

0

2

Relational algebra operators	
- Unary operator - selection (σ) - projection (π) nary operator - cartesian product ((x) - join (ゆ) - union (U) - intersection (n) - difference ($(-)$	- Set operators - union (U) - intersection (n) - cartesian prod - Relational operators - selection (σ) projection (π) - join((${ }^{\text {division (/) }}$

4

Relational Algebra

>Introduction
-Selection and projection
-Cartesian product and join
> Natural join, theta-join and semi-join
$>$ Outer join
>Union and intersection
>Difference and anti join

- Division and other operators
$\mathrm{D}_{\mathrm{Mi}}^{\mathrm{Br}}$
1

Relational Algebra

- Extends the algebra of sets for the relational model
- Defines a set of operators that operate on relations and whose output is another relation
- It satisfies the closure property
- The result of any algebraic operation on relations is also a relation
${ }^{2}{ }_{8}^{B} \mathrm{~B}_{\mathrm{i}}$
3

Example of relations				
Courses	CCode	CName	Semester	TeacherID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
Teachers	\downarrow			
	Teache	PName	Department	
	D102	Green	Computer engine	
	D105	Black	Computer engine	
	D104	White	Department of el	ronics
$\mathrm{D}^{\mathrm{RGi}}$				

5

6

8

10

Selection

- The selection extracts a "horizontal" subset from the relation
- It operates a horizontal partition of the relation

$\mathrm{D}_{\mathrm{B}}^{\mathrm{B}} \mathrm{i}$

7

Selection: definition

$$
R=\sigma_{p} A
$$

- The selection generates a relation R
- with the same schema as A
- containing all the tuples of relation A for which predicate p is true
- Predicate p is a boolean expression (operators \wedge, \vee, \neg) combining expressions that compare attributes, or attributes and constants
- p: City= 'Turin' \wedge Age >18
- p: ReturnDate>DeliveryDate+10
$\mathrm{v}_{\mathrm{R}}^{\mathrm{R}} \mathrm{i}$
9

Projection

- The projection extracts a "vertical" subset from the relation
- it operates a vertical partition of the relation

$\mathrm{D}_{\mathrm{R}}^{\mathrm{R}} \mathrm{Gi}$

12

Projection: example (n. 1)			
- Find the names of teachers			
	$\begin{gathered} \mathrm{R} \\ \begin{array}{c} 1 \\ \pi_{\text {PName }} \end{array} \\ \text { Teachers } \end{gathered}$		$\mathrm{R}=\pi_{\text {PName }}{ }^{\text {Teachers }}$
Teachers	TeacheriD	PName	Department
	D102	Green	Computer engineering
	D105	Black	Computer engineering
	D104	White	Department of electronics
${ }_{\text {d }}^{3} \mathrm{Fi}$			

14

Projection: definition

$$
\mathrm{R}=\pi_{\mathrm{L}} \mathrm{~A}
$$

- The projection π_{L} generates a relation R
- whose schema is the list of attributes L (subset of A's schema)
- containing all of the tuples present in A
- The duplicates that may be caused by excluding the attributes not contained in L are deleted
- if L includes a candidate key, there are no duplicates
${ }_{\mathrm{n}}^{\mathrm{n}} \mathrm{Ki}$

15

17

18

Cartesian product and join
Relation Algebra
$\mathrm{D}_{\mathrm{Bq}}^{\mathrm{B}} \mathrm{i}$
19

21

Cartesian product: example				
Courses	CCode	CName	Semester	TeacherID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
Teachers	TeacherID	PName	Department	
	D102	Green	Computer engineering	
	D105	Black	Computer engineering	
	D104	White	Department of electronics	
${ }^{2} \mathrm{Br}$				

22

Cartesian product: example

R

$\begin{aligned} & \text { Courses } \\ & \text { cCode } \end{aligned}$	$\begin{aligned} & \text { Courses. } \\ & \text { CName } \end{aligned}$	$\begin{aligned} & \text { Courses. } \\ & \text { Semester } \end{aligned}$	Courses. TeacherID	$\begin{aligned} & \text { Teachers. } \\ & \text { TeacherID } \end{aligned}$	$\begin{aligned} & \text { Teachers. } \\ & \text { Pname } \end{aligned}$	Teachers. Department
M2170	$\begin{aligned} & \text { Computer } \\ & \text { science } \end{aligned}$	1	${ }^{102}$	D102	Green	$\begin{aligned} & \text { Computer } \\ & \text { engineering } \end{aligned}$
M270	$\begin{aligned} & \text { Computer } \\ & \text { science } \end{aligned}$	1	${ }^{102}$	${ }^{\text {D105 }}$	Black	$\begin{array}{\|c} \substack{\text { Conjouter } \\ \text { engmeering }} \end{array}$
M2170	Computer cience	1	D102	D104	White	Department of electronics

23

24

Cartesian product: definition

$R=A \times B$

- The Cartesian product of two relations A and B yields a relation R
- whose schema is the union of the schemas of A and B
- containing all the pairs formed by a tuple of A and a tuple of B
- The Cartesian product is
- commutative
- $A \times B=B \times A$
- associative
- $(A \times B) \times C=A \times(B \times C)$
${ }^{\mathrm{b}} \mathrm{Br} \mathrm{K}$
26

28
R

Courses cCode	Courses. CName	Courses. Semester	Courses. TeacherID	reachers. TeacherID	Teachers.P name	Teachers. Department
M2170	Computer science	1	0102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Icomputer engineering
M2170	Computer science	1	0102	0104	White	Department of electronics
M4880	Digital systems	2	0104	0102	Green	Computer engineering
M4880	Digital systems	2	0104	D105	Black	Icomputer engineering
M4880	Digital systems	2	0104	D104	White	Department of electronics
\ldots	\ldots	\ldots	-	\ldots	-..	...

Bi_{i}

Join

- The join of two relations A and B generates all the pairs formed by a tuple of A and a tuple of B that are "semantically linked"
Cartesian product: example

$\begin{array}{\|l} \hline \text { Courses } \\ \text { CCode } \end{array}$	Courses. CName	Courses. Semester	Courses. TeacheriD	Teachers. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Computer engineering
M2170	Computer science	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Computer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
F1401	Electronics	1	D104	D102	Green	Computer engineering
F1401	Electronics	1	D104	D105	Black	Computer engineering
F1401	Electronics	1	D104	D104	White	Department of electronics
F0410	Databases	2	D102	D102	Green	Computer engineering
F0410	Databases	2	D102	D105	Black	Computer engineering
F0410	Databases	2	D102	D104	White	Department of electronics

${ }^{\mathrm{b}} \mathrm{F} \mathrm{Ki}$ 25

25
.

27

30

32

31

33

Join: definition

- The join is a derived operator
- it can be expressed using operators $\mathrm{x}, \sigma_{\mathrm{p}}, \pi_{\mathrm{L}}$
- The join is defined separately as it expresses synthetically many recurrent operations in database queries
- There are different kinds of joins
- natural join
- theta-join (and its special case equi-join)
- semi-join
> NB: Professor (D105,Black,Computer engineering), who does not teach any courses does not appear in the result of the join

36

Natural join: definition and properties

$$
R=A \bowtie B
$$

- The natural join of two relations A and B generates a relation R
- whose schema is composed of
- the attributes which are present in A's schema and not in B^{\prime} s
- the attributes present in B's schema and not in A's
a single copy of common attributes (with the same name in the schema of A and в)
- containing all of the pairs made up of a tuple of A and a tuple of B for which the value of common attributes is the same
- Natural join is commutative and associative
${ }_{\mathrm{o}}^{\mathrm{n}} \mathrm{Ki}$

Theta-join: example

- Find the identifiers of the teachers that hold at least two courses

Equi-join

- Particular case of theta-join in which θ is the equivalence operator (=)

Courses C1

CCode	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102
CCode	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

$\mathrm{D}_{\mathrm{R}}^{\mathrm{R}} \mathrm{i}$

42

	Theta-join: example						
came	Cumb	amme	memb	速	asm	ame	amea
${ }^{1220}$		1	1002	patio	Oombeses	2	${ }^{0102}$
mese	come	2	0^{0194}	P4001	Eextomes	1	${ }^{0104}$
F401	Eeatoms	1	${ }^{\text {por }}$	N4se	ogatasems	2	${ }^{0,04}$
F940	Oosabes	2	0102	14270	$\substack{\text { comper } \\ \text { cume }}$	1	0,102
Projection							
ugi							

44

Semi-join: properties

- The semi-join can be expressed as a function of the theta-join
- $A \propto_{p} B=\pi_{\text {schema(} A)}\left(A \bowtie_{p} B\right)$
- The semi-join does not satisfy the commutative property

43

Semi-join: definition and properties

$$
R=A \propto_{p} B
$$

- The semi-join of two relations A and B selects all the tuples of A that are "semantically linked" to at least one tuple of B
- the information from B does not appear in the result
- The semi-join of two relations A and B generates a relation R - which has the same schema as A
- containing all the tuples of A for which the predicate specified by p is true
- The predicate p is expressed in the same form as the theta-join (comparison between the attributes of A and B)
bRKi
45

Semi-join: example					
- Find information relative to teachers that hold at least one course					
Courses		CCode	CName	Semester	TeacherID
		M2170	Computer science	1	D102
		M4880	Digital systems	2	D104
		F1401	Electronics	1	D104
		F0410	Databases	2	D102
${ }^{2} \mathrm{Brac}_{6}$	Teachers	Teacher	PName	Department	
		D102	Green	Computer engine	
		D105	Black	Computer engine	
		D104	White	Department of e	ronics

	Semi-join: example						
	Trades	${ }^{\text {Prades }}$	Teatese	${ }_{\text {couse }}$	Cussectime	${ }_{\text {course }}$	
	0^{002}	${ }^{\text {Grean }}$	Comperer	12270		1	${ }^{0102}$
	0102	Green	Computer	m4880	Digtal spens	2	0104
	0102	Green		${ }^{14401}$	Eletronis	${ }^{1}$	${ }^{0104}$
	0102	Green	compter	${ }^{\text {FP470 }}$	${ }^{\text {Oatbases }}$	2	0102
	${ }^{0105}$	${ }^{\text {Bajk }}$	Comper	M2170	${ }_{\text {compler }}^{\substack{\text { comper } \\ \text { senee }}}$	${ }^{1}$	${ }^{0102}$
	${ }^{0105}$	${ }^{\text {baba }}$	computer	${ }^{\text {m4880 }}$	Digtal spems	2	${ }^{0104}$
	${ }^{0105}$	${ }^{\text {Babk }}$	$\substack{\text { computer } \\ \text { engneering }}$	${ }^{\text {F4901 }}$	Eectonis	1	${ }^{0104}$
	0.109	Mine		${ }_{\text {F4 }} 401$	Eectoonis	1	0.09
$\mathrm{b}_{\mathrm{RK}}^{\mathrm{K}} \mathrm{i}$	\cdots	-	-	-	..	-	.

48

49

51

Left outer-join

- The left outer-join of two relations A and B generates all pairs of
- a tuple of A and one of B that are "semantically linked"
tuples that are not semantically linked by the join predicate
- complete the tuples that lack a counterpart with null values
- There are three kinds of outer-join
- left: only the tuples of the first operand are completed
- right: only the tuples of the second operand are completed
- full: the tuples of both operands are completed
- a tuple of A "not semantically linked" to any tuple of B, completed with null values for all the attributes of B

Semi-join: example				
- Find information about teachers and about the courses that they hold				
Courses	CCode	CName	Semester	TeacherID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
Teachers	TeacherI	PName	Department	
	D102	Green	Computer engine	
	D105	Black	Computer engine	
	D104	White	Department of ele	tronics

54

Left outer-join: example

R

Teachers. TeacherID	$\begin{aligned} & \hline \begin{array}{l} \text { Teachers. } \\ \text { Pname } \end{array} \\ & \hline \end{aligned}$	Teachers. Department	$\begin{array}{\|l} \hline \begin{array}{l} \text { Courses. } \\ \text { CCode } \end{array} \\ \hline \end{array}$	Courses. CName	Courses. Semester	$\begin{aligned} & \hline \text { Courses. } \\ & \text { TezcherID } \\ & \hline \end{aligned}$
0102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
0104	White	Department of electronics	M4880	Digital systems	2	D104
0104	White	Electronics	F1401	Electronics	1	D104
0105	Black	Computer engineering	null	null	null	null

digi
56 ${ }_{56}$

Left outer-join: example

- Find information about teachers and about the courses that they hold

Teachers. TeacheriD	Teachers. Pname	Teachers. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. TeacheriD
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Dipital systems	2	D104
D104	White	Electronics	F1401	Electronics	1	D104
D105	Black	Conputer engineering	null	null	null	null

58

Left outer-join: example

R

Teachers. TeacheriD	Teachers. Pname	Teachers. Department	Courses. CCode	Courses. CName.	Courses. Semester	Courses. TeacheriD
D102	Green	Computer engineering	M2170	Computer scinece	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Electronics	F1401	Electronics	3	D104

$\mathrm{D}_{\mathrm{RG}}^{\mathrm{Bi}}$
55

Left outer-join: definition

$$
R=A \searrow_{p} B
$$

- The left outer-join of two relations A and B generates a relation R
- whose schema is the union of the schemas of A and B
- containing the pairs made up of:
- a tuple of A and a tuple of B for which the predicate p is true
- a tuple of A that is not correlated by means of the predicate p to any tuple of B completed with null values for all the attributes of B
$>$ The left outer-join is not commutative
$\mathrm{b}_{8}^{\mathrm{B}} \mathrm{B}_{\mathrm{i}}$
57

$$
R=A \bowtie \hookrightarrow_{p} B
$$

- The right outer-join of two relations A and B generates a relation R
- whose schema is the union of the schemas of A and B
- containing the pairs made up of
- a tuple of A and a tuple of B for which the predicate p is true
a tuple of B that is not correlated by means of the predicate p to any tuple of A completed with null values for all the attributes of A
The right outer-join is not commutative
$\mathrm{D}_{\mathrm{gh}}^{\mathrm{R}} \mathrm{i}$

Full outer-join: definition and properties
$\quad R=A D \Phi_{0} B$
- The full outer-join of two relations A and B generates the relation R
- whose cchema is the nuion of the schemas of A and B

60

Union and intersection
Relation Algebra
${ }^{2} \mathrm{Ba}_{\mathrm{ai}}$
61

63

Union: example					
- Find information relative to the teachers of bachelor's degree or master's degree courses					
BachelorTeachers					
TeacheriD	PName	Department			
D102	Green	Computer engineering			
D105	Black	Computer engineering	Teacherid	PName	Department
D104	White	Department of electronics	D102	Green	Computer engineering
MasterTeachers			D105	Black	Computer engineering
			D104	White	Department of electronics
TeacheriD	PName	Department	D101	Rossi	Department of electrics
D102	Green	Computer engineering			
D101	Rossi	Department of electrics			

64

Union: definition and properties

$$
\mathrm{R}=\mathrm{A} \cup \mathrm{~B}
$$

- The union of two relations A and B generates the relation R
- which has the same schema of A and B
- containing all the tuples belonging to A and all the tuples belonging to B (or both)
- Compatibility
- the relations A and B must have the same schema (number and type of attributes)
- Duplicate tuples are eliminated
- The union is commutative and associative

66

Intersection

- The intersection of two relations A and B selects all the tuples present in both relations

$\mathrm{b}_{\mathrm{Bra}}^{\mathrm{Ba}}$
67

68

69

Intersection: definition and properties

$$
R=A \cap B
$$

- The intersection of two relations A and B generates a relation R
- with the same schema of A and B
- containing all the tuples belonging to both A and B
- Compatibility
- relations A and B must have the same schema (number and type of attributes)
- Intersection is commutative and associative

Intersection: example

- Find information relative to the teachers of both bachelor's degree and master's degree courses

71

72
$\mathrm{D}_{\mathrm{Bg}}^{\mathrm{Ba}}$
73

Difference: definition and properties

$$
\mathrm{R}=\mathrm{A}-\mathrm{B}
$$

- The difference of two relations A and B generates a relation R - with the same schema of A and B
- containing all tuples belonging to A that do not belong to B
- Compatibility
- relations A and B must have the same schema (number and type of attributes)
- The difference does not satisfy the commutative property, nor the associative property
bRKi
75

77

Difference: example (n. 3)				
- Find identifier, name and department of teachers that are not holding any courses				
Courses	CCode	CName	Semester	TeacherID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
Teachers	TeacherID	PName	Department	
	D102	Green	Computer engine	
	D105	Black	Computer engine	
	D104	White	Department of ele	ronics

78

79

81

Anti-join: example

- Find identifier, name and department of teachers that are not holding any courses
- The anti-join of two relations A and B selects all the tuples of A that are "not semantically linked" to tuples of B
- The anti-join of two relations A and B generates a relation R - with the same schema of A
containing all the tuples of A for which there is no tuple of B for which the predicate p is
true
- The predicate p is expressed in the same way as for the theta-join and the semi-join
- The anti-join does not satisfy the commutative property, nor the associative property
Find identifier, name and department of teachers that are not holding any courses

${ }^{2} \mathrm{ph}_{\mathrm{Ki}}$

84

87

88

89

Division: definition and properties

$$
R=A / B
$$

- The division of relation A by relation B generates a relation R
- whose schema is schema(A) - schema(B)
- containing all the tuples of A such that for each tuple ($\mathrm{Y}: \mathrm{y}$) present in B there is a tuple ($\mathrm{X}: \mathrm{x}, \mathrm{Y}: \mathrm{y}$) in A
- Division does not satisfy the commutative property, nor the associative property

Division: example

- Find the students that have passed the exams of all the courses in the first year

R = PassedExams / FirstYearCourses
$\mathrm{D}_{\mathrm{Bq}}^{\mathrm{Bi}}$
91

Other operators

- Various other operators have been proposed so as to extend the expressive power of relational algebra
- extending relations with a new attribute, defined by a scalar expression - GROSS_WEIGHT=NET_WEIGHT+TARE
- calculating aggregate function
- max, min, avg, count, sum
- possibly defining subsets in which to group the data (GROUP BY of SQL)

