

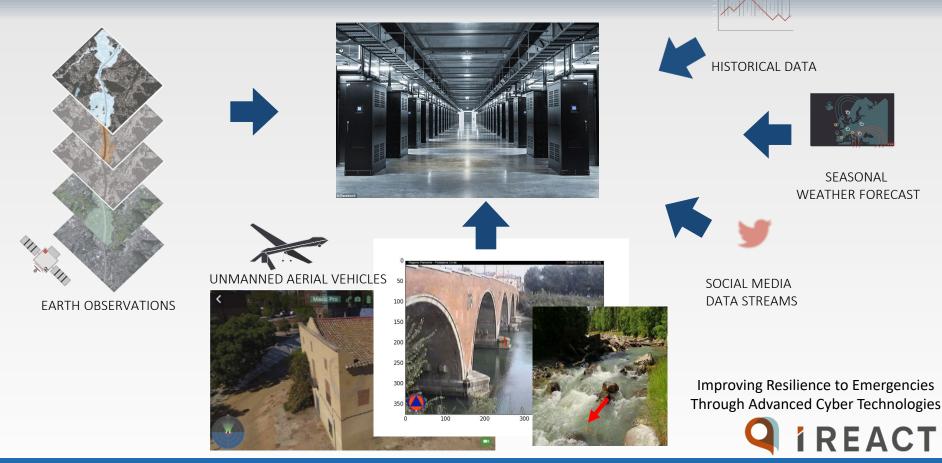
Data Science *The Big Data challenge*

TANIA CERQUITELLI

www.shutterstock.com · 161743691

Big data hype?

Emergency management



Emergency management

User engagement

Who generates big data?

User Generated Content (Web & Mobile)

E.g., Facebook, Instagram, Yelp, TripAdvisor, Twitter, YouTube

Health and scientific computing

Who generates big data?

0.08

Log filesWeb server log files, machine syslog files

Internet Of Things Sensor networks, RFID, smart meters

Many different definitions

Many different definitions

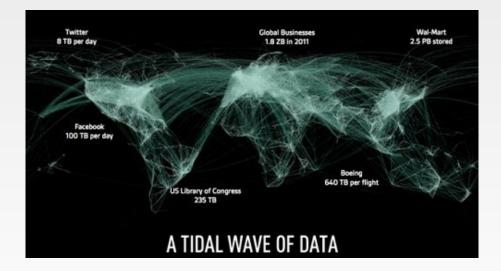
Many different definitions

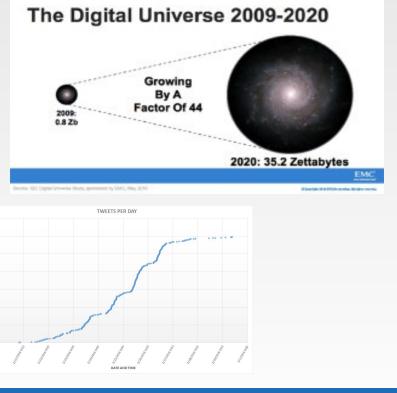
Many different definitions

The Vs of big data: Volume

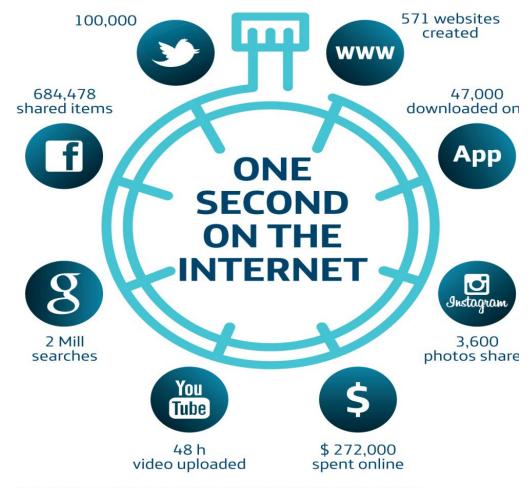
Data volume increases exponentially over time

44x increase from 2009 to 2020Digital data 35 ZB in 2020





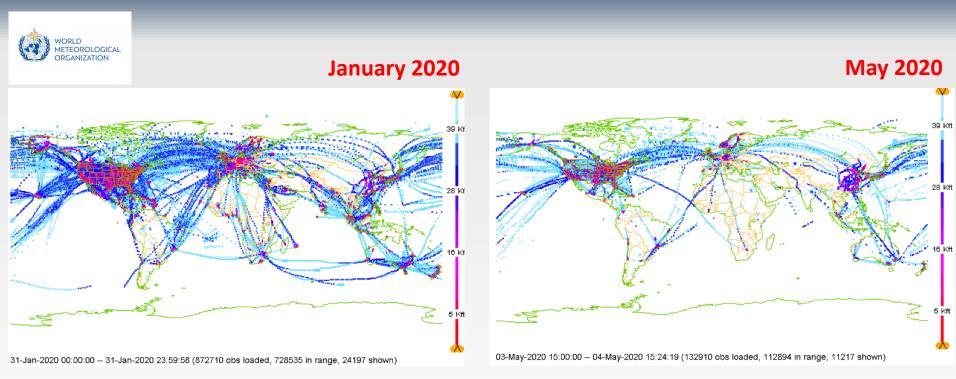
On the Internet...



Source: Telefónica analysis based on Social and Digital Media Revolution Statistics 2013 from MistMediaGroup (htt://youtube.com/watch?v=Slb5x5fixk4).

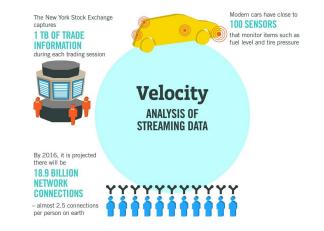
http://www.internetlivestats.com/

Weather forecast

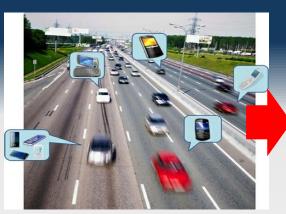


The Vs of big data: Velocity

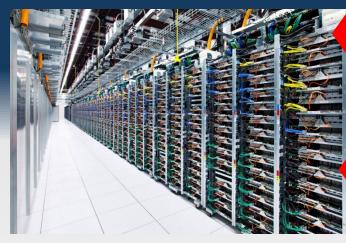
- Fast data generation rate
 - Streaming data
- Very fast data processing to ensure timeliness



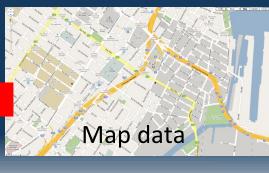
(Near) Real time processing



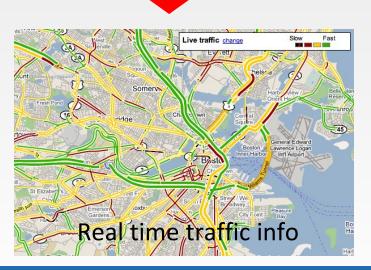
Crowdsourcing



Computing



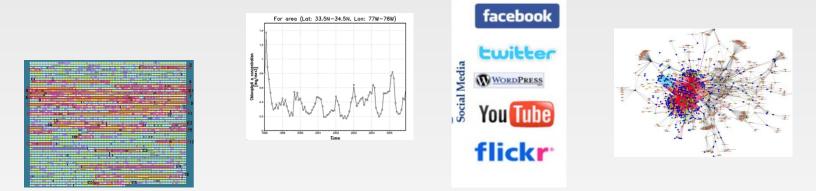
Sensing



The Vs of big data: Variety

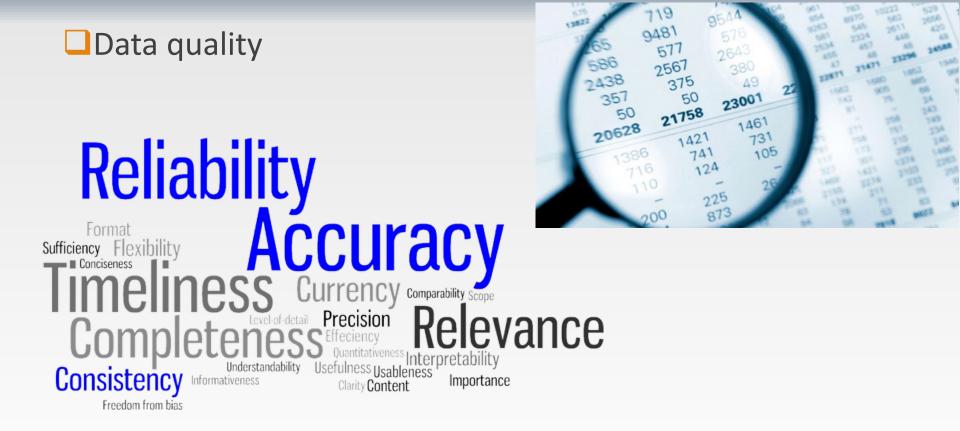
□ Various formats, types and structures

Numerical data, image data, audio, video, text, time series



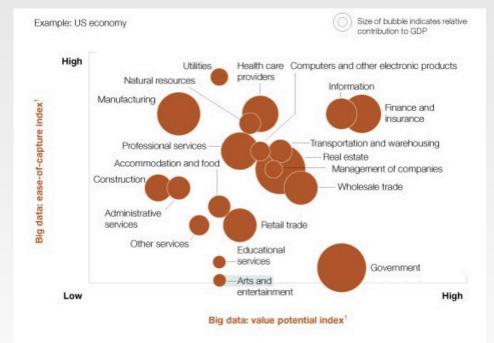
A single application may generate many different formats

The Vs of big data: Veracity



The most important V: Value

Translate data into business advantage



¹For detailed explication of metrics, see appendix in McKinsey Global Institute full report Big data: The next frontier for innovation, competition, and productivity, available free of charge online at mckinsey.com/mgi.

Source: US Bureau of Labor Statistics; McKinsey Global Institute analysis

Big data challenges

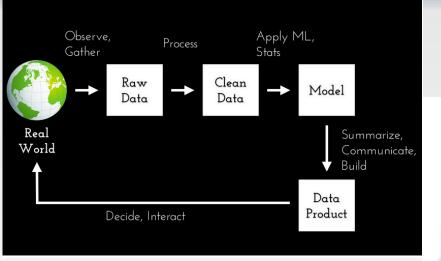
Technology & infrastructure
 New architectures, programming paradigms and techniques
 Transfer the processing power to the data
 Apache Hadoop/Spark ecosystem
 Data management & analysis
 New emphasys on "data"

Data science

"Extracting meaning from very large quantities of data"

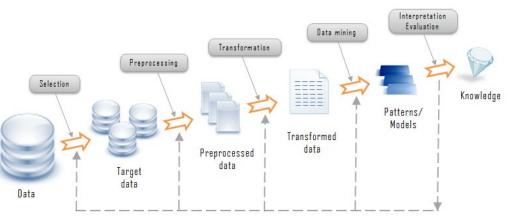
D.J. Patil coined the word *data scientist*

The data science process



AKA **KDD** process

Knowledge Discovery in Databases



Generation

Passive recording

Typically structured data

Bank trading transactions, work hours, government sector archives

Active generation

Semistructured or unstructured data

User-generated content, e.g., social networks

Automatic production

Location-aware, context-dependent, highly mobile data

Sensor-based Internet-enabled devices (IoT)

Acquisition

Collection

Pull-based, e.g., web crawler

Push-based, e.g., video surveillance, click stream

Transfer to data center over high capacity links

Preprocessing

Integration, cleaning, redundancy elimination

Storage

Storage infrastructure

Storage technology, e.g., HDD, SSD

Networking architecture, e.g., DAS, NAS, SAN

Data management

File systems (HDFS), key-value stores (Memcached), column-oriented databases (Cassandra), document databases (MongoDB)

Programming models

Map reduce, stream processing, graph processing

Analysis

Objectives

Descriptive analytics, predictive analytics, prescriptive analytics

Methods

Statistical analysis, machine learning and data mining, text mining, network and graph data mining

Association analysis, classification and regression, clustering

Diverse domains call for customized techniques

Data mining

Non trivial extraction of

🖵 implicit

previously unknown

potentially useful

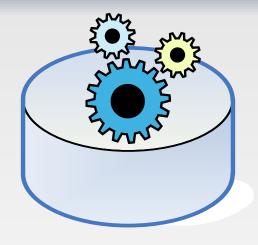
information from available data

Extraction is automatic

performed by appropriate algorithms

Extracted information is represented by means of abstract models

denoted as *pattern*



Profiling: examples of data

- Consumer behavior in e-commerce sites Selected products, requested information, ...
- Search engines and portals
 Query keywords, searched topics and objects
- Social network data
 Profiles (Facebook, Instagram, ...)
 - Dynamic data: posts on blogs, FB, tweets
- Maps and georeferenced data
 Localization, interesting locations for users

YAHOO!

Profiling: examples of applications

User/service profiling

Recommendation systems, advertisements

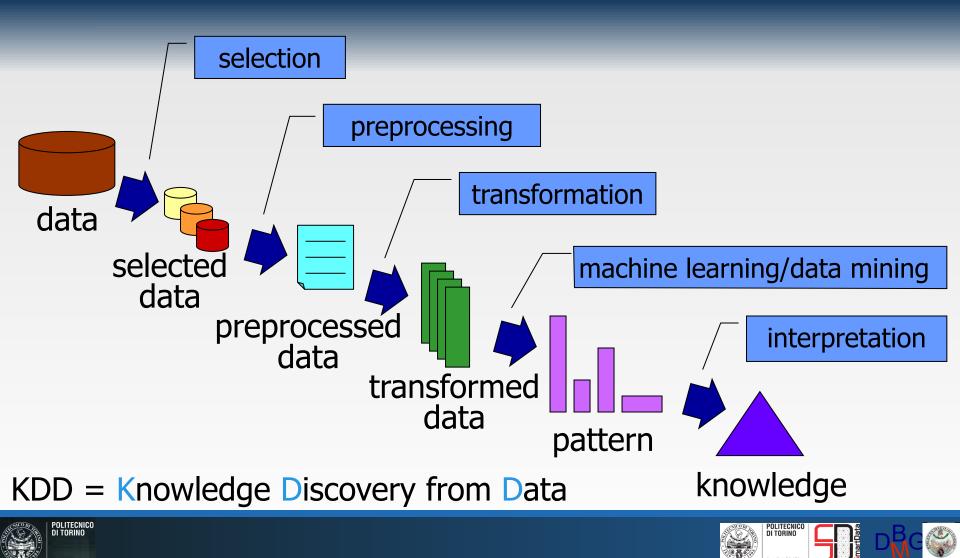
Market basket analysis
 Correlated objects for cross selling
 User registration, fidelity cards

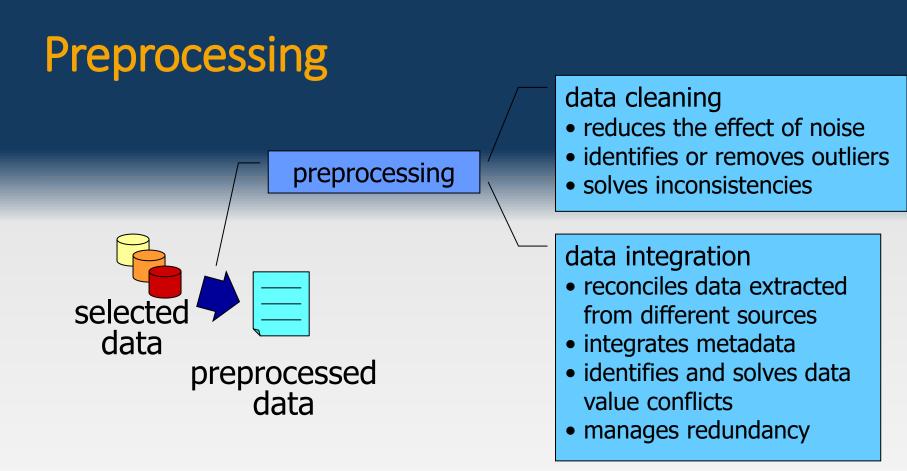
Context-aware data analysis
 Integration of different dimensions
 E.g., location, time of the day, user interest

Text mining

Brand reputation, sentiment analysis, topic trends

Knowledge Discovery Process





Real world data is "dirty" Without good quality data, no good quality pattern

A word from practitioners

At least 80-90% of their work involves not machine learning, but

- Working with experts to understand the domain, assumptions, questions
- Trying to catalog and make sense of the data sources
- Wrangling, extracting, and integrating the data
- Cleaning the wrangled data

Association rules

Objective

extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Association rule

diapers \Rightarrow beer

- 2% of transactions contains both items
- 30% of transactions containing diapers also contain beer

Association rules

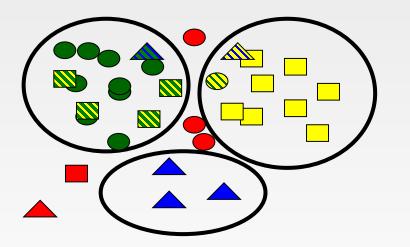


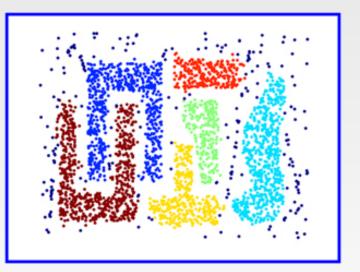
Clustering

Objectives

detecting groups of similar data objects

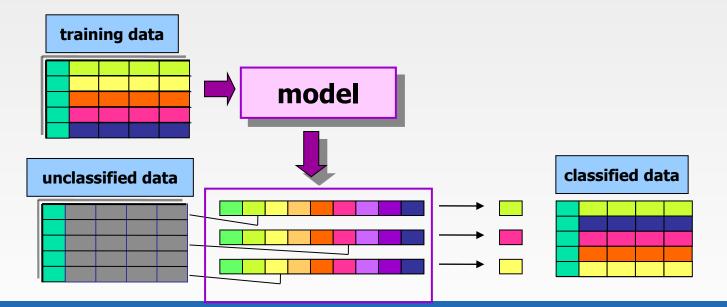
identifying exceptions and outliers





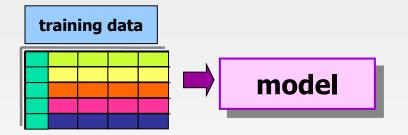
Objectives

- prediction of a class label
- definition of an data-driven model (descriptive profile) of a given phenomenon, which will allow the assignment of unlabeled data objects to the appropriate class



Training set

Collection of labeled data objects used to learn the classification model

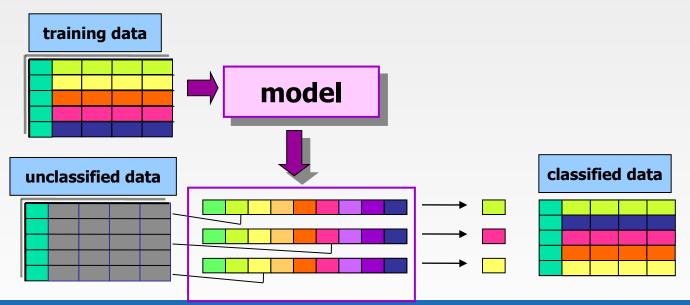


Test set

Collection of labeled data objects used to validate the classification model

New data with unknown class label

The data-driven model is exploited to predict the class label



Classification techniques

A plethora of different algorithms

- Decision trees
- Classification rules
- Association rules
- Neural Networks
- Naïve Bayes and Bayesian Networks
- k-Nearest Neighbours (k-NN)
- □Support Vector Machines (SVM)

Evaluation dimensions

Accuracy quality of the prediction

Interpretability model interpretability

model compactness

Robustness noise, missing data

Incrementality

model update in presence of newly labelled record

Efficiency

- model building time
- classification time

Scalability

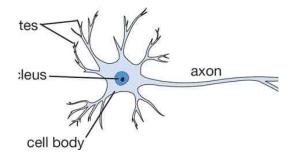
- training set size
- attribute number

_...

Artificial Neural Networks

Inspired to the structure of the human brain
 Neurons as elaboration units
 Synapses as connection network

Biological Neuror



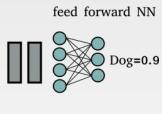


Artificial Neural Networks

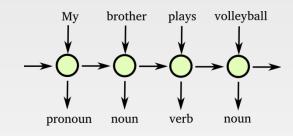
Different tasks, different architectures

image understanding: convolutional NN (CNN)

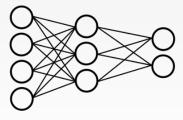
convolutional layers



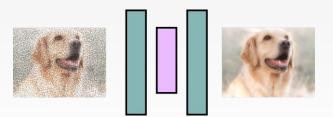
time series analysis: recurrent NN (RNN)

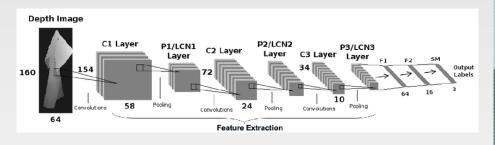


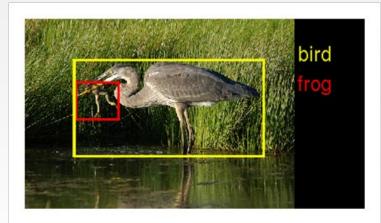
numerical vectors classification: feed forward NN (FFNN)

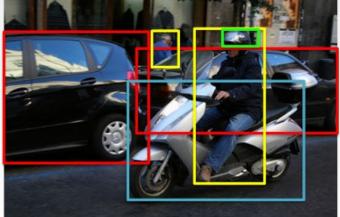


denoising: auto-encoders









Person Car Motorcycle Helmet

Other techniques

Sequence mining

ordering criteria on analyzed data are taken into account

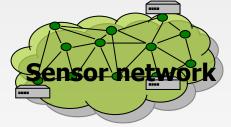
- example: motif detection in proteins
- Time series and geospatial data
 - temporal and spatial information are considered
 - example: sensor network data

Regression

- prediction of a continuous value
- example: prediction of stock quotes

Outlier detection

example: intrusion detection in network traffic analysis



The data science process

What *question* are you answering?

What is the right scope of the project?

What *data* will you use?

What *techniques* are you going to try?

How will you evaluate your result?

What *maintenance* will be required?

Content derived by material from the OpenDS4All project

The data science recipe

- Different ingredients needed
 - Data expert
 - Data processing, data structures
 - Data analyst
 - Data mining, statistics, machine learning
 - Visualization expert
 - □Visual art design, storytelling skills
 - Domain expert
 - Provide understanding of the application domain
 - Business expert
 - Data driven decisions, new business models

