Association Rules Fundamentals

Elena Baralis, Silvia Chiusano, Tania Cerquitelli Politecnico di Torino

Considering weight

- Items may be characterized by different importance within a transaction
 - Example: product quantity or price in transactions
- Transactions may be weighted
 - Example: discount on entire market basket
- Weighted dataset
 - Each item is assigned a weight measuring its relevance in the corresponding transaction

Weighted association rules

1859

- Consider item/transaction weights during association rule extraction
- Extend rule quality measures
 - E.g., weighted support, weighted confidence
- Apply ad-hoc weight aggregation functions
 - E.g., min, max, avg

Considering hierarchies

Generalization hierarchies

- Aggregation over attributes in a dataset
- Typically user provided

Examples

- Time hierarchy
- Product category
- Location hierarchy_A

Stationary

Pens

Red

Writing

Utensils

Fine Point

Pencils

Taxonomy

- A taxonomy is a set of is-a hierarchies that aggregate data items into higher-level concepts
- Data item
 - Instance in the (transactional) dataset
 - Represents detailed concepts
- Generalized item
 - Aggregation in higher-level concepts
 - Represents abstractions on instances

Generalized itemsets

Sets of items at different generalization levels

- May contain data items together with generalized items defined in the taxonomy
- Summarize knowledge represented by a set of lower-level descendants
 - Both frequent and infrequent
- A generalized itemset covers a transaction when all
 - its generalized items are ancestors of items included in the transaction
 - its data items are included in the transaction
- Generalized itemset support
 - ratio between number of covered transactions and dataset cardinality

Context-aware data analysis

- Context data provided by different, possibly heterogeneous, sources
 - Mobile devices provide information on
 - the user context (e.g., GPS coordinates)
 - the supplied services
 - temporal information
 - service description
 - duration
 - Additional information available
 - demographics of the user requesting the service

Generalized itemset example

- A very low support (s = 0.005%)
 - The itemset may be discarded

- By generalizing
 - the time attribute on a time period
 - the user on a user category

user: employee, time: 6 p.m. to 7 p.m., service: Weather (s = 0.2%)

 May discover interesting properties generalizing infrequent items

Generalized association rules

Extension of "classical" association rules

 $\mathbf{X} \rightarrow \mathbf{Y}$

- X and Y are either generalized or not generalized itemsets
 - Extract associations among data items at multiple abstraction levels
 - Support, confidence and lift are defined accordingly

Patient data analysis

- Analysis of multiple level correlations on patient treatment historical data
 - Dataset collected by an Italian Local Health Center
 - Diabetes complications at various severity levels
 - 95K records, 3.5K patients
 - Features
 - Prescribed examinations (26 examinations, 7 categories)
 - Prescribed drugs (200 drugs, 14 categories)
 - Census patient data (gender, age discretized in age groups)
- Sparse dataset
 - Difficult setting of support threshold
 - Low: generates too many rules
 - High: interesting information at lower levels of abstraction may remain hidden

High level rules

Only generalized itemsets

- Represent general knowledge
 - May be too high level to perform targeted analyses
- Example

(Examination, Liver) -> (Examination, Kidney)

- Frequently prescribed together
- May be used for examination schedu

Cross level rules

Different abstraction levels (generalized items and data items)

- Combine detailed and general information
- Example

(Examination, Liver) -> (Examination, Uric acid)

- Insight into specific kidney examinations correlated with liver examinations
 - Confidence: 74.8%

Low-lewel rules

- Only not generalized itemsets (only data items)
 - Very detailed knowledge
 - Covered by high and cross-level rules
 - Large rule set
 - Challenging exploration task
 - Drill down exploration based on formerly extracted high and cross-level rules

