Association Rules Fundamentals

Elena Baralis, Silvia Chiusano, Tania Cerquitelli

Politecnico di Torino

Association rules

- Objective

- extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk
\ldots	\ldots

- Association rule

$$
\text { diapers } \Rightarrow \text { beer }
$$

- 2% of transactions contains both items
- 30% of transactions containing diapers also contains beer

Association rule mining

- A collection of transactions is given
- a transaction is a set of items
- items in a transaction are not ordered
- Association rule

$$
A, B \Rightarrow C
$$

- $A, B=$ items in the rule body
- $\mathrm{C}=$ item in the rule head
- The \Rightarrow means co-occurrence

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk
\ldots	\ldots

- not causality
- Example
- coke, diapers \Rightarrow milk

Transactional formats

- Association rule extraction is an exploratory technique that can be applied to any data type
- A transaction can be any set of items
- Market basket data
- Textual data
- Structured data
- ...

Transactional formats

- Textual data
- A document is a transaction
- Words in a document are items in the transaction
- Data example
- Doc1: algorithm analysis customer data mining relationship
- Doc2: customer data management relationship
- Doc3: analysis customer data mining relationship social
- Rule example

$$
\text { customer, relationship } \Rightarrow \text { data, mining }
$$

Transactional formats

- Structured data
- A table row is a transaction
- Pairs (attribute, value) are items in the transaction
- Data example

Refund	Marital Status	Taxable Income	Cheat
No	Married	$<80 \mathrm{~K}$	No

- Transaction

Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No

- Rule example

Refund=No, MaritalStatus=Married \Rightarrow Cheat $=$ No

Definitions

- Itemset is a set including one or more items
- Example: \{Beer, Diapers\}
- k-itemset is an itemset that contains k items
- Support count (\#) is the frequency of occurrence of an itemset
- Example: \#\{Beer,Diapers\} = 2
- Support is the fraction of transactions that contain an itemset
- Example: sup(\{Beer, Diapers\}) $=2 / 5$
- Frequent itemset is an itemset whose support is greater than or equal to a minsup threshold

Rule quality metrics

- Given the association rule

$$
A \Rightarrow B
$$

- A, B are itemsets
- Support is the fraction of transactions containing both A and B

$$
\frac{\#\{A, B\}}{|T|}
$$

- |T| is the cardinality of the transactional database
- a priori probability of itemset AB
- rule frequency in the database
- Confidence is the frequency of B in transactions containing A

$$
\underline{\sup (A, B)}
$$

$$
\sup (A)
$$

- conditional probability of finding B having found A
- "strength" of the " \Rightarrow "

Rule quality metrics: example

- From itemset \{Milk, Diapers\} the following rules may be derived
- Rule: Milk \Rightarrow Diapers
- support
sup=\#\{Milk,Diapers $\} / \#$ trans. $=3 / 5=60 \%$
- confidence
conf=\#\{Milk,Diapers\}/\#\{Milk\}=3/4=75\%
- Rule: Diapers \Rightarrow Milk
- same support

$$
s=60 \%
$$

- confidence

$$
\begin{aligned}
\text { conf } & =\#\{\text { Milk,Diapers }\} / \#\{\text { Diapers }\}=3 / 3 \\
& =100 \%
\end{aligned}
$$

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Association rule extraction

- Given a set of transactions T, association rule mining is the extraction of the rules satisfying the constraints
- support \geq minsup threshold
- confidence \geq minconfthreshold
- The result is
- complete (al/ rules satisfying both constraints)
- correct (only the rules satisfying both constraints)
- May add other more complex constraints

Association rule extraction

- Brute-force approach
- enumerate all possible permutations (i.e., association rules)
- compute support and confidence for each rule
- prune the rules that do not satisfy the minsup and minconf constraints
- Computationally unfeasible
- Given an itemset, the extraction process may be split
- first generate frequent itemsets
- next generate rules from each frequent itemset
- Example
- Itemset
\{Milk, Diapers\} sup=60\%
- Rules

Milk \Rightarrow Diapers (conf=75\%)
Diapers \Rightarrow Milk (conf=100\%)

Association rule extraction

(1) Extraction of frequent itemsets

- many different techniques
- level-wise approaches (Apriori, ...)
- approaches without candidate generation (FP-growth, ...)
- other approaches
- most computationally expensive step
- limit extraction time by means of support threshold
(2) Extraction of association rules
- generation of all possible binary partitioning of each frequent itemset
- possibly enforcing a confidence threshold

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach
- each itemset in the lattice is a candidate frequent itemset
- scan the database to count the support of each candidate
- match each transaction against every candidate
- Complexity ~ O(|T| $\left.2^{\mathrm{d}} \mathrm{w}\right)$
- $|\mathrm{T}|$ is number of transactions
- d is number of items
- w is transaction length

Improving Efficiency

- Reduce the number of candidates
- Prune the search space
- complete set of candidates is 2^{d}
- Reduce the number of transactions
- Prune transactions as the size of itemsets increases - reduce |T|
- Reduce the number of comparisons
- Equal to $|\mathrm{T}| 2^{\text {d }}$
- Use efficient data structures to store the candidates or transactions

The Apriori Principle

"If an itemset is frequent, then all of its subsets must also be frequent"

- The support of an itemset can never exceed the support of any of its subsets
- It holds due to the antimonotone property of the support measure
- Given two arbitrary itemsets A and B

$$
\text { if } A \subseteq B \text { then } \sup (A) \geq \sup (B)
$$

- It reduces the number of candidates

The Apriori Principle

Apriori Algorithm [Agr94]

- Level-based approach
- at each iteration extracts itemsets of a given length k
- Two main steps for each level
- (1) Candidate generation
- Join Step
- generate candidates of length $k+1$ by joining frequent itemsets of length k
- Prune Step
- apply Apriori principle: prune length k+1 candidate itemsets that contain at least one kitemset that is not frequent
- (2) Frequent itemset generation
- scan DB to count support for $k+1$ candidates
- prune candidates below minsup

Apriori Algorithm [Agr94]

- Pseudo-code
C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin
$C_{k+1}=$ candidates generated from $L_{k i}$ for each transaction t in database do
increment the count of all candidates in C_{k+1} that are contained in t
$L_{k+1}=$ candidates in C_{k+1} satisfying minsup
end
return $\cup_{k} L_{k i}$

Generating Candidates

- Sort L_{k} candidates in lexicographical order
- For each candidate of length k
- Self-join with each candidate sharing same L_{k-1} prefix
- Prune candidates by applying Apriori principle
- Example: given $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-join
- abcd from $a b c$ and $a b d$
- acde from acd and ace
- Prune by applying Apriori principle
- acde is removed because ade, cde are not in L_{3}
- $C_{4}=\{a b c d\}$

Apriori Algorithm: Example

Example DB

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
5	$\{A, B, C\}$
6	$\{A, B, C, D\}$
7	$\{B, C\}$
8	$\{A, B, C\}$
9	$\{A, B, D\}$
10	$\{B, C, E\}$

minsup>1

Generate candidate 1-itemsets

Example DB

TID	Items	$\begin{aligned} & 1^{\text {st } \mathrm{DB}} \\ & \square \mathrm{scan} \\ & \square \end{aligned}$	C_{1}	
1	\{A,B\}			
2	$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$		itemsets	sup
3	$\{A, C, D, E\}$		\{A\}	7
4	$\{A, D, E\}$		\{B\}	8
5	$\{A, B, C\}$		\{C\}	7
6	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$		\{D\}	5
7	$\{B, C\}$		\{E\}	3
8	$\{A, B, C\}$			
9	$\{A, B, D\}$			
10	$\{B, C, E\}$			
ins	>1			

Prune infrequent candidates in C_{1}

Example DB

TID	Items	C_{1}			$\square L_{1} \equiv C_{1}$
1	$\{\mathrm{A}, \mathrm{B}\}$				
2	$\{B, C, D\}$	$\begin{aligned} & 1^{\text {st }} \mathrm{DB} \\ & \text { scan } \end{aligned}$	itemsets	sup	
3	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$		\{A\}	7	
4	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$		\{B\}	8	
5	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$		\{C\}	7	
6	$\{A, B, C, D\}$		\{D\}	5	
7	$\{\mathrm{B}, \mathrm{C}\}$		\{E\}	3	

- All itemsets in set C_{1} are frequent according to minsup>1
minsup>1

Generate candidates from L_{1}

Count support for candidates in C_{2}

Prune infrequent candidates in C_{2}

Generate candidates from L_{2}

L_{2}			
itemsets	\sup		
$\{A, B\}$	5		
$\{A, C\}$	4		
$\{A, D\}$	4		
$\{A, E\}$	2		
$\{B, C\}$	6		
$\{B, D\}$	3		
$\{C, D\}$	3		
$\{C, E\}$	2		
$\{D, E\}$	2	\quad	itemsets
:---:			
$\{A, B, C\}$			
$\{A, B, D\}$			
$\{A, B, E\}$			
$\{A, C, D\}$			
$\{A, C, E\}$			
$A, D, E\}$			
$\{B, C, D\}$			
$\{C, D, E\}$			

Apply Apriori principle on C_{3}

L_{2}		C_{3}
itemsets	sup	itemsets
$\{A, B\}$	5	\{A,B,C\}
$\{\mathrm{A}, \mathrm{C}\}$	4	\{A,B,D\}
$\{\mathrm{A}, \mathrm{D}\}$	4	A
$\{\mathrm{A}, \mathrm{E}\}$	2	
$\{\mathrm{B}, \mathrm{C}\}$	6	\{A,C, ${ }^{\text {a }}$, A$\}$
\{B,D\}	3	$\{A, D, E\}$
$\{\mathrm{C}, \mathrm{D}\}$	3	$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$
\{C,E\}	2	\{C,D,E\}
\{D,E\}	2	

- Prune $\{A, B, E\}$
- Its subset $\{B, E\}$ is infrequent $\left(\{B, E\}\right.$ is not in $\left.L_{2}\right)$

Count support for candidates in C_{3}

Prune infrequent candidates in C_{3}

L_{2}	
itemsets	sup
$\{A, B\}$	5
$\{A, C\}$	4
$\{A, D\}$	4
$\{A, E\}$	2
$\{B, C\}$	6
$\{B, D\}$	3
$\{C, D\}$	3
$\{C, E\}$	2
$\{D, E\}$	2

C_{3}
itemsets
$\{A, B, C\}$
$\{A, B, D\}$
3rd
DB $, B, E\}$
$\{A, C, D\}$
$\{A, C, E\}$
$\{A, D, E\}$
$\{B, C, D\}$
$\{C, D, E\}$

C_{3}	L_{3}				
itemsets	sup				
$\{A, B, C\}$	3				
$\{A, B, D\}$	2				
$\{A, C, D\}$	2				
$\{A, C, E\}$	-1				
$\{A, D, E\}$	2				
$\{B, C, D\}$	2		\quad	itemsets	sup
:---:	:---:	:---:			
$\{A, B, C\}$	3				
$\{A, B, D\}$	2				
$\{A, C, D\}$	2				
$\{A, D, E\}$	2				
$\{B, C, D\}$	2				

- $\{A, C, E\}$ and $\{C, D, E\}$ are actually infrequent
- They are discarded from C_{3}

Generate candidates from L_{3}

L_{3}

itemsets	sup		
$\{A, B, C\}$	3		
$\{A, B, D\}$	2		
$\{A, C, D\}$	2		
$\{A, D, E\}$	2		
$\{B, C, D\}$	2	\quad	C_{4}
:---:			
itemsets			
$\{A, B, C, D\}$			

Apply Apriori principle on C_{4}

L_{3}
itemsets sup $\{A, B, C\}$ 3 $\{A, B, D\}$ 2 $\{A, C, D\}$ 2 $\{A, D, E\}$ 2 $\{B, C, D\}$ 2$\gg$$C_{4}$ itemsets $\{A, B, C, D\}$

- Check if $\{A, C, D\}$ and $\{B, C, D\}$ belong to L_{3}
- L_{3} contains all 3-itemset subsets of $\{A, B, C, D\}$
- $\{A, B, C, D\}$ is potentially frequent

Count support for candidates in C_{4}

Prune infrequent candidates in C_{4}

- $\{A, B, C, D\}$ is actually infrequent
- $\{A, B, C, D\}$ is discarded from C_{4}

Final set of frequent itemsets

Example DB		L_{1}		L_{2}	
TID	Items	itemsets	sup	itemsets	sup
		\{A\}	7	$\{\mathrm{A}, \mathrm{B}\}$	5
1	$\{\mathrm{A}, \mathrm{B}\}$	\{B\}	8	$\{\mathrm{A}, \mathrm{C}\}$	4
2	$\{B, C, D\}$	\{C\}	7	$\{\mathrm{A}, \mathrm{D}\}$	4
3	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	\{D\}	5	$\{\mathrm{A}, \mathrm{E}\}$	2
4	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$	\{E\}	3	$\{\mathrm{BB}, \mathrm{C}\}$	6
5	\{A,B,C\}			$\{B, D\}$	3
6	$\{A, B, C, D\}$	\xrightarrow{L}		$\{C, D\}$	3
7	\{B,C\}	itemsets		\{C,E\}	2
8	$\{A, B, C\}$	$\{A, B, C\}$	2	\{D,E\}	2
9	$\{A, B, D\}$	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$	2		
10	$\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$	\{A,C,D\}	2		
minsup>1		\{A,D,E\}	2		
		$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$	2		

Counting Support of Candidates

- Scan transaction database to count support of each itemset
- total number of candidates may be large
- one transaction may contain many candidates
- Approach [Agr94]
- candidate itemsets are stored in a hash-tree
- leafnode of hash-tree contains a list of itemsets and counts
- interior node contains a hash table
- subset function finds all candidates contained in a transaction
- match transaction subsets to candidates in hash tree

Performance Issues in Apriori

- Candidate generation
- Candidate sets may be huge
- 2-itemset candidate generation is the most critical step
- extracting long frequent intemsets requires generating all frequent subsets
- Multiple database scans
- $n+1$ scans when longest frequent pattern length is n

Factors Affecting Performance

- Minimum support threshold
- lower support threshold increases number of frequent itemsets - larger number of candidates - larger (max) length of frequent itemsets
- Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- transaction width increases in dense data sets
- may increase max length of frequent itemsets and traversals of hash tree - number of subsets in a transaction increases with its width

Improving Apriori Efficiency

- Hash-based itemset counting [Yu95]
- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction [Yu95]
- A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning [Sav96]
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB

Improving Apriori Efficiency

- Sampling [Toi96]
- mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic Itemset Counting [Motw98]
- add new candidate itemsets only when all of their subsets are estimated to be frequent

FP-growth Algorithm [Han00]

- Exploits a main memory compressed representation of the database, the FP-tree
- high compression for dense data distributions
- less so for sparse data distributions
- complete representation for frequent pattern mining
- enforces support constraint
- Frequent pattern mining by means of FP-growth
- recursive visit of FP-tree
- applies divide-and-conquer approach
- decomposes mining task into smaller subtasks
- Only two database scans
- count item supports + build FP-tree

FP-tree construction

Example DB

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

minsup>1

- (1) Count item support and prune items below minsup threshold
- (2) Build Header Table by sorting items in decreasing support order

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Example DB

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

minsup>1

- (1) Count item support and prune items below minsup threshold
- (2) Build Header Table by sorting items in decreasing support order
- (3) Create FP-tree

For each transaction t in DB

- order transaction t items in decreasing support order
- same order as Header Table
- insert transaction t in FP-tree
- use existing path for common prefix
- create new branch when path becomes different

FP-tree construction

Transaction
TID Items 1 $\{A, B\}$
:---:
1

FP-tree construction

Transaction

TID	Items			
2	$\{B, C, D\}$	$\quad \square$	TID	Items
:---:	:---:	:---:		
2	$\{B, C, D\}$			

FP-tree construction

Transaction
TID Items 3 $\{A, C, D, E\}$
:---:
3

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction				
TID Items 4 $\{A, D, E\}$			TID	Items
:---:	:---:	:---:		
4	$\{A, D, E\}$			

FP-tree construction

Transaction				
TID Items 5 $\{A, B, C\}$			TID	Items
:---:	:---:	:---:		
5	$\{B, A, C\}$			

FP-tree construction

Transaction

TID	Items			
6	$\{A, B, C, D\}$	\square	TID	Items
:---:	:---:	:---:		
6	$\{B, A, C, D\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction				
TID Items 7 $\{B, C\}$		\quad	TID	Items
:---:	:---:	:---:		
7	$\{B, C\}$			

Header Table

Item	sup
$\{\mathrm{B}\}$	8
$\{\mathrm{~A}\}$	7
$\{\mathrm{C}\}$	7
$\{\mathrm{D}\}$	5
$\{\mathrm{E}\}$	3

FP-tree construction

Transaction

TID	Items			
8	$\{A, B, C\}$	\quad	TID	Items
:---:	:---:	:---:		
8	$\{B, A, C\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction				
TID Items 9 $\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$		\quad	TID	Items
:---:	:---:	:---:		
9	$\{\mathrm{~B}, \mathrm{~A}, \mathrm{D}\}$			

FP-tree construction

Transaction	
TID Items 10 $\{B, C, E\}$	
10	$\{B, C, E\}$

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

Final FP-tree

Item pointers are used to assist frequent itemset generation

FP-growth Algorithm

- Scan Header Table from lowest support item up
- For each item i in Header Table extract frequent itemsets including item i and items preceding it in Header Table
- (1) build Conditional Pattern Base for item i (i-CPB)
- Select prefix-paths of item i from FP-tree
- (2) recursive invocation of FP-growth on i-CPB

Example

- Consider item D and extract frequent itemsets including
- D and supported combinations of items A, B, C

Conditional Pattern Base of D

- (1) Build D-CPB
- Select prefix-paths of item D from FP-tree

Conditional Pattern Base of D Header Table \{ \} FP-tree

Conditional Pattern Base of D
 Header Table
 \{ \} FP-tree

Conditional Pattern Base of D
 Header Table
 \{ \} FP-tree

Conditional Pattern Base of D
 Header Table
 \{ \} FP-tree

Conditional Pattern Base of D
 Header Table
 \{ \} FP-tree

Conditional Pattern Base of D

- (1) Build D-CPB
- Select prefix-paths of item D from FP-tree

- (2) Recursive invocation of FP-growth on D-CPB

Conditional Pattern Base of DC

- (1) Build DC-CPB
- Select prefix-paths of item C from D-conditional FP-tree

Conditional Pattern Base of DC

- (1) Build DC-CPB
- Select prefix-paths of item C from D-conditional FP-tree

- (2) Recursive invocation of FP-growth on DC-CPB

Conditional Pattern Base of DCB

- (1) Build DCB-CPB
- Select prefix-paths of item B from DC-conditional FP-tree

Conditional Pattern Base of DCB

- (1) Build DCB-CPB
- Select prefix-paths of item B from DC-conditional FP-tree

- Item A is infrequent in DCB-CPB
- A is removed from DCB-CPB
- DCB-CPB is empty

- (2) The search backtracks to DC-CPB

Conditional Pattern Base of DCA

- (1) Build DCA-CPB
- Select prefix-paths of item A from DC-conditional FP-tree

- (2) The search backtracks to D-CBP

Conditional Pattern Base of DB

- (1) Build DB-CPB
- Select prefix-paths of item B from D-conditional FP-tree

DB, $\sup (D B)=3$

Conditional Pattern Base of DB

- (1) Build DB-CPB
- Select prefix-paths of item B from D-conditional FP-tree

- (2) Recursive invocation of FP-growth on DB-CPB

Conditional Pattern Base of DBA

- (1) Build DBA-CPB
- Select prefix-paths of item A from DB-conditional FP-tree

- (2) The search backtracks to D-CBP

Conditional Pattern Base of DA

- (1) Build DA-CPB
- Select prefix-paths of item A from D-conditional FP-troe ${ }_{\text {D }}$-conditional

		D-conditional	\{ $\}$
Items	sup		
\{B,A,C $\}$	1		

$\{B, A\}$	1
$\{B, C\}$	1
$\{A, C\}$	1
$\{A\}$	1

Frequent itemsets with prefix D

- Frequent itemsets including D and supported combinations of items B,A,C Example DB

Other approaches

- Many other approaches to frequent itemset extraction
- May exploit a different database representation
- represent the tidset of each item [Zak00]

Horizontal
Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	B

Vertical Data Layout

A	B	C	D	E
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

Compact Representations

- Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- Number of frequent itemsets $=3 \times \sum_{k=1}^{10}\binom{10}{k}$
- A compact representation is needed

Maximal Frequent Itemset

An itemset is frequent maximal if none of its immediate supersets

Closed Itemset

- An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, B, C, D\}$
4	$\{A, B, D\}$
5	$\{A, B, C, D\}$

itemset	sup
$\{A\}$	4
$\{B\}$	5
$\{C\}$	3
$\{D\}$	4
$\{A, B\}$	4
$\{A, C\}$	2
$\{A, D\}$	3
$\{B, C\}$	3
$\{B, D\}$	4
$\{C, D\}$	3

itemset	sup
$\{A, B, C\}$	2
$\{A, B, D\}$	3
$\{A, C, D\}$	2
$\{B, C, D\}$	3
$\{A, B, C, D\}$	2

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

[^0]
Effect of Support Threshold

- Selection of the appropriate minsup threshold is not obvious
- If minsup is too high
- itemsets including rare but interesting items may be lost
- example: pieces of jewellery (or other expensive products)
- If minsup is too low
- it may become computationally very expensive
- the number of frequent itemsets becomes very large

Interestingness Measures

- A large number of pattern may be extracted
- rank patterns by their interestingness
- Objective measures
- rank patterns based on statistics computed from data
- initial framework [Agr94] only considered support and confidence - other statistical measures available
- Subjective measures
- rank patterns according to user interpretation [Silb98] - interesting if it contradicts the expectation of a user - interesting if it is actionable

Confidence measure: always reliable?

- 5000 high school students are given
- 3750 eat cereals
- 3000 play basket
- 2000 eat cereals and play basket

	basket	not basket	total
cereals	2000	1750	3750
not cereals	1000	250	1250
total	3000	2000	5000

- Rule

$$
\begin{aligned}
& \text { play basket } \Rightarrow \text { eat cereals } \\
& \text { sup }=40 \%, \text { conf }=66,7 \%
\end{aligned}
$$

is misleading because eat cereals has sup 75% ($>66,7 \%$)

- Problem caused by high frequency of rule head
- negative correlation

Correlation or lift

$$
\begin{gathered}
\mathrm{r}: \mathrm{A} \Rightarrow \mathrm{~B} \\
\text { Correlation }=\frac{P(A, B)}{P(A) P(B)}=\frac{\operatorname{conf}(\mathrm{r})}{\sup (\mathrm{B})}
\end{gathered}
$$

- Statistical independence
- Correlation = 1
- Positive correlation
- Correlation > 1
- Negative correlation
- Correlation < 1

Example

- Association rule
play basket \Rightarrow eat cereals
has corr $=0.89$
- negative correlation
- but rule

$$
\text { play basket } \Rightarrow \text { not (eat cereals) }
$$

has corr $=1,34$

\#	Measure	Formula
1	ϕ-coefficient	$P(A, B)-P(A) P(B)$
2	¢-coemclent	${ }^{\sqrt{2}} \begin{aligned} & \text { P(A)P(B)(1-P(A))(1-P(B))} \\ & \sum_{j} \max _{k} P\left(A_{j}, B_{k}\right)+\sum_{k} \max _{j} P\left(A_{j}, B_{k}\right)-\max _{j} P\left(A_{j}\right)-\max _{k} P\left(B_{k}\right)\end{aligned}$
2	Goodman-Kruskal's (λ)	
3	Odds ratio (α)	$\frac{P(A, B) P(\bar{A}, \bar{B})}{P(A, \bar{B}) P(\overline{\bar{A}, B})}$
4	Yule's Q	$\frac{P(A, B) P(\overline{A B})-P(A, \bar{B}) P(\bar{A}, B)}{P(A, B) P(\overline{A B})+P(A, \bar{B}) P(\bar{A}, B)}=\frac{\alpha-1}{\alpha+1}$
5	Yule's Y	$\frac{\sqrt{P(A, B) P(\overline{A B})}-\sqrt{P(A, \bar{B}) P(\bar{A}, B)}}{\sqrt{\text { P }} \text { 仡 }}$
5	Yıe's Y	
6	Kappa (κ)	
7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P\left(A_{i}, B_{j}\right) \log \frac{1}{P\left(A_{i}\right) P\left(B_{j}\right)}}{\min \left(-\sum_{i} P\left(A_{i}\right) \log P\left(A_{i}\right),-\sum_{j} P\left(B_{j}\right) \log P\left(B_{j}\right)\right)}$
8	J-Measure (J)	$\begin{array}{r} \max \left(P(A, B) \log \left(\frac{P(B \mid A)}{P(B)}\right)+P(A \bar{B}) \log \left(\frac{P(\bar{B} \mid A)}{P(\bar{B})}\right)\right. \\ \left.P(A, B) \log \left(\frac{P(A \mid B)}{P(A)}\right)+P(\bar{A} B) \log \left(\frac{P(\bar{A} \mid \bar{B})}{P(\bar{A})}\right)\right) \end{array}$
9	Gini index (G)	$\begin{gathered} \max \left(P(A)\left[P(B \mid A)^{\mathrm{a}}+P(\bar{B} \mid A)^{\mathrm{a}}\right]+P(\bar{A})\left[P(B \mid \bar{A})^{\mathrm{a}}+P(\bar{B} \mid \bar{A})^{\mathrm{a}}\right]\right. \\ \quad-P(B)^{\mathrm{a}}-P(\bar{B})^{\mathrm{a}}, \\ P(B)\left[P(A \mid B)^{\mathrm{a}}+P(\bar{A} \mid B)^{\mathrm{a}}\right]+P(\bar{B})\left[P(A \mid \bar{B})^{\mathrm{a}}+P(\bar{A} \mid \bar{B})^{\mathrm{a}}\right] \\ \left.\quad-P(A)^{\mathrm{a}}-P(\bar{A})^{\mathrm{a}}\right) \end{gathered}$
10	Support (s)	$P(A, B)$
11	Confidence (c)	$\max (P(B \mid A), P(A \mid B))$
12	Laplace (L)	$\max \left(\frac{N P(A, B)+1}{N P(A)+a}, \frac{N P(A, B)+1}{N P(\underline{B})+a}\right)$
13	Conviction (V)	$\max \left(\frac{P(A) P(\bar{B})}{P(A \bar{B})}, \frac{P(B) P(\bar{A})}{P(B \bar{A})}\right)$
14	Interest (I)	$\begin{aligned} & \frac{P(A, B)}{P(A) P(B)} \\ & \hline P(A, B) \\ & \hline \end{aligned}$
15	cosine ($I S$)	$\frac{P(A, B)}{\sqrt{P(A) P(B)}}$
16	Piatetsky-Shapiro's (PS)	$P(A, B)-P(A) P(B)$
17	Certainty factor (F)	$\max \left(\frac{P(B \mid A)-P(B)}{1-P(B)}, \frac{P(A \mid B)-P(A)}{1-P(A)}\right)$
18	Added Value ($A V$)	$\max (P(B \mid A)-P(B), P(A \mid B)-P(A))$
19	Collective strength (S)	$\frac{P(A, B)+P(\overline{A B})}{P(A) P(B)+P(\bar{A}) P(\bar{B})} \times \frac{1-P(A) P(B)-P(\bar{A}) P(\bar{B})}{1-P(A, B)-P(\overline{A B})}$
20	Jaccard (ζ)	$\frac{P(A, B)}{P(A)+P(B)-P(A, B)}$
21	Klosgen (K)	$\sqrt{P(A, B)} \max (P(B \mid A)-P(B), P(A \mid B)-P(A))$

[^0]: From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

