
Normalization
Database design

Normalization
➢Introduction

➢Normal form of Boyce Codd

➢Decomposition in normal form

➢Properties of decompositions

➢Lossless decomposition

➢Conservation of dependencies

1

Introduction
Normalization

2

Normalization
• Normalization is a process which, starting from a non-normalized

relational schema, obtains a normalized relational schema

• Normalization is not a design methodology, but a verification tool

• The design methodology based on ER schemas normally produces
normalized relational schemas

• Normalization checks can also be applied to ER schemas

3

Example

4

StudentID Residence CourseID CourseName Grade

s94539 Milan 04FLYCY Electronic calculators 30

s94540 Turin 01FLTCY Database design 26

s94540 Turin 01KPNCY Computer network 28

s94541 Pescara 01KPNCY Computer network 29

s94542 Lecce 04FLYCY Electronic calculators 25

Exam Passed

• Constraints
• The primary key is the pair StudentID, CourseID

• The place of residence of each student is unique and is an attribute of the student
alone, regardless of the exams he or she has passed

• The name of the course is unique and is a function of the course only, regardless
of which students pass the corresponding exam

Example: Redundancy

5

StudentID Residence CourseID CourseName Grade

s94539 Milan 04FLYCY Electronic calculators 30

s94540 Turin 01FLTCY Database design 26

s94540 Turin 01KPNCY Computer network 28

s94541 Pescara 01KPNCY Computer network 29

s94542 Lecce 04FLYCY Electronic calculators 25

Exam Passed

• Redundancy

• In all rows where a student appears, his or her place of residence is
repeated

• In all rows where the same course appears, its name is repeated

Example: Anomalies

6

StudentID Residence CourseID CourseName Grade

s94539 Milan 04FLYCY Electronic calculators 30

s94540 Turin 01FLTCY Database design 26

s94540 Turin 01KPNCY Computer network 28

s94541 Pescara 01KPNCY Computer network 29

s94542 Lecce 04FLYCY Electronic calculators 25

Exam Passed

• Update anomaly
• If a student’s place of residence changes, all the rows in which it appears must be

modified at the same time

• Insertion anomaly
• If a new student enrolls at university, he or she cannot be entered in the database

until he or she passes the first exam

• Deletion anomaly
• If a student withdraws from studies, it is not possible to keep track of his place of

residence

Redundancy
• A single relation is used to represent heterogeneous information

• some data are repeated in different tuples without adding new information

• redundant data

7

Anomalies
• Redundant information must be updated atomically (all at the same

time)

• The deletion of a tuple implies the deletion of all concepts
represented in it
• including those that might still be valid

• The insertion of a new tuple is only possible if at least the complete
information about the primary key exists
• it is not possible to insert the part of the tuple relating to only one concept

8

Boyce-Codd normal form
Normalization

9

Functional dependency
• It is a special type of integrity constraint

• It describes functional links between the attributes of a relation

• Example: the place of residence is unique for each student
• each time the same student appears, the value is repeated

• the value of StudentID determines the value of Residence

10

StudentID Residence CourseID CourseName Grade

s94539 Milan 04FLYCY Electronic calculators 30

s94540 Turin 01FLTCY Database design 26

s94540 Turin 01KPNCY Computer network 28

s94541 Pescara 01KPNCY Computer network 29

s94542 Lecce 04FLYCY Electronic calculators 25

Exam Passed

Functional dependency
• A relation r satisfies the functional dependency X → Y if, for each

pair t1, t2 of tuples of r, having the same values for attributes in X, t1
and t2 also have the same values for attributes in Y
• X determines Y (in r)

• Examples

11

StudentID → Residence
CourseID → CourseName

StudentID CourseID → CourseName

Non-trivial dependency
• The dependency

StudentID CourseID → CourseID

is trivial because CourseID is part of both sides

• A functional dependency X → Y is non-trivial if no attribute in X
appears among the attributes in Y

12

Functional dependencies and keys
• Given a key K of a relation r

 K → any other attribute of r (or set of attributes)

• Examples
• StudentID CourseID → Residence

• StudentID CourseID → CourseName

• StudentID CourseID → Grade

13

Functional dependencies and anomalies
• Anomalies are caused by attribute properties involved in functional

dependencies
• Examples

• StudentID → Residence

• CourseID → CourseName

• Functional dependencies on keys do not give rise to anomalies
• Example

• StudentID CourseID → Grade

14

Functional dependencies and anomalies
• The anomalies are caused by

• the inclusion of mutually independent concepts in the same relation

• functional dependencies X → Y allowing for multiple tuples with the same
value of X

• X does not contain a key

15

Boyce Codd normal form (BCNF)
• BCNF = Boyce Codd Normal Form

• A relation r is in BCNF if, for every (non-trivial) functional dependency
X → Y defined on it, X contains a key of r (X is superkey of r)

• Anomalies and redundancies are not present in BCNF relations
because independent concepts are separated in different relations

16

Normal form decomposition
Normalization

17

BCNF decomposition
• Normalization

• process of replacing a non-normalised relation by two or more relations in
BCNF

• Criteria
• a relation representing several independent concepts is decomposed into

smaller relations, one for each concept, by means of functional dependencies

• The new relations are obtained by projections onto the sets of
attributes corresponding to the functional dependencies

• The keys of the new relations are the left parts of the functional
dependencies
• the new relations are in BCNF

18

Example
• Functional dependencies in the example

• StudentID → Residence

• CourseID → CourseName

• StudentID CourseID → Grade

19

StudentID Residence CourseID CourseName Grade

s94539 Milan 04FLYCY Electronic calculators 30

s94540 Turin 01FLTCY Database design 26

s94540 Turin 01KPNCY Computer network 28

s94541 Pescara 01KPNCY Computer network 29

s94542 Lecce 04FLYCY Electronic calculators 25

Exam Passed

Example
• By

R (StudentID, Residence, CourseID CourseName, Grade)

• Functional dependencies in the example
• StudentID → Residence

• CourseID → CourseName

• StudentID CourseID → Grade

• The relations in BCNF are
R1 (StudentID, Residence) = 𝜋StudentID, ResidenceR

R2 (CourseID, CourseName) = 𝜋CourseID, CourseName R

R3 (StudentID, CourseID, Grade) = 𝜋 StudentID, CourseID, Grade R

20

Example

21

StudentID Residence

s94539 Milan

s94540 Turin

s94540 Turin

s94541 Pescara

CourseID CourseName

04FLYCY Electronic calculators

01FLTCY Database design

01KPNCY Computer network

R3

StudentID CourseID Grade

s94539 04FLYCY 30

s94540 01FLTCY 26

s94540 01KPNCY 28

s94541 01KPNCY 29

s94542 04FLYCY 25

R1 R2

Example: corresponding ER scheme

22

Course

CourseID CourseName

Student

StudentIDResidence

Exam Passed

(0,N) (0,N)

Grade

Student (StudentID, Residence)
Course (CourseID, CourseName)
Exam Passed (StudentID, CourseID, Grade)

Decomposition properties
Normalization

23

Decomposition properties
• Are all decompositions acceptable?

• essential properties for “good” decomposition

• Problems
• information loss

• loss of dependencies

24

Example

25

Employee Category Salary

Rossi 2 1800

Verdi 3 1800

Bianchi 4 2500

Neri 5 2500

Bruni 6 3500

R (Employee, Category, Salary)

Employee → Category
Employee → Salary
Category → Salary

Lossless Decomposition
Normalization

26

Example: decomposition (n.1)

 R (Employee, Category, Salary)

• Decomposition based on functional dependencies

Employee→ Salary

Category→ Salary

27

Example: decomposition (n.1)
 R (Employee, Category, Salary)

• Decomposing

R1 (Employee, Salary) = R2 (Category, Salary) =

pEmployee, Salary R pCategory, Salary R

28

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

Category Salary

2 1800

3 1800

4 2500

5 2500

6 3500

Example: recomposition (n.1)
• Recomposing

• Reconstruction with loss of information

29

“spurious”
tuples

Employee Category Salary

Rossi 2 1800

Rossi 3 1800

Verdi 2 1800

Verdi 3 1800

Bianchi 4 2500

… … …

R1 R2

Decomposition without loss
• The decomposition of a relation r into two sets of attributes X1 and

X2 is lossless if the join of the projections of r into X1 and X2 is equal
to r itself (no "spurious" tuples)

• A decomposition performed to normalize a relation must be lossless

30

Lossless decomposition
• Given the relation r(X) and sets of attributes X1 and X2 such that

X = X1  X2

X0 = X1  X2

 if r satisfies the functional dependency
X0 → X1 or X0 → X2

the decomposition of r on X1 and X2 is lossless

• Common attributes form a key to at least one of the decomposed
relations

31

Example: loss of information

• Verification of condition for lossless decomposition

• The attribute Salary does not satisfy the condition for lossless
decomposition

32

R1 (Employee, Salary) R2 (Category, Salary)

X1 = Employee, Salary

X2 = Category, Salary

X0 = Salary

Example: decomposition (n.2)

• Decomposition based on functional dependencies

• Decomposing
R1 (Employee, Category) = R2 (Employee, Salary) =

 pEmployee, Salary R pπCategory, Salary R

33

R (Employee, Category, Salary)

Employee→ Category
Employee→ Salary

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

Example: lossless decomposition?

• Is the decomposition lossless?

• Verifying the condition for lossless decomposition

• The attribute Employee satisfies the condition for lossless
decomposition

34

R1 (Employee, Category) R2 (Employee, Salary)

X1 = Employee, Category

X2 = Employee, Salary

X0 = Employee

R1 R2

Conservation of dependencies
Normalization

35

Example: inserting a new tuple

• Inserting the tuple
• Employee: Gialli – Category: 3 – Salary: 3500

36

R1 (Employee, Category) R2 (Employee, Salary)

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

Gialli 3 Gialli 3500

Example: inserting a new tuple
• What happens if we insert the tuple (Gialli, 3500) in R2?

• in the original relation insertion is forbidden because it violates the
dependency Category → Salary

• in the decomposition it is no longer possible to detect the violation, since the
attributes Category and Salary are in separate relations

• The dependency between Category and Salary has been lost

37

Conservation of dependencies
• A decomposition preserves dependencies if each of the functional

dependencies of the original schema is present in one of the
decomposed relations

• Dependencies should be retained to ensure that the same constraints
are satisfied in the decomposed schema as in the original schema

38

Example: decomposition (n.3)

• Decomposition based on functional dependencies

• Decomposing
R1 (Employee, Category) = R2 (Category, Salary) =

 pEmployee, Category R pCategory, Salary R

39

R (Employee, Category, Salary)

Employee → Category
Category → Salary

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

Category Salary

2 1800

3 1800

4 2500

5 2500

6 3500

Example: Lossless decomposition
• Recomposing

• Condition check for lossless decomposition
X1 = Employee, Category

X2 = Category, Salary

X0 = Category

• The attribute Category satisfies the condition for lossless
decomposition

40

R1 R2

Example: Conservation of functional dependencies

• Recomposing

• Conserved functional dependencies

 Employee → Category

 Category → Salary

• Functional dependency

 Employee → Salary

 can be reconstructed from

 Employee → Category

 Category → Salary

41

R1 R2

Example: corresponding ER scheme

42

By category

Category

Category

Employee

Employee

Employee (Employee, Category)

Category (Category, Salary)

Salary

(0,N)(1,1)

Quality of a decomposition

• Decompositions must always satisfy the properties
• lossless decomposition

• ensures that the information in the original relation is accurately
reconstructed (without spurious tuples) from the information in the
decomposed relations

• conservation of dependencies

• ensures that the decomposed relations have the same capacity as the
original relation to represent the integrity constraints

43

	Copertina
	Slide 0: Normalization

	Materiale didattico
	Slide 1: Normalization
	Slide 2: Introduction
	Slide 3: Normalization
	Slide 4: Example
	Slide 5: Example: Redundancy
	Slide 6: Example: Anomalies
	Slide 7: Redundancy
	Slide 8: Anomalies
	Slide 9: Boyce-Codd normal form
	Slide 10: Functional dependency
	Slide 11: Functional dependency
	Slide 12: Non-trivial dependency
	Slide 13: Functional dependencies and keys
	Slide 14: Functional dependencies and anomalies
	Slide 15: Functional dependencies and anomalies
	Slide 16: Boyce Codd normal form (BCNF)
	Slide 17: Normal form decomposition
	Slide 18: BCNF decomposition
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example: corresponding ER scheme
	Slide 23: Decomposition properties
	Slide 24: Decomposition properties
	Slide 25: Example
	Slide 26: Lossless Decomposition
	Slide 27: Example: decomposition (n.1)
	Slide 28: Example: decomposition (n.1)
	Slide 29: Example: recomposition (n.1)
	Slide 30: Decomposition without loss
	Slide 31: Lossless decomposition
	Slide 32: Example: loss of information
	Slide 33: Example: decomposition (n.2)
	Slide 34: Example: lossless decomposition?
	Slide 35: Conservation of dependencies
	Slide 36: Example: inserting a new tuple
	Slide 37: Example: inserting a new tuple
	Slide 38: Conservation of dependencies
	Slide 39: Example: decomposition (n.3)
	Slide 40: Example: Lossless decomposition
	Slide 41: Example: Conservation of functional dependencies
	Slide 42: Example: corresponding ER scheme
	Slide 43: Quality of a decomposition

