

Relational algebra

Relational model and relational algebra

Relational Algebra

- **≻**Introduction
- ➤ Selection and projection
- ➤ Cartesian product and join
- ➤ Natural join, theta-join and semi-join
- ➤Outer join
- >Union and intersection
- ➤ Difference and anti join
- ➤ Division and other operators

Introduction

Relation Algebra

Relational Algebra

- Extends the algebra of sets for the relational model
- Defines a set of operators that operate on relations and whose output is another relation
- It satisfies the closure property
 - The result of any algebraic operation on relations is also a relation

Relational algebra operators

- Unary operator
 - selection (σ)
 - projection (π)
- Binary operator
 - cartesian product (×)
 - join (⋈)
 - union (∪)
 - intersection (∩)
 - difference (-)
 - division (/)

- Set operators
 - union (∪)
 - intersection (∩)
 - difference (-)
 - cartesian product (×)
- Relational operators
 - selection (σ)
 - projection (π)
 - join ()
 - division (/)

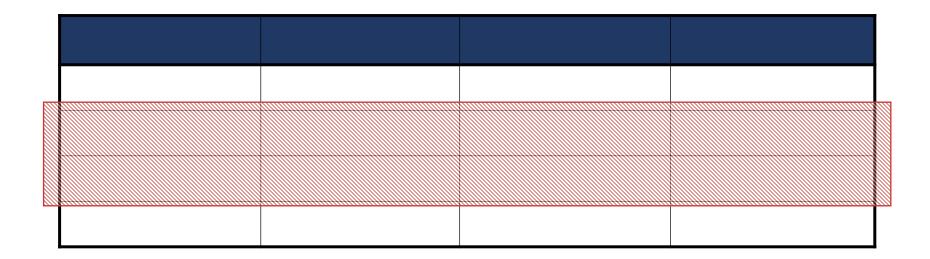
Example of relations

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics


Selection and projection

Relation Algebra

Selection

- The selection extracts a "horizontal" subset from the relation
 - It operates a horizontal partition of the relation

Selection: example

• Find the courses held in the second semester

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

CCode	CName	Semester	TeacherID
M4880	Digital systems	2	D104
F0410	Databases	2	D102

Selection: definition

$$R = \sigma_p A$$

- The selection generates a relation R
 - with the same schema as A
 - containing all the tuples of relation A for which predicate p is true
- Predicate p is a boolean expression (operators \land,\lor,\neg) combining expressions that compare attributes, or attributes and constants
 - p: City= 'Turin' \(\text{Age} > 18 \)
 - p: ReturnDate>DeliveryDate+10

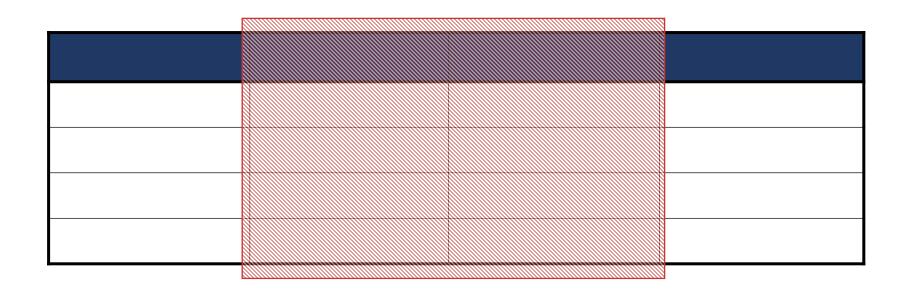
Selection: example

• Find the courses held in the second semester

$$R = \sigma_{Semester=2}$$
Courses

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102



CCode	CName	Semester	TeacherID
M4880	Digital systems	2	D104
F0410	Databases	2	D102

Projection

- The projection extracts a "vertical" subset from the relation
 - it operates a vertical partition of the relation

Projection: example (n. 1)

Find the names of teachers

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

R

PName
Green
Black
White

Projection: definition

$$R = \pi_I A$$

- The projection π_{l} generates a relation R
 - whose schema is the list of attributes L (subset of A's schema)
 - containing all of the tuples present in A
- The duplicates that may be caused by excluding the attributes not contained in L are deleted
 - if L includes a candidate key, there are no duplicates

Projection: example (n. 1)

• Find the names of teachers

$$R = \pi_{PName}$$
Teachers

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Projection: example (n. 2)

• Find the names of the departments in which at least one professor is present

 $R = \pi_{Department}$ Teachers

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

F

Department
Computer engineering
Department of electronics

Selection+projection: example

Select the names of courses in the second semester

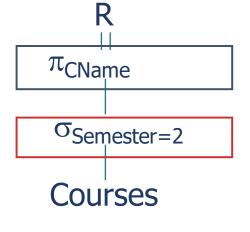
Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Selection

CCode	CName	Semester	TeacherID
M4880	Digital systems	2	D104
F0410	Databases	2	D102

CName
Digital systems
Databases

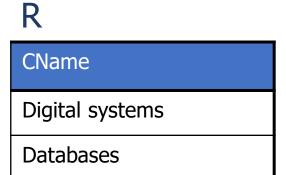


Selection+projection: example

• Select the names of courses in the second semester

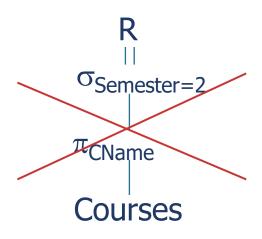
Courses

	<u>CCode</u>	CName	Semester	TeacherID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
П	F0410	Databases	2	D102



Selection

CCode	CName	Semester	TeacherID
M4880	Digital systems	2	D104
F0410	Databases	2	D102



Selection+projection: wrong solution

• Select the names of courses in the second semester

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Courses

Projection

CName
Computer science
Digital systems
Electronics
Databases

The Semester attribute is not available in the output relation: the selection operation cannot be carried out

Cartesian product and join

Relation Algebra

Cartesian product

The Cartesian product of two relations A and B generates all the pairs formed by a tuple of A and a tuple of B

Find the Cartesian product of courses and teachers

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Computer engineering
M2170	Computer science	1	D102	D104	White	Department of electronics

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Icomputer engineering
M2170	Computer science	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Icomputer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Computer engineering
M2170	Computer science	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Computer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
F1401	Electronics	1	D104	D102	Green	Computer engineering
F1401	Electronics	1	D104	D105	Black	Computer engineering
F1401	Electronics	1	D104	D104	White	Department of electronics
F0410	Databases	2	D102	D102	Green	Computer engineering
F0410	Databases	2	D102	D105	Black	Computer engineering
F0410	Databases	2	D102	D104	White	Department of electronics

Cartesian product: definition

$$R = A \times B$$

- The Cartesian product of two relations A and B yields a relation R
 - whose schema is the union of the schemas of A and B
 - containing all the pairs formed by a tuple of A and a tuple of B
- The Cartesian product is
 - commutative
 - $A \times B = B \times A$
 - associative
 - $(A \times B) \times C = A \times (B \times C)$

• Find the Cartesian product of courses and teachers

$$R = Courses \times Teachers$$

Link between attributes

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. TeacherID	Teachers.P name	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Icomputer engineering
M2170	Computer science	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Icomputer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
			***			***

Join

• The join of two relations A and B generates all the pairs formed by a tuple of A and a tuple of B that are "semantically linked"

Find information about courses and the teachers that hold them

• Find information about courses and the teachers that hold them

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Icomputer engineering
M2170	Computer science	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Icomputer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
F1401	Electronics	1	D104	D104	White	Department of electronics
F0410	Databases	2	D102	D102	Green	Computer engineering

R

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
F1401	Electronics	1	D104	D104	White	Department of electronics
F0410	Databases	2	D102	D102	Green	Computer engineering

> NB: Professor (D105,Black,Computer engineering), who does not teach any courses does not appear in the result of the join

Join: definition

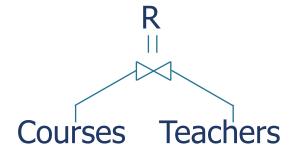
- The join is a derived operator
 - it can be expressed using operators x, σ_p , π_L
- The join is defined separately as it expresses synthetically many recurrent operations in database queries
- There are different kinds of joins
 - natural join
 - theta-join (and its special case equi-join)
 - semi-join

Natural join, theta-join and semijoin

Relation Algebra

Natural join: definition and properties

$$R = A \bowtie B$$


- The natural join of two relations A and B generates a relation R
 - whose schema is composed of
 - the attributes which are present in A's schema and not in B's
 - the attributes present in B's schema and not in A's
 - a single copy of common attributes (with the same name in the schema of A and B)
 - containing all of the pairs made up of a tuple of A and a tuple of B for which the value of common attributes is the same
- Natural join is commutative and associative

Natural join: example

Find information about the courses and the teachers that hold them

RR

Courses CCode	Courses. CName	Courses. Semester	Courses. TeacherID	Teachers. Pname	Teachers. Department
M2170	Computer science	1	D102	Green	Computer engineering
M4880	Digital systems	2	D104	White	Department of electronics
F1401	Electronics	1	D104	White	Department of electronics
F0410	Databases	2	D102	Green	Computer engineering

Note: The common attribute TeacherID is present only once in the schema of the resulting relation R

Theta-join: definition

$$R = A_{\triangleright \triangleleft_0} B$$

- The theta-join of two relations A and B generates all the pairs formed by a tuple of A and B that satisfy a generic "join/link condition"
- The theta-join of two relations A and B generates a relation R
 - whose schema is the union of the schemas of A and B
 - containing all the pairs made up of a tuple of A and a tuple of B for which the predicate p is true
- The predicate p is in the form $X \theta Y$
 - X is an attribute of A, Y is an attribute of B
 - θ is a comparison operator compatible with the domains of X and of Y
- Theta-join is commutative and associative

Equi-join: definition

$$R = A \bowtie_p B$$

- Equi-join
 - Particular case of theta-join in which θ is the equivalence operator (=)

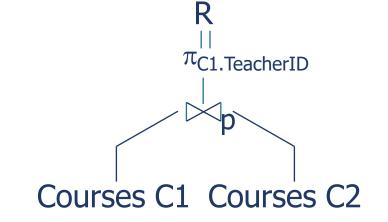
Theta-join: example

Find the identifiers of the teachers that hold at least two courses

Courses C1

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Courses C2


<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Theta-join: example

• Find the identifiers of the teachers that hold at least two courses

$$R = \pi_{C1.TeacherID}((Courses C1)) \bowtie_p(Courses C2))$$

p: C1.TeacherID=C2.TeacherID \(\cdot \) C1.CCode<>C2.CCode

Theta join: example

Courses C1. CCode	Courses C1. CName	Courses C1 Semester	Courses C1. TeacherID	Courses C2. CCode	Courses C2. CName	Courses C2. Semester	Courses C2. TeacherID
M2170	Computer science	1	D102	M2170	Computer science	1	D102
M2170	Computer science	1	D102	M4880	Digital systems	2	D104
M2170	Computer science	1	D102	F1401	Electronics	1	D104
M2170	Computer science	1	D102	F0410	Databases	2	D102
M4880	Digital systems	2	D104	M2170	Computer science	1	D102
M4880	Digital systems	2	D104	M4880	Digital systems	2	D104
M4880	Digital systems	2	D104	F1401	Electronics	1	D104
M4880	Digital systems	2	D104	F0410	Databases	2	D102
F1401	Electronics	1	D104	M2170	Computer science	1	D102
F1401	Electronics	1	D104	M4880	Digital systems	2	D104
F1401	Electronics	1	D104	F1401	Electronics	1	D104
F1401	Electronics	1	D104	F0410	Databases	2	D102
F0410	Databases	2	D102	M2170	Computer science	1	D102
F0410	Databases	2	D102	M4880	Digital systems	2	D104
F0410	Databases	2	D102	F1401	Electronics	1	D104
F0410	Databases	2	D102	F0410	Databases	2	D102

Theta-join: example

Courses C1.	Courses C1. CName	Courses C1. Semester	Courses C1. TeacherID	Courses C2. CCode	Courses C2. CName	Courses C2. Semester	Courses C2. TeacherID
M2170	Computer science	1	D102	F0410	Databases	2	D102
M4880	Digital systems	2	D104	F1401	Electronics	1	D104
F1401	Electronics	1	D104	M4880	Digital systems	2	D104
F0410	Databases	2	D102	M2170	Computer science	1	D102

Projection

R

Semi-join: definition and properties

$$R = A \bowtie_p B$$

- The semi-join of two relations A and B selects all the tuples of A that are "semantically linked" to at least one tuple of B
 - the information from B does not appear in the result
- The semi-join of two relations A and B generates a relation R
 - which has the same schema as A
 - containing all the tuples of A for which the predicate specified by p is true
- The predicate p is expressed in the same form as the theta-join (comparison between the attributes of A and B)

Semi-join: properties

- The semi-join can be expressed as a function of the theta-join
 - $A \bowtie_p B = \pi_{schema(A)}(A \bowtie_p B)$
- The semi-join *does not satisfy* the commutative property

• Find information relative to teachers that hold at least one course

Courses

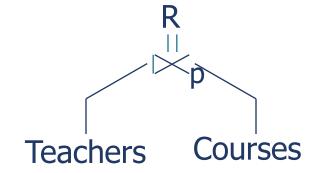
<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Teachers. TeacherID	Teachers. Pname	Teachers. Department	Courses. CCode	Courses.CName	Courses. Semester	Courses. TeacherID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	M4880	Digital systems	2	D104
D102	Green	Computer engineering	F1401	Electronics	1	D104
D102	Green	Computer engineering	F0410	Databases	2	D102
D105	Black	Computer engineering	M2170	Computer science	1	D102
D105	Black	Computer engineering	M4880	Digital systems	2	D104
D105	Black	Computer engineering	F1401	Electronics	1	D104
D104	White	Department of electronics	F1401	Electronics	1	D104

Teachers. TeacherID	Teachers. Pname	Teachers. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. TeacherID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Electronics	F1401	Electronics	3	D104


R

Teachers. TeacherID	Teachers. Pname	Teachers. Department
D102	Green	Computer engineering
D104	White	Department of electronics

Find information relative to teachers that hold at least one course

R=Teachers
$$\bowtie_p$$
 Courses

p: Teachers.TeacherID= Courses.TeacherID

R

Teachers. TeacherID	Teachers. Pname	Teachers. Department
D102	Green	Computer engineering
D104	White	Department of electronics

Outer join

Relation Algebra

Outer-join

- Version of join that allows us to preserve the information relative to tuples that are not semantically linked by the join predicate
 - complete the tuples that lack a counterpart with null values
- There are three kinds of outer-join
 - left: only the tuples of the first operand are completed
 - right: only the tuples of the second operand are completed
 - full: the tuples of both operands are completed

Left outer-join

- The left outer-join of two relations A and B generates all pairs of
 - a tuple of A and one of B that are "semantically linked"

+

• a tuple of A "not semantically linked" to any tuple of B, completed with null values for all the attributes of B

• Find information about teachers and about the courses that they hold

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Left outer-join: example

R

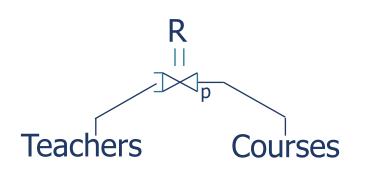
Teachers. TeacherID	Teachers. Pname	Teachers. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. TeacherID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Electronics	F1401	Electronics	3	D104

Left outer-join: example

R

Teachers. TeacherID	Teachers. Pname	Teachers. Department	Courses.	Courses. CName	Courses. Semester	Courses. TeacherID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Electronics	F1401	Electronics	1	D104
D105	Black	Computer engineering	null	null	null	null

Left outer-join: definition


$$R = A \bowtie_p B$$

- The left outer-join of two relations A and B generates a relation R
 - whose schema is the union of the schemas of A and B
 - containing the pairs made up of:
 - a tuple of A and a tuple of B for which the predicate p is true
 - a tuple of A that is not correlated by means of the predicate p to any tuple of B completed with null values for all the attributes of B
- The left outer-join *is not* commutative

Left outer-join: example

Find information about teachers and about the courses that they hold

p: Teachers.TeacherID=Courses.TeacherID

Teachers. TeacherID	Teachers. Pname	Teachers. Department	Courses.	Courses. CName	Courses. Semester	Courses. TeacherID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Electronics	F1401	Electronics	1	D104
D105	Black	Computer engineering	null	null	null	null

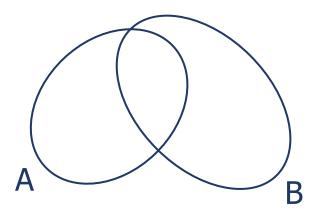
Right outer-join: definition

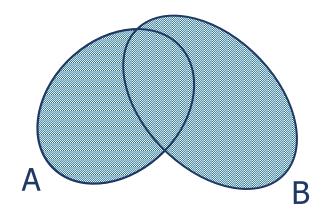
$$R = A \bowtie_p B$$

- The right outer-join of two relations A and B generates a relation R
 - whose schema is the union of the schemas of A and B
 - containing the pairs made up of
 - a tuple of A and a tuple of B for which the predicate p is true
 - a tuple of B that is not correlated by means of the predicate p to any tuple of A completed with null values for all the attributes of A
- The right outer-join *is not* commutative

Full outer-join: definition and properties

- The full outer-join of two relations A and B generates the relation R
 - whose schema is the union of the schemas of A and B
- containing the pairs formed by:
 - a tuple of A and a tuple of B for which predicate p is true
 - a tuple of A that is not correlated by means of the predicate p
 to any tuple of B completed with null values for all the
 attributes of B
 - a tuple of B that is not correlated by means of the predicate p
 to any tuple of A completed with null values for all the
 attributes of A
- The full outer-join is commutative


Union and intersection


Relation Algebra

Union

• The union of two relations A and B selects all the tuples present in at least one of the two relations

Union: example

• Find information relative to the teachers of bachelor's degree or master's degree courses

BachelorTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

MasterTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

Union: example

• Find information relative to the teachers of bachelor's degree or master's degree courses

BachelorTeachers

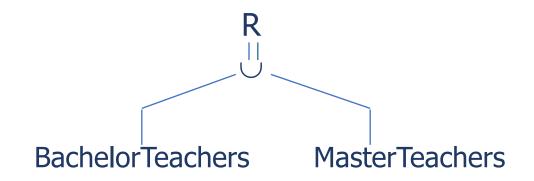
<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics
D101	Rossi	Department of electrics

Note: Duplicate tuples are deleted

Union: definition and properties

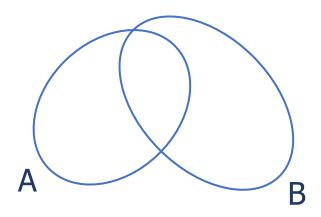

$$R = A \cup B$$

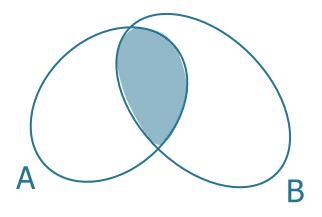
- The union of two relations A and B generates the relation R
 - which has the same schema of A and B
 - containing all the tuples belonging to A and all the tuples belonging to B (or both)
- Compatibility
 - the relations A and B must have the same schema (number and type of attributes)
- Duplicate tuples are eliminated
- The union is commutative and associative

Union: example

• Find information relative to the teachers of bachelor's degree or master's degree courses

R = BachelorTeachers ∪ MasterTeachers


R


<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics
D101	Rossi	Department of electrics

Intersection

 The intersection of two relations A and B selects all the tuples present in both relations

Intersection: example

• Find information relative to the teachers of both bachelor's degree and master's degree courses

BachelorTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

MasterTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

Intersection: example

• Find information relative to the teachers of both bachelor's degree and master's degree courses

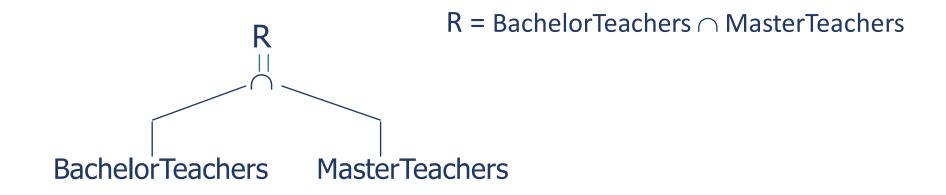
BachelorTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering

Intersection: definition and properties

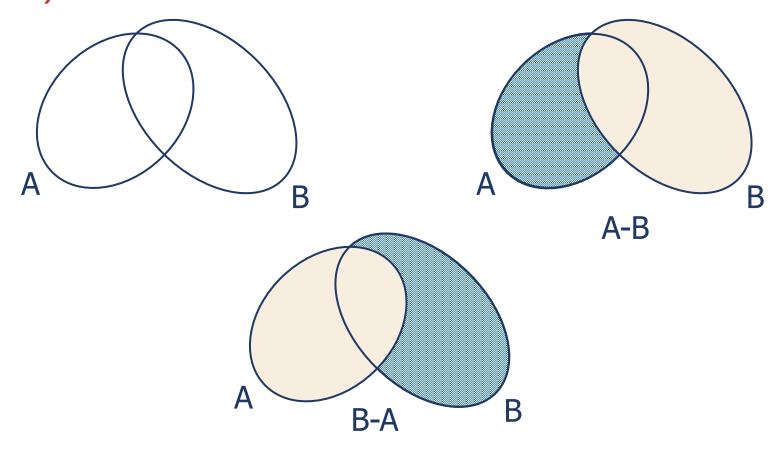

$$R = A \cap B$$

- The intersection of two relations A and B generates a relation R
 - with the same schema of A and B
 - containing all the tuples belonging to both A and B
- Compatibility
 - relations A and B must have the same schema (number and type of attributes)
- Intersection is commutative and associative

Intersection: example

• Find information relative to the teachers of both bachelor's degree and master's degree courses

R	<u>TeacherID</u>	PName	Department
	D102	Green	Computer engineering


Difference and anti-join

Relation Algebra

Difference

 The difference of two relations A and B selects all the tuples present exclusively in A

• Find information relative to professors who teach bachelor's degree courses, but not master's degree courses

BachelorTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

MasterTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

<u>TeacherID</u>	PName	Department
D105	Black	Computer engineering
D104	White	Department of electronics

Difference: definition and properties

$$R = A - B$$

- The difference of two relations A and B generates a relation R
 - with the same schema of A and B
 - containing all tuples belonging to A that do not belong to B
- Compatibility
 - relations A and B must have the same schema (number and type of attributes)
- The difference *does not satisfy* the commutative property, nor the associative property

• Find information relative to professors who teach bachelor's degree courses, but not master's degree courses

R	<u>TeacherID</u>	PName	Department
	D105	Black	Computer engineering
	D104	White	Department of electronics

• Find information relative to professors who teach master's degree courses, but not bachelor's degree courses ${\sf R}$

R = MasterTeachers - BachelorTeachers

MasterTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

BachelorTeachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

<u>TeacherID</u>	PName	Department
D101	Rossi	Department of electrics

Master Teachers

BachelorTeachers

 Find identifier, name and department of teachers that are not holding any courses

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

• Find identifier, name and department of teachers that are not holding any courses

Teachers

	<u>TeacherID</u>	PName	Department
Projection	D102	Green	Computer engineering
Teacher identifier	D105	Black	Computer engineering
reaction lactionies	D104	White	Department of electronics

Courses

<u>CCode</u>	CName	Semester	TeacherID	
M2170	Computer science	1	D102	Projection
M4880	Digital systems	2	D104	Identifiers of teachers
F1401	Electronics	1	D104	who hold at least
F0410	Databases	2	D102	one course

TeacherID

D102

D105

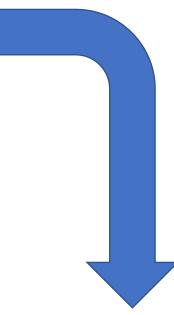
D104

TeacherID

D102

D104

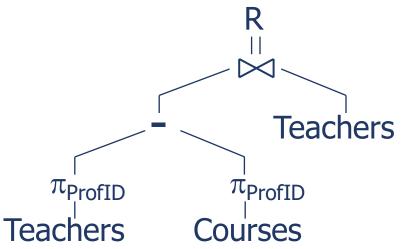
Difference


TeacherID

D105

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics



R

<u>TeacherID</u>	PName	Department
D105	Black	Computer engineering

 Find identifier, name and department of teachers that are not holding any courses

R = Teachers
$$\bowtie$$
 ((π_{ProfID} Teachers) $-$ (π_{ProfID} Courses))

Anti-join: definition and properties

$$R = A \overline{\triangleright}_p B$$

- The anti-join of two relations A and B selects all the tuples of A that are "not semantically linked" to tuples of B
 - the information of B does not appear in the result
 - The anti-join of two relations A and B generates a relation R
 - with the same schema of A
 - containing all the tuples of A for which there is no tuple of B for which the predicate p is true
- The predicate p is expressed in the same way as for the theta-join and the semi-join
- The anti-join does not satisfy the commutative property, nor the associative property

Anti-join: example

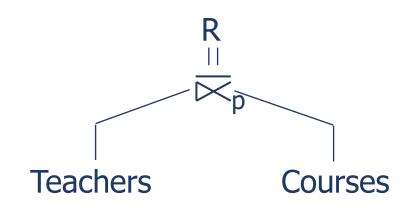
• Find identifier, name and department of teachers that are not holding any courses

Courses

<u>CCode</u>	CName	Semester	TeacherID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Teachers

<u>TeacherID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics



<u>TeacherID</u>	PName	Department
D105	Black	Computer engineering

Anti-join: example

 Find identifier, name and department of teachers that are not holding any courses

p: Teachers.TeacherID=Courses.TeacherID

R

<u>TeacherID</u>	PName	Department
D105	Black	Computer engineering

Division and other operators

Relation Algebra

• Find the students that have passed the exams of all the courses in the first year

PassedExams

<u>StudentID</u>	<u>CCode</u>
S1	C1
S1	C2
S1	C3
S1	C4
S1	C5
S1	C6
S2	C1
S2	C2
S3	C2
S4	C2
S4	C4
S4	C5

FirstYearCourses

<u>CCode</u>

• Find the students that have passed the exams of all the courses in the first year

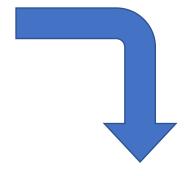
PassedExams

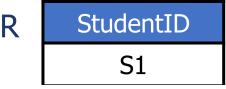
FirstYearCourses

PasseuExams		riistieaicourses			
<u>StudentID</u>	<u>CCode</u>	<u>CCode</u>			
S1	C1	C1			
S1	C2				
S1	C3				
S1	C4				
S1	C5				•
S1	C6		_	、 I	CtudontID
S2	C1		F	ζ	StudentID
S2	C2				S1
S3	C2				S2
S4	C2			-	
S4	C4				
S 4	C5				

• Find the students that have passed the exams of all the courses in the first year

	PassedExams		FirstYearCourses		
	<u>StudentID</u>	<u>CCode</u>	<u>CCode</u>		
	S1	C1	C2		
	S1	C2	C4		
_	S1	C3			
Г	S1	C4			
	S1	C5			•
	S1	C6		ь	Ctudont
	S2	C1		R	Student
	S2	C2			S1
	S3	C2			S4
	S4	C2		•	
	S4	C4			
	<u>\$4</u>	C5			

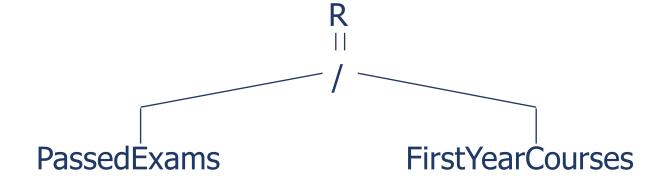

• Find the students that have passed the exams of all the courses in the first year


PassedE	xams
----------------	------

<u>StudentID</u>	<u>CCode</u>
S1	C1
S1	C2
S1	C3
S1	C4
S1	C5
S1	C6
S2	C1
S2	C2
S3	C2
S4	C2
S4	C4
S4	C5

FirstYearCourses

<u>CCode</u>
C1
C2
C3
C4
C5
C6
·


Division: definition and properties

$$R = A / B$$

- The division of relation A by relation B generates a relation R
 - whose schema is schema(A) schema(B)
 - containing all the tuples of A such that for each tuple (Y:y) present in B there is a tuple (X:x, Y:y) in A
- Division does not satisfy the commutative property, nor the associative property

• Find the students that have passed the exams of all the courses in the first year

R = PassedExams / FirstYearCourses

Other operators

- Various other operators have been proposed so as to extend the expressive power of relational algebra
 - extending relations with a new attribute, defined by a scalar expression
 - GROSS_WEIGHT=NET_WEIGHT+TARE
 - calculating aggregate function
 - max, min, avg, count, sum
 - possibly defining subsets in which to group the data (GROUP BY of SQL)

