Association Rules Fundamentals

Elena Baralis, Silvia Chiusano, Tania Cerquitelli

Politecnico di Torino

Association rules

- Objective
 - extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

- Association rule diapers ⇒ beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contains beer

Association rule mining

- A collection of transactions is given
 - a transaction is a set of items
 - items in a transaction are not ordered
- Association rule

A, B
$$\Rightarrow$$
 C

- A, B = items in the rule body
- C = item in the rule head
- The ⇒ means co-occurrence
 - not causality
- Example
 - coke, diapers ⇒ milk

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Transactional formats

- Association rule extraction is an exploratory technique that can be applied to any data type
- A transaction can be any set of items
 - Market basket data
 - Textual data
 - Structured data

...

Transactional formats

Textual data

- A document is a transaction
- Words in a document are items in the transaction
- Data example
 - Doc1: algorithm analysis customer data mining relationship
 - Doc2: customer data management relationship
 - Doc3: analysis customer data mining relationship social
- Rule example

customer, relationship \Rightarrow data, mining

Transactional formats

- Structured data
 - A table row is a transaction
 - Pairs (attribute, value) are items in the transaction
- Data example

Refund	Marital Status	Taxable Income	Cheat
No	Married	< 80K	No

- Transaction Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No
- Rule example

Refund=No, MaritalStatus=Married \Rightarrow Cheat = No

Definitions

- Itemset is a set including one or more items
 - Example: {Beer, Diapers}
- k-itemset is an itemset that contains k items
- Support count (#) is the frequency of occurrence of an itemset
 - Example: #{Beer,Diapers} = 2
- Support is the fraction of transactions that contain an itemset
 - Example: sup({Beer, Diapers}) = 2/5
- Frequent itemset is an itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Rule quality metrics

Given the association rule

$$A \Rightarrow B$$

- A, B are itemsets
- Support is the fraction of transactions containing both A and B
 #{A,B}
 ITI
 - |T| is the cardinality of the transactional database
 - a priori probability of itemset AB
 - rule frequency in the database
- Confidence is the frequency of B in transactions containing A ^{sup(A,B)} ^{sup(A)}
 - conditional probability of finding B having found A
 - "strength" of the "⇒"

Rule quality metrics: example

- From itemset {Milk, Diapers} the following rules may be derived
- Rule: Milk \Rightarrow Diapers
 - support sup=#{Milk,Diapers}/#trans. =3/5=60%
 - confidence conf=#{Milk,Diapers}/#{Milk}=3/4=75%
- Rule: Diapers ⇒ Milk
 - same supports=60%
 - confidenceconf = #{Milk Diamers}/#/

```
conf=#{Milk,Diapers}/#{Diapers}=3/3
=100%
```

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Association rule extraction

- Given a set of transactions T, association rule mining is the extraction of the rules satisfying the constraints
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- The result is
 - complete (all rules satisfying both constraints)
 - correct (*only* the rules satisfying both constraints)
- May add other more complex constraints

Association rule extraction

- Brute-force approach
 - enumerate all possible permutations (i.e., association rules)
 - compute support and confidence for each rule
 - prune the rules that do not satisfy the minsup and minconf constraints
- Computationally unfeasible
- Given an itemset, the extraction process may be split
 - first generate frequent itemsets
 - next generate rules from each frequent itemset
- Example
 - Itemset {Milk, Diapers} sup=60%
 - Rules

```
Milk \Rightarrow Diapers (conf=75%)
Diapers \Rightarrow Milk (conf=100%)
```


Association rule extraction

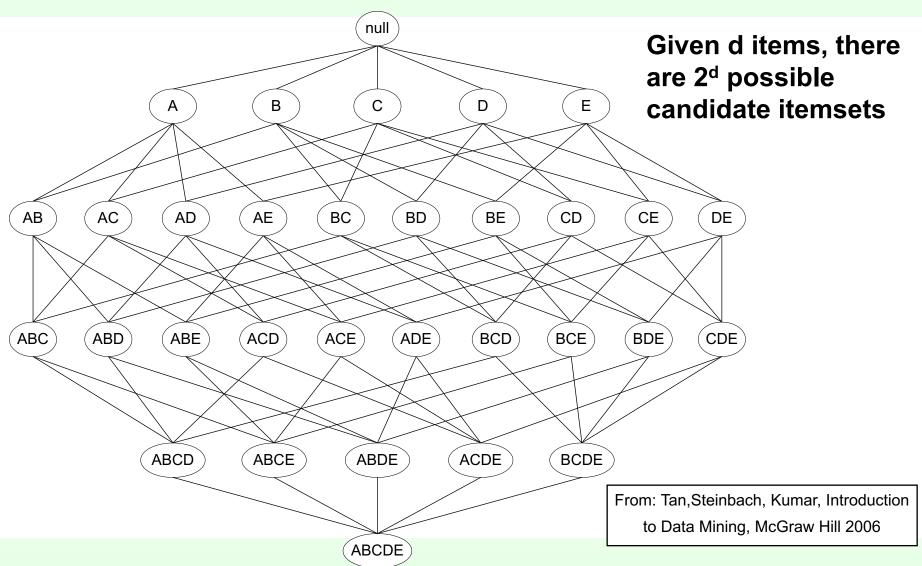
(1) Extraction of frequent itemsets

- many different techniques
 - level-wise approaches (Apriori, ...)
 - approaches without candidate generation (FP-growth, ...)
 - other approaches
- most computationally expensive step
 - limit extraction time by means of support threshold

(2) Extraction of association rules

- generation of all possible binary partitioning of each frequent itemset
 - possibly enforcing a confidence threshold

Frequent Itemset Generation



Frequent Itemset Generation

- Brute-force approach
 - each itemset in the lattice is a candidate frequent itemset
 - scan the database to count the support of each candidate
 - match each transaction against every candidate
 - Complexity ~ O(|T| 2^d w)
 - |T| is number of transactions
 - d is number of items
 - w is transaction length

Improving Efficiency

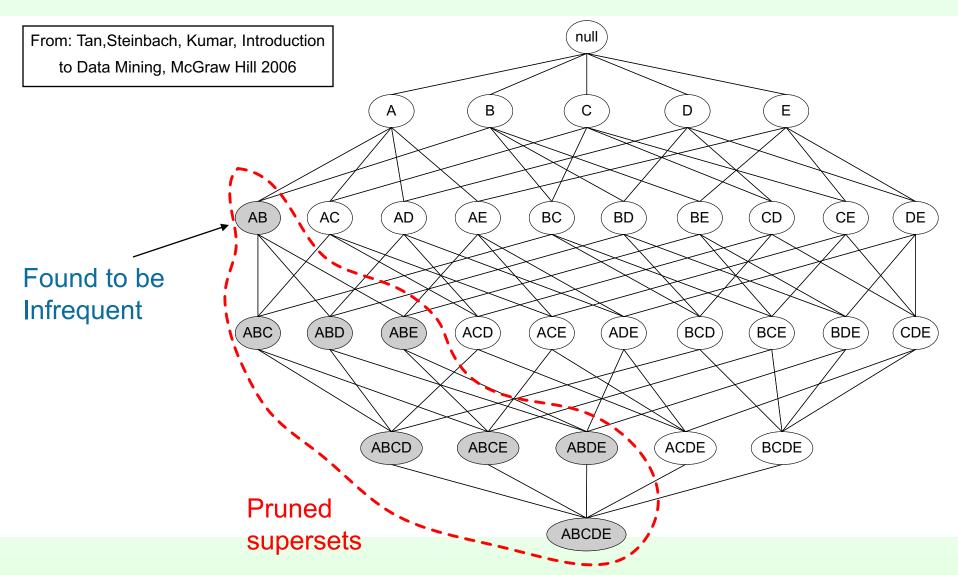
- Reduce the number of candidates
 - Prune the search space
 - complete set of candidates is 2^d
- Reduce the number of transactions
 - Prune transactions as the size of itemsets increases
 - reduce |T|
- Reduce the number of comparisons
 - Equal to |T| 2^d
 - Use efficient data structures to store the candidates or transactions

The Apriori Principle

"If an itemset is frequent, then all of its subsets must also be frequent"

- The support of an itemset can never exceed the support of any of its subsets
- It holds due to the antimonotone property of the support measure
 - Given two arbitrary itemsets A and B
 if A ⊆ B then sup(A) ≥ sup(B)
- It reduces the number of candidates

The Apriori Principle



Apriori Algorithm [Agr94]

- Level-based approach
 - at each iteration extracts itemsets of a given length k
- Two main steps for each level
 - (1) Candidate generation
 - Join Step
 - generate candidates of length k+1 by joining frequent itemsets of length k
 - Prune Step
 - apply Apriori principle: prune length k+1 candidate itemsets that contain at least one kitemset that is not frequent
 - (2) Frequent itemset generation
 - scan DB to count support for k+1 candidates
 - prune candidates below minsup

Apriori Algorithm [Agr94]

Pseudo-code

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k! = \emptyset; k++) do
   begin
    C_{k+1} = candidates generated from L_k;
    for each transaction t in database do
         increment the count of all candidates in C_{k+1} that are contained in t
    L_{k+1} = candidates in C_{k+1} satisfying minsup
   end
return \cup_k L_k;
```


Generating Candidates

- Sort L_k candidates in lexicographical order
- For each candidate of length k
 - Self-join with each candidate sharing same L_{k-1} prefix
 - Prune candidates by applying Apriori principle
- Example: given L₃={abc, abd, acd, ace, bcd}
 - Self-join
 - abcd from abc and abd
 - acde from acd and ace
 - Prune by applying Apriori principle
 - acde is removed because ade, cde are not in L₃
 - *C*₄={*abcd*}

Apriori Algorithm: Example

Example DB

TID	Items		
1	{A,B}		
2	$\{B,C,D\}$		
3	$\{A,C,D,E\}$		
4	$\{A,D,E\}$		
5	$\{A,B,C\}$		
6	$\{A,B,C,D\}$		
7	{B,C}		
8	$\{A,B,C\}$		
9	$\{A,B,D\}$		
10	$\{B,C,E\}$		

minsup>1

Generate candidate 1-itemsets

Example DB

TID	Items		
1	{A,B}		
2	$\{B,C,D\}$		
3	$\{A,C,D,E\}$		
4	$\{A,D,E\}$		
5	$\{A,B,C\}$		
6	$\{A,B,C,D\}$		
7	{B,C}		
8	$\{A,B,C\}$		
9	{A,B,D}		
10	{B,C,E}		

1st DB scan

itemsets	sup
{A}	7
{B}	8
{C}	7
{D}	5
{E}	3

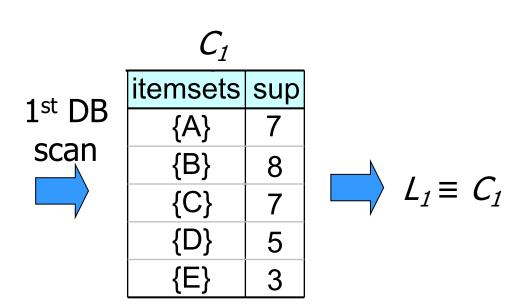
minsup>1

Prune infrequent candidates in C_1

Example DB

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

minsup>1



• All itemsets in set C_1 are frequent according to minsup>1

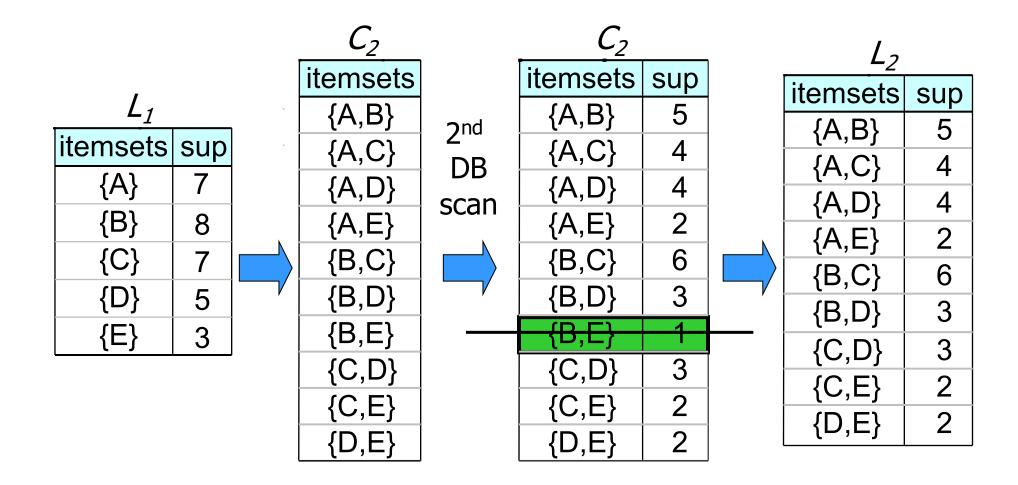
Generate candidates from L_1

			C_2
		,	itemsets
L_1		•	{A,B}
itemsets	sup		{A,C}
{A}	7		{A,D}
{B}	8		{A,E}
{C}	7		{B,C}
{D}	5		{B,D}
{E}	3		{B,E}
		•	{C,D}
			{C,E}
			{D,E}

Count support for candidates in C_2

			C_2		C_2	
			itemsets		itemsets	sup
L_1		~	{A,B}	2 nd	{A,B}	5
itemsets	sup		{A,C}	DB	{A,C}	4
{A}	7		{A,D}	scan	{A,D}	4
{B}	8		$\{A,E\}$	Scari	{A,E}	2
{C}	7		{B,C}		{B,C}	6
{D}	5		{B,D}		{B,D}	3
{E}	3		{B,E}		{B,E}	1
			{C,D}		{C,D}	3
			{C,E}		{C,E}	2
			{D,E}		{D,E}	2

Prune infrequent candidates in C_2



Generate candidates from L₂

-2		
itemsets	sup	
{A,B}	5	
{A,C}	4	
{A,D}	4	
{A,E}	2	
{B,C}	6	
{B,D}	3	
{C,D}	3	•
{C,E}	2	
{D,E}	2	

itemsets {A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,C,E}	C_3
{A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D}	itemsets
{A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D}	$\{A,B,C\}$
{A,C,D} {A,C,E} {A,D,E} {B,C,D}	$\{A,B,D\}$
{A,C,E} {A,D,E} {B,C,D}	$\{A,B,E\}$
{A,D,E} {B,C,D}	$\{A,C,D\}$
{B,C,D}	$\{A,C,E\}$
-	$\{A,D,E\}$
(C D E)	$\{B,C,D\}$
{∪,D,E}	$\{C,D,E\}$

Apply Apriori principle on C_3

- 2		•	C_3
itemsets	sup		itemsets
{A,B}	5	7	{A,B,C}
{A,C}	4		{A,B,D}
{A,D}	4		
{A,E}	2	1	(A, C, D)
{B,C}	6		{A,C,D}
{B,D}	3		{A,C,E}
	3		$\{A,D,E\}$
{C,D}			$\{B,C,D\}$
{C,E}	2		$\{C,D,E\}$
(D,E)	2		

- Prune {A,B,E}
 - Its subset {B,E} is infrequent ({B,E} is not in L₂)

Count support for candidates in C_3

		,	c_3			
itemsets	sup	,	itemsets		C_3	
{A,B}	5	7			itemsets	sup
{A,C}	4		{A,B,C}	3 rd	A,B,C	3
{A,D}	4		{A,B,D}	DB	{A,B,D}	2
{A,E}	2	1	$\{A, C, D\}$	scan	{A,C,D}	2
{B,C}	6		$\{A,C,D\}$		{A,C,E}	1
{B,D}	3		$\{A,C,E\}$		$\{A,D,E\}$	2
{C,D}	3		$\{A,D,E\}$		$ \{B,C,D\} $	2
{C,E}	2		{B,C,D} {C,D,E}		$\{C,D,E\}$	1
{D,E}	2					

Prune infrequent candidates in C_3

- 2			C_3						
itemsets	sup		itemsets		C_3			_	
{A,B}	5	٦	{A,B,C}	_ 1	itemsets	sup		L_3	1
{A,C}	4		{A,B,D}	3 rd	{A,B,C}	3		itemsets	sup
{A,D}	4	_		DB	A,B,D	2		{A,B,C}	3
{A,E}	2		{A,C,D}	-scan	{A,C,D}	2	N	$\{A,B,D\}$	2
{B,C}	6		{A,C,E}	-	{A,C,E}	1		A,C,D	2
{B,D}	3		{A,D,E}	, ,	{A,D,E}	2	Y	{A,D,E}	2
{C,D}	3		{B,C,D}		{B,C,D}	2		{B,C,D}	2
{C,E}	2		{C,D,E}	_	{C,D,E}	1	<u> </u>	'	
{D,E}	2								

- {A,C,E} and {C,D,E} are actually infrequent
 - They are discarded from C_3

Generate candidates from L_3

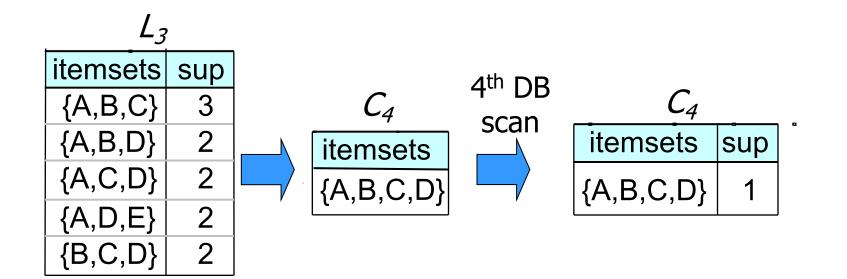
L_3	•	
itemsets	sup	
{A,B,C}	3	C_4
$\{A,B,D\}$	2	itemsets
$\{A,C,D\}$	2	{A,B,C,D}
{A,D,E}	2	(* ', -, -, -, -)
{B,C,D}	2	

Apply Apriori principle on C_4

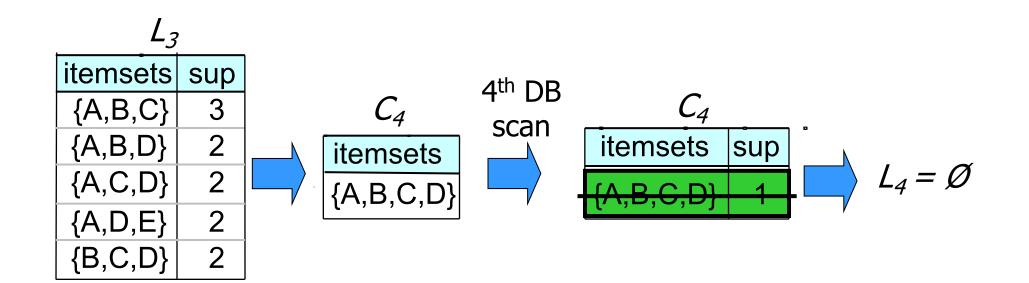
L_3	•	
itemsets	sup	
{A,B,C}	3	C_4
A,B,D	2	itemsets
{A,C,D}	2	{A,B,C,D}
{A,D,E}	2	(* ', - ', - ', - ')
{B,C,D}	2	

- Check if {A,C,D} and {B,C,D} belong to L₃
 - L₃ contains all 3-itemset subsets of {A,B,C,D}
 - {A,B,C,D} is potentially frequent

Count support for candidates in C_4



Prune infrequent candidates in C_4



- {A,B,C,D} is actually infrequent
 - {A,B,C,D} is discarded from C_4

Final set of frequent itemsets

Example DB

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	{A,B,D}
10	$\{B,C,E\}$

minsup>1

 L_1

itemsets	sup
{A}	7
{B}	8
{C}	7
{D}	5
{E}	3

L3

itemsets	sup
$\{A,B,C\}$	3
$\{A,B,D\}$	2
$\{A,C,D\}$	2
$\{A,D,E\}$	2
$\{B,C,D\}$	2

 L_{2}

itemsets	sup
{A,B}	5
{A,C}	4
$\{A,D\}$	4
$\{A,E\}$	2
{B,C}	6
$\{B,D\}$	3
{C,D}	3
{C,E}	2
$\{D,E\}$	2

Counting Support of Candidates

- Scan transaction database to count support of each itemset
 - total number of candidates may be large
 - one transaction may contain many candidates
- Approach [Agr94]
 - candidate itemsets are stored in a hash-tree
 - leaf node of hash-tree contains a list of itemsets and counts
 - interior node contains a hash table
 - subset function finds all candidates contained in a transaction
 - match transaction subsets to candidates in hash tree

Performance Issues in Apriori

- Candidate generation
 - Candidate sets may be huge
 - 2-itemset candidate generation is the most critical step
 - extracting long frequent intemsets requires generating all frequent subsets
- Multiple database scans
 - n+1 scans when longest frequent pattern length is n

Factors Affecting Performance

- Minimum support threshold
 - lower support threshold increases number of frequent itemsets
 - larger number of candidates
 - larger (max) length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases in dense data sets
 - may increase max length of frequent itemsets and traversals of hash tree
 - number of subsets in a transaction increases with its width

Improving Apriori Efficiency

- Hash-based itemset counting [Yu95]
 - A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction [Yu95]
 - A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning [Sav96]
 - Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB

Improving Apriori Efficiency

- Sampling [Toi96]
 - mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic Itemset Counting [Motw98]
 - add new candidate itemsets only when all of their subsets are estimated to be frequent

FP-growth Algorithm [Han00]

- Exploits a main memory compressed representation of the database, the FP-tree
 - high compression for dense data distributions
 - less so for sparse data distributions
 - complete representation for frequent pattern mining
 - enforces support constraint
- Frequent pattern mining by means of FP-growth
 - recursive visit of FP-tree
 - applies divide-and-conquer approach
 - decomposes mining task into smaller subtasks
- Only two database scans
 - count item supports + build FP-tree

Example DB

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

minsup>1

- (1) Count item support and prune items below minsup threshold
- (2) Build Header Table by sorting items in decreasing support order

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3

Example DB

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

minsup>1

- (1) Count item support and prune items below minsup threshold
- (2) Build Header Table by sorting items in decreasing support order
- (3) Create FP-tree
 For each transaction t in DB
 - order transaction t items in decreasing support order
 - same order as Header Table
 - insert transaction t in FP-tree
 - use existing path for common prefix
 - create new branch when path becomes different

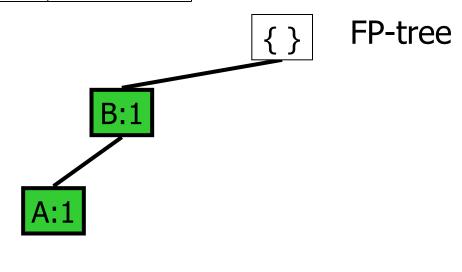
Transaction

Sorted transaction

TID	Items	
1	{A,B}	

TID	Items
1	{B,A}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3

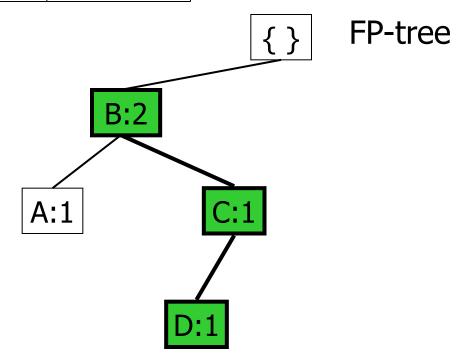


Transaction

Sorted transaction

TID	Items	TID	Items
2	{B,C,D}	2	{B,C,D}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



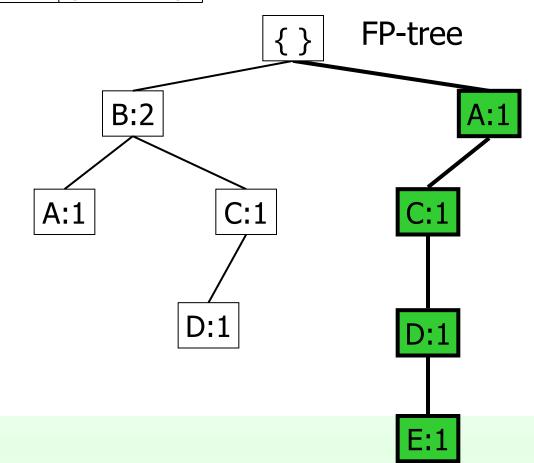
Transaction

Sorted transaction

TID	Items	
3	{A,C,D,E}	

TID	Items
3	{A,C,D,E}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



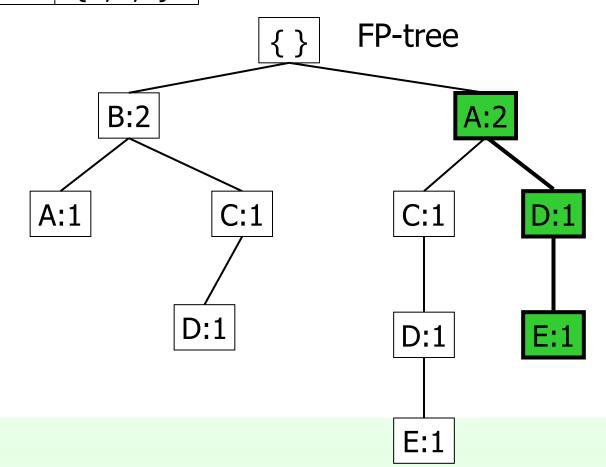
Transaction

Sorted transaction

TID	Items	
4	{A,D,E}	

TID	Items
4	{A,D,E}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



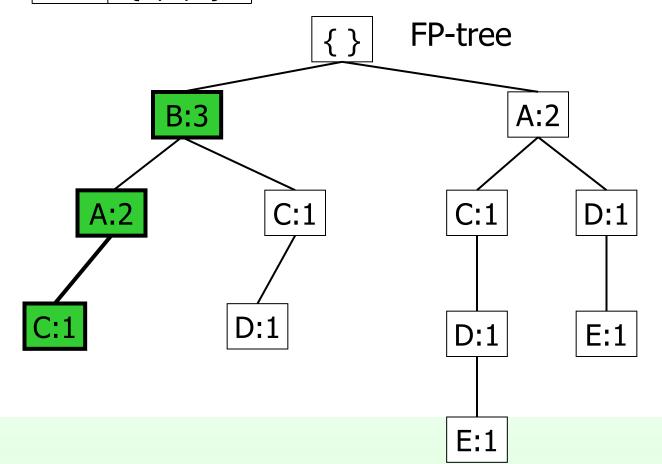
Transaction

Sorted transaction

TID	Items	
5	{A,B,C}	

TID	Items
5	{B,A,C}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3

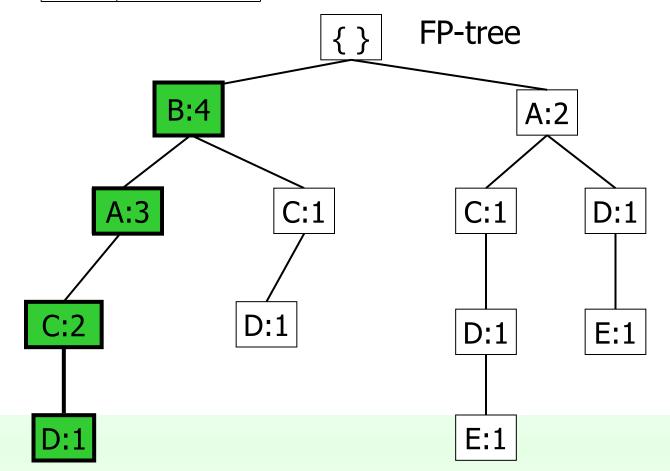


Transaction

Sorted transaction

TID	Items	TID	Items
6	{A,B,C,D}	6	{B,A,C,D

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



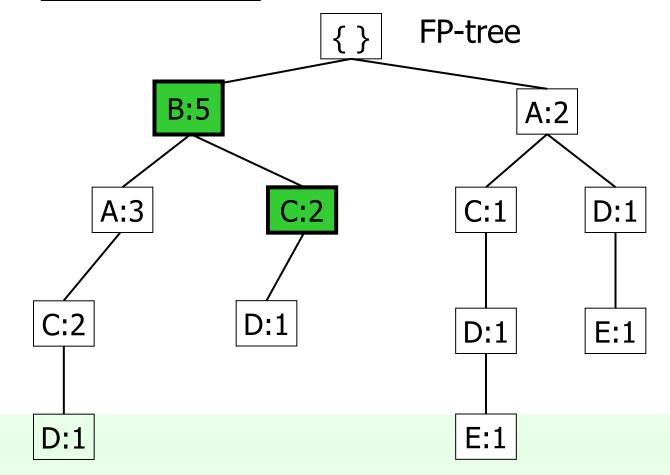
Transaction

Sorted transaction

TID	Items	
7	{B,C}	

	TID	Items
/	7	{B,C}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



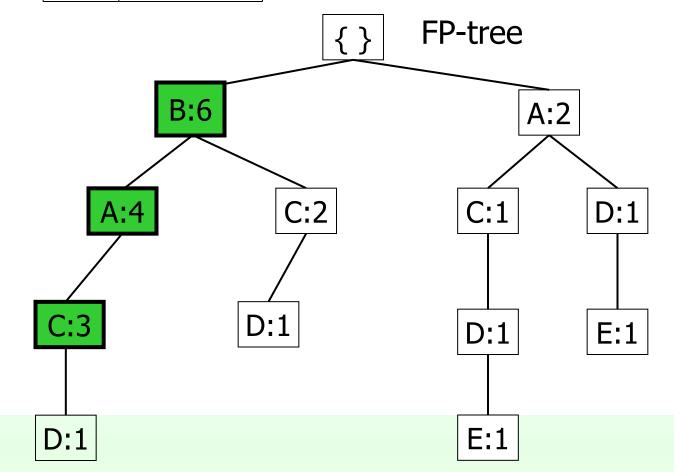
Transaction

\sim -		
	transa	Δ ti Δ
		47 1 17 31 3
	- 11 (11 1.56)	
-		

TID	Items	
8	{A,B,C}	

	TID	Items
' [8	{B,A,C}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



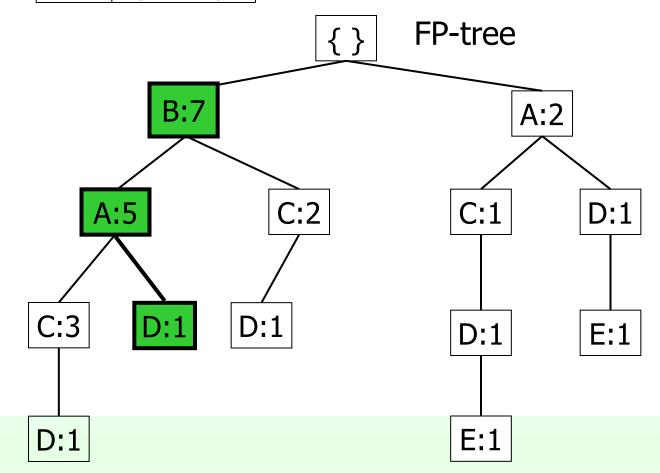
Transaction

Sorted transaction

TID	Items	
9	{A,B,D}	

TID	Items
9	{B,A,D}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



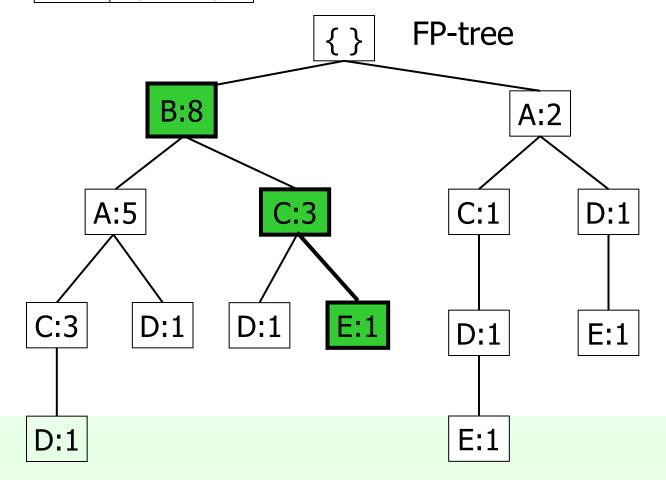
Transaction

Sorted transaction

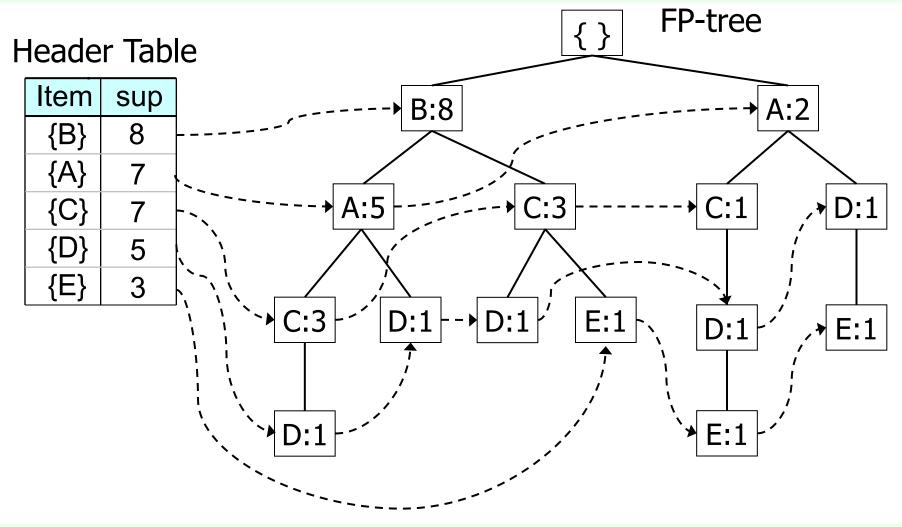
TID	Items	
10	{B,C,E}	

,	TID	Items
	10	{B,C,E}

Item	sup
{B}	8
{A}	7
{C}	7
{D}	5
{E}	3



Final FP-tree



Item pointers are used to assist frequent itemset generation

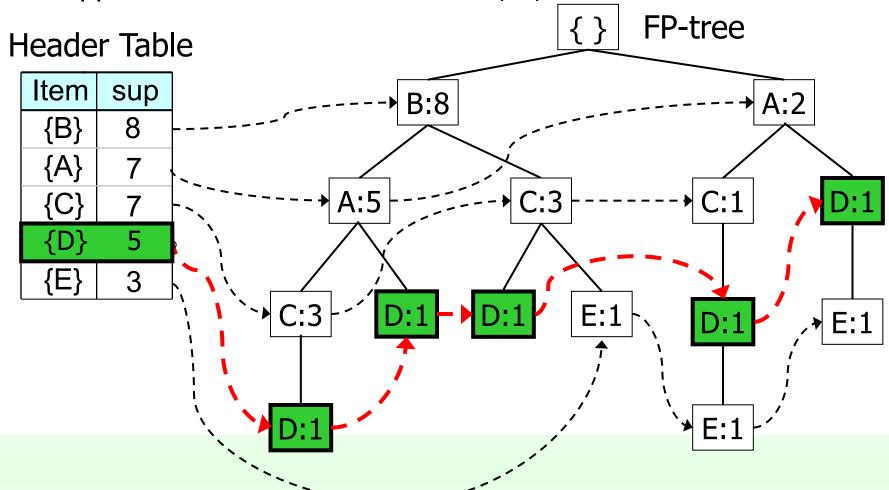
FP-growth Algorithm

- Scan Header Table from lowest support item up
- For each item i in Header Table extract frequent itemsets including item i and items preceding it in Header Table
 - (1) build Conditional Pattern Base for item i (i-CPB)
 - Select prefix-paths of item i from FP-tree
 - (2) recursive invocation of FP-growth on i-CPB

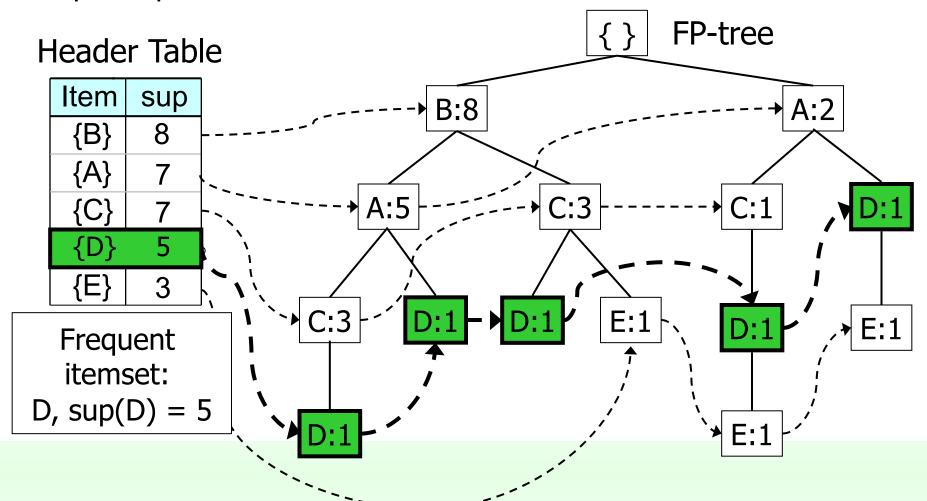
Example

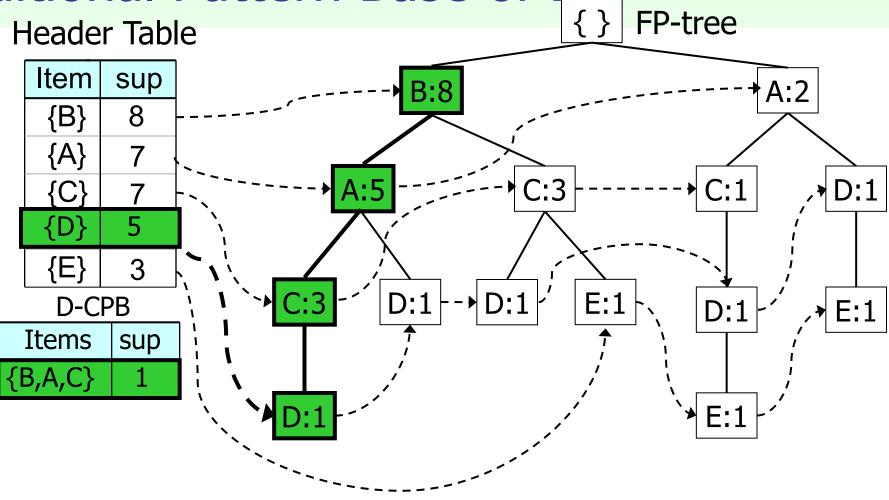
Consider item D and extract frequent itemsets including

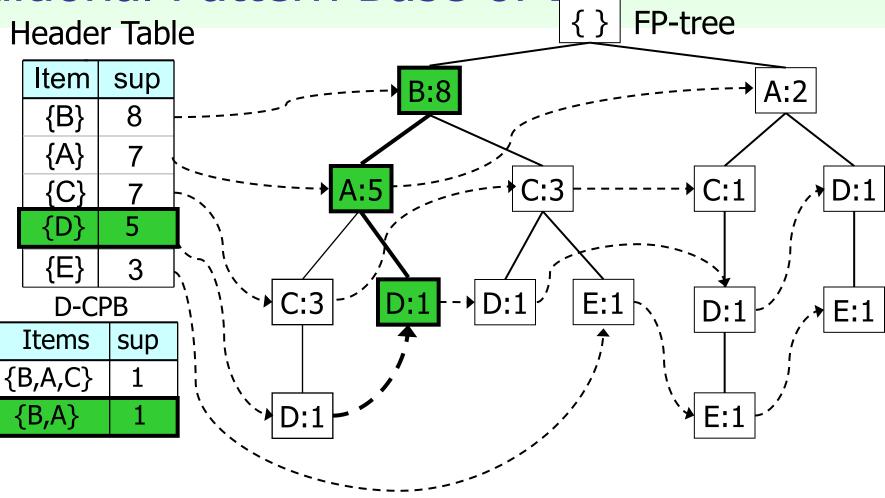
D and supported combinations of items A, B, C

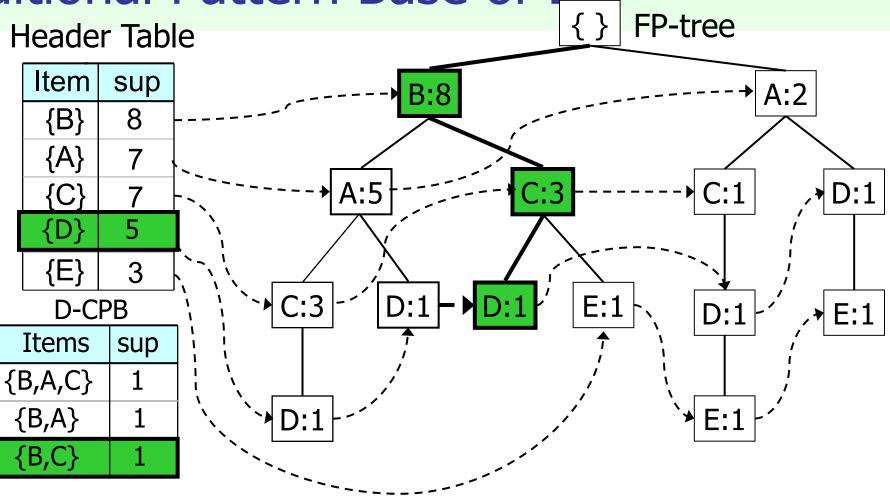


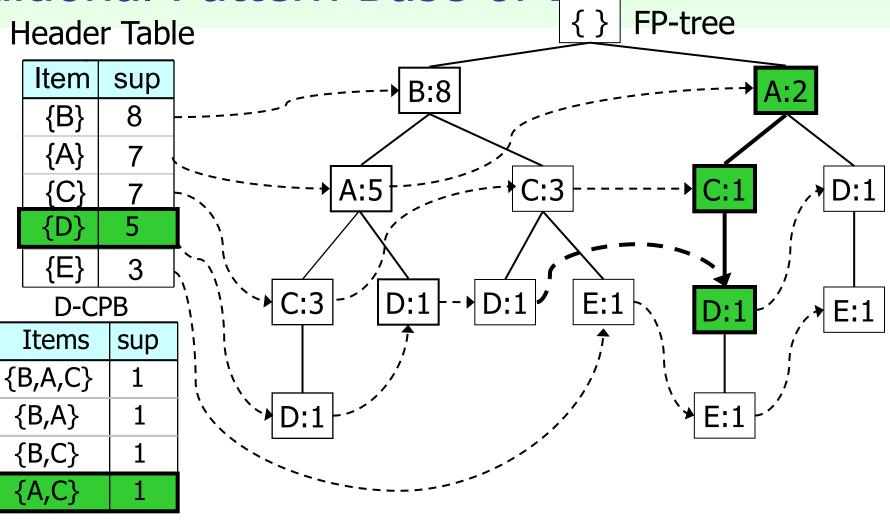
- (1) Build D-CPB
 - Select prefix-paths of item D from FP-tree

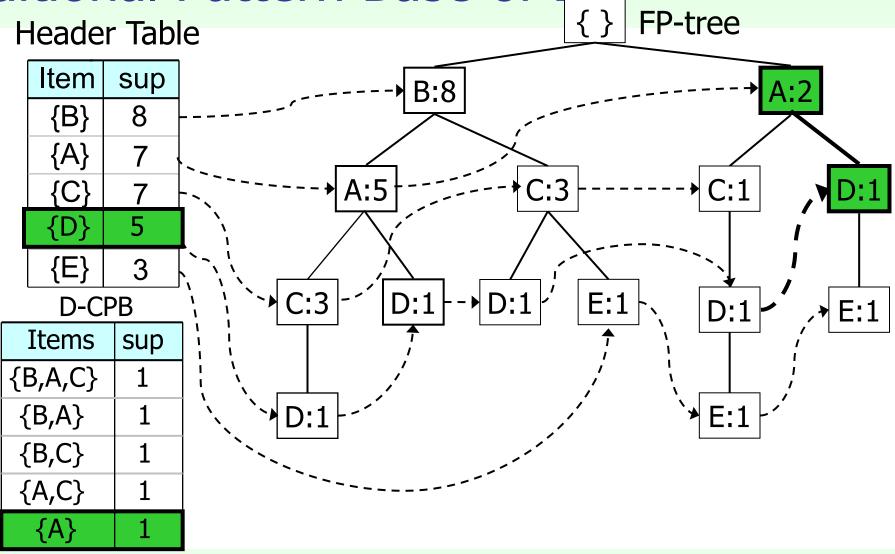




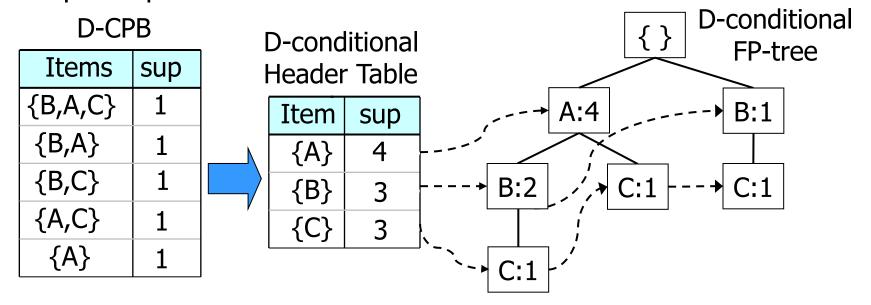






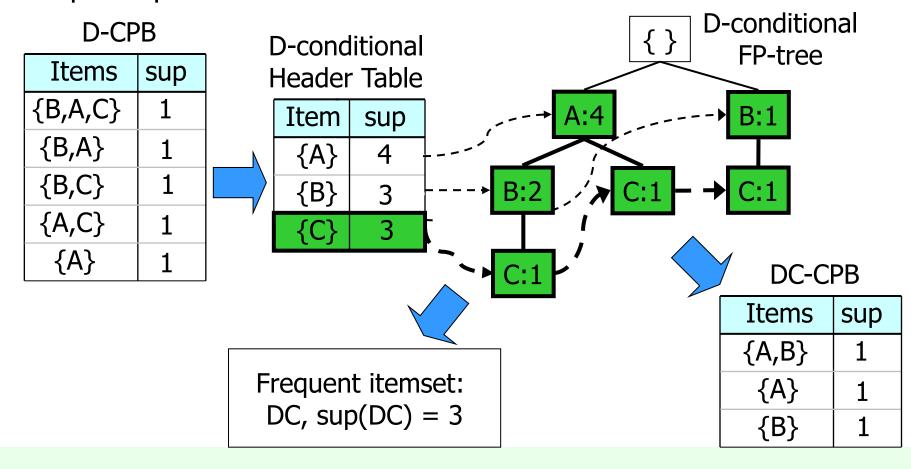


- (1) Build D-CPB
 - Select prefix-paths of item D from FP-tree

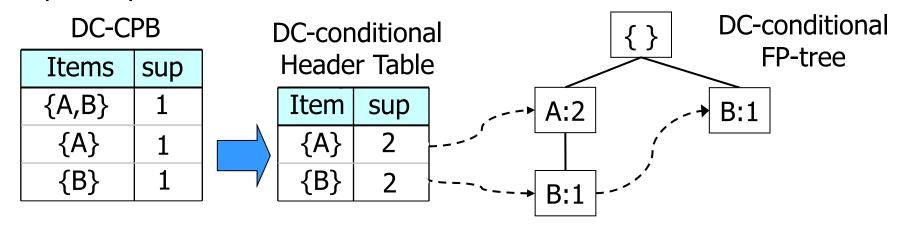


(2) Recursive invocation of FP-growth on D-CPB

- (1) Build DC-CPB
 - Select prefix-paths of item C from D-conditional FP-tree

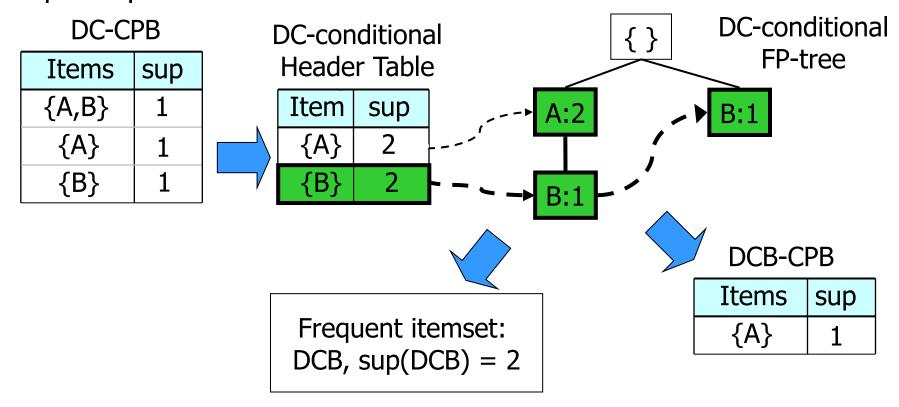


- (1) Build DC-CPB
 - Select prefix-paths of item C from D-conditional FP-tree



• (2) Recursive invocation of FP-growth on DC-CPB

- (1) Build DCB-CPB
 - Select prefix-paths of item B from DC-conditional FP-tree



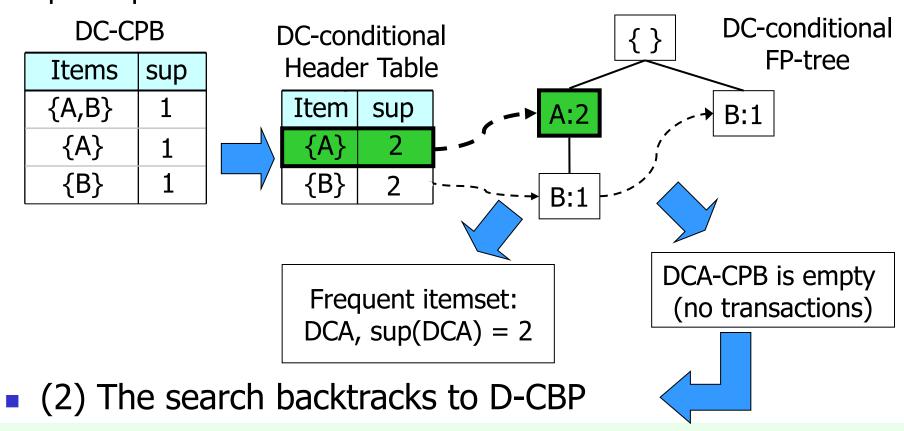
- (1) Build DCB-CPB
 - Select prefix-paths of item B from DC-conditional FP-tree

DCB-C		
Items	sup	
{A}	1	

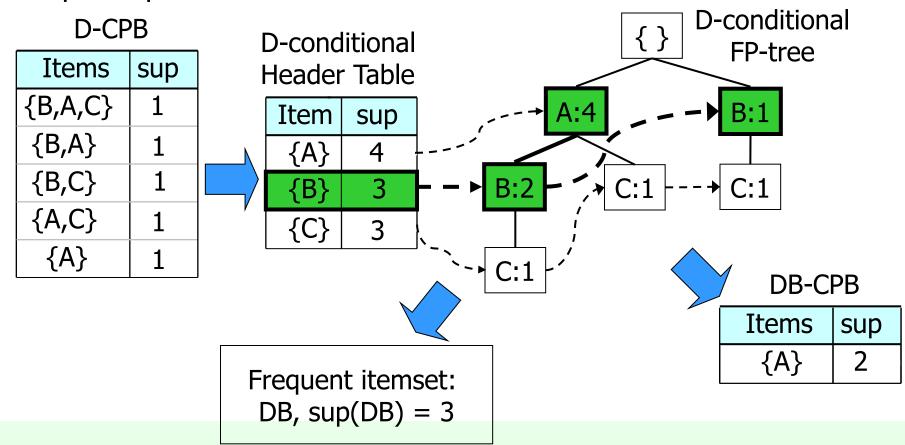
- Item A is infrequent in DCB-CPB
 - A is removed from DCB-CPB
 - DCB-CPB is empty

(2) The search backtracks to DC-CPB

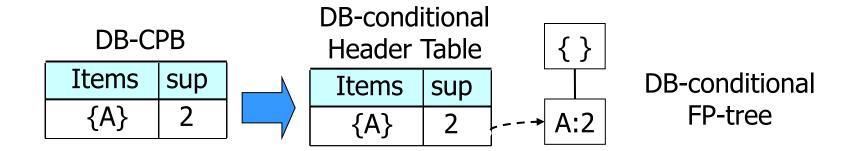
- (1) Build DCA-CPB
 - Select prefix-paths of item A from DC-conditional FP-tree



- (1) Build DB-CPB
 - Select prefix-paths of item B from D-conditional FP-tree

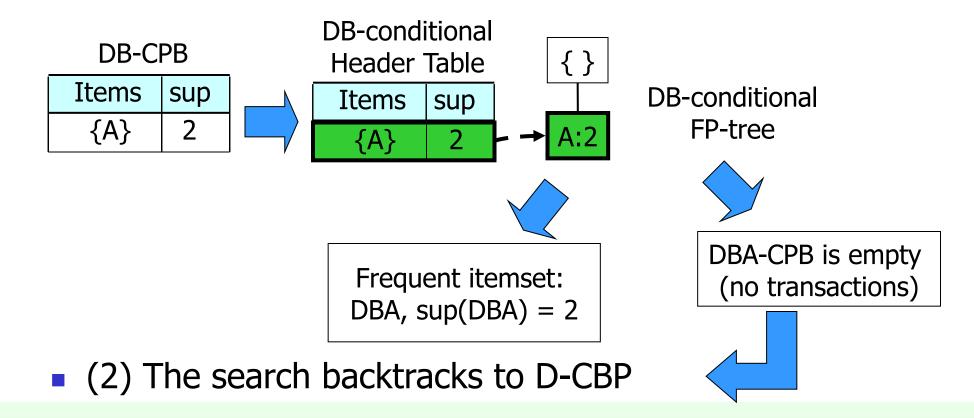


- (1) Build DB-CPB
 - Select prefix-paths of item B from D-conditional FP-tree



• (2) Recursive invocation of FP-growth on DB-CPB

- (1) Build DBA-CPB
 - Select prefix-paths of item A from DB-conditional FP-tree



• (1) Build DA-CPB

Select prefix-paths of item A from D-conditional FP-tree D-conditional D-CPB D-conditional

D CI D		D-conditional		{ } ED +roo
Items	sup		r Table	FP-tree
{B,A,C}	1	Item	sup	→ A:4 → B:1
{B,A}	1	(A)	4	
{B,C}	1	{B}	3	-+ B:2 , C:1 + C:1
{A,C}	1	(C)	3	
{A}	1			C:1 ,
				DA-CPB is empty
				(no transactions)
		_	nt itemset:	
		DA, Su	p(DA) = 4	The search ends

Frequent itemsets with prefix D

Frequent itemsets including D and supported combinations of items
 B,A,C

Example DB

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

itemsets	sup
{D}	5
$\{A,D\}$	4
$\{B,D\}$	3
$\{C,D\}$	3
$\{A,B,D\}$	2
$\{A,C,D\}$	2
$\{B,C,D\}$	2

minsup>1

Other approaches

- Many other approaches to frequent itemset extraction
- May exploit a different database representation
 - represent the tidset of each item [Zak00]

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	C	О	Е
1	1	2	2	1
4	2	3	4	3 6
4 5 6	2 5	4	2 4 5 9	6
6	7	2 3 4 8 9	9	
7	8 10	9		
8 9	10			
9				

Compact Representations

 Some itemsets are redundant because they have identical support as their supersets

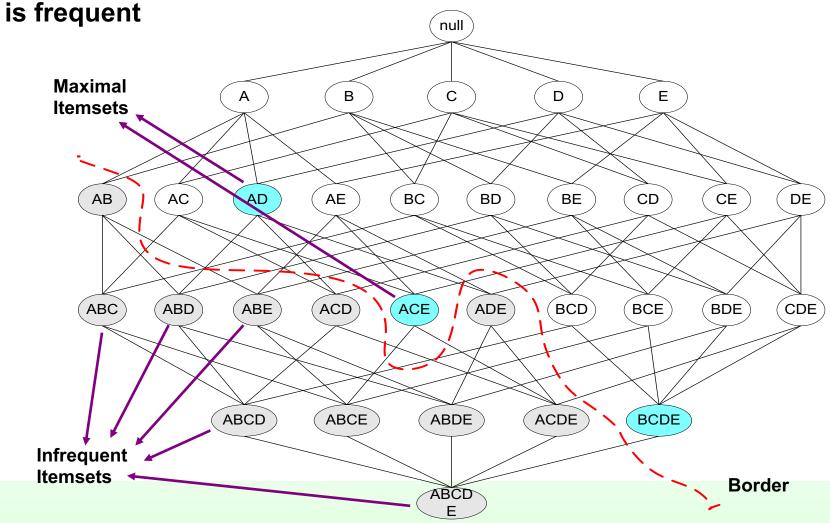
TID	A 1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

• Number of frequent itemsets =
$$3 \times \sum_{k=1}^{10} {10 \choose k}$$

A compact representation is needed

Maximal Frequent Itemset

An itemset is frequent maximal if none of its immediate supersets is frequent



From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Closed Itemset

 An itemset is closed if none of its immediate supersets has the same support as the itemset

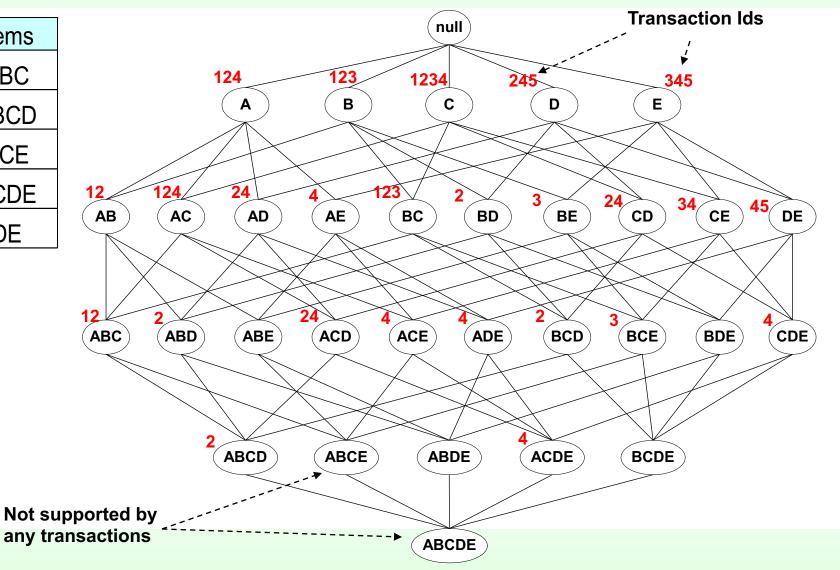
TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	{A,B,D}
5	$\{A,B,C,D\}$

itemset	sup
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

itemset	sup
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
{A,B,C,D}	2

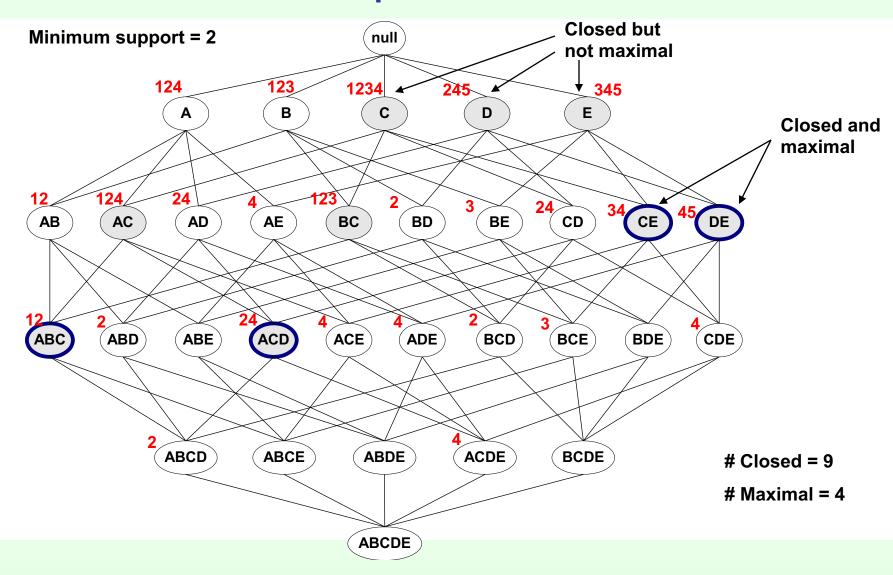
Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

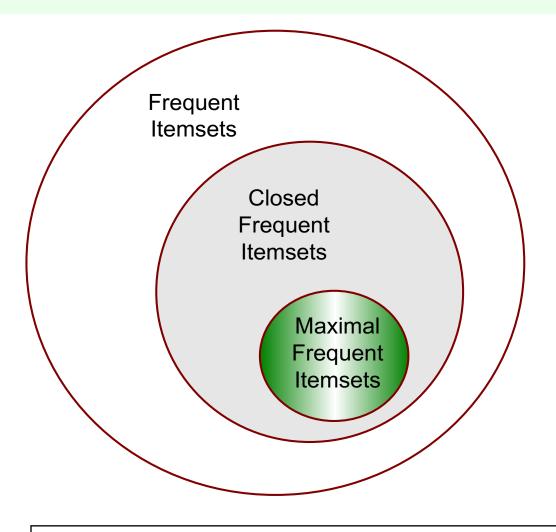


From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Maximal vs Closed Frequent Itemsets



Maximal vs Closed Itemsets



From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Effect of Support Threshold

- Selection of the appropriate minsup threshold is not obvious
 - If minsup is too high
 - itemsets including rare but interesting items may be lost
 - example: pieces of jewellery (or other expensive products)
 - If minsup is too low
 - it may become computationally very expensive
 - the number of frequent itemsets becomes very large

Interestingness Measures

- A large number of pattern may be extracted
 - rank patterns by their interestingness
- Objective measures
 - rank patterns based on statistics computed from data
 - initial framework [Agr94] only considered support and confidence
 - other statistical measures available
- Subjective measures
 - rank patterns according to user interpretation [Silb98]
 - interesting if it contradicts the expectation of a user
 - interesting if it is actionable

Confidence measure: always reliable?

basket |not basket |total

1000

cereals

- 5000 high school students are given
 - 3750 eat cereals
 - 3000 play basket
 - 2000 eat cereals and play basket
- Rule

play basket
$$\Rightarrow$$
 eat cereals sup = 40%, conf = 66,7% is misleading because eat cereals has sup 75% (>66,7%)

- Problem caused by high frequency of rule head
 - negative correlation

Correlation or lift

$$r: A \Rightarrow B$$

Correlation =
$$\frac{P(A,B)}{P(A)P(B)}$$
 = $\frac{\text{conf(r)}}{\text{sup(B)}}$

- Statistical independence
 - Correlation = 1
- Positive correlation
 - Correlation > 1
- Negative correlation
 - Correlation < 1

Example

Association rule

play basket \Rightarrow eat cereals

has corr = 0.89

- negative correlation
- but rule

play basket \Rightarrow not (eat cereals)

has corr = 1,34

-[#	Measure	Formula
Ì	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\langle P(A)P(B)\rangle \langle P(A)\rangle \langle P(B)\rangle}$
	2	Goodman-Kruskal's (λ)	$ \frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})} $
	3	Odds ratio (α)	$\frac{2-\max_{j}P(A_{j})-\max_{k}P(B_{k})}{P(A,B)P(\overline{A},\overline{B})}$
	4	Yule's Q	$\frac{P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
	5	Yule's Y	
	-		$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
	6	Kappa (κ)	$\frac{\overset{\bullet}{P}(A,B) + P(\overline{A},\overline{B}) - \overset{\bullet}{P}(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$ $\sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(\overline{B}_{j})}$
	7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i) - \frac{1}{2}}{P(A_i) P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
	8	J-Measure (J)	$\max \left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}), \right)$
		` ,	$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
	•	ψ <u>μ</u> μαμ (ψ)	$-P(B)^2 - P(\overline{B})^2,$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
			$-P(A)^2-P(\overline{A})^2$
	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
	14	Interest (I)	(- \ / - \ / /
	15	cosine(IS)	$\frac{\frac{P(A,B)}{P(A)P(B)}}{\frac{P(A,B)}{\sqrt{P(A)P(B)}}}$
	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

