 | Laplace (L) max N;(:(A)ig ’ m(a(s)i-n
_ P(AYP(B) P(B)P(A)
13 | Conviction (V) max (=5 om “piaay
P(A,B
14 | Interest (1) Peiks
15 | cosine (IS) vy
+/P(A)P(B)
16 | Piatetsky-Shapiro’s (PS) | P{A,B) — P{A)P({B)
. P(B|4)—P(B) P(A|B)—P(4
17 | Certainty factor (F') max((11_}),(3)(2, (11_11(4)()
18 | Added Value (AV') max{P{B|A) — P{B), P(A|B) — P(A))
; P(4,B)+P(AB) 1—P(A)YP(B)—P(A)P(B)
19 | Collective strength {S) ”(A’PE,‘{L+§§Z’P(E’ I P(A.B)_P(iD)
20 | Jaeeard () P(A) T P(B)—P(A,B)
21 | Klosgen {K) /P(4, B) max(P{B|A) — P(B), P{A|B) — P(A))

\'.iflﬁ e
“\\ 1859 ph

N w24

86

