
1

Lab 1

This introductory lab is composed of two main tasks. Your first objective is to run your first
MapReduce application on the BigData@Polito cluster. For this goal, you must learn how to
import a predefined project, compile the source code, produce a jar file, copy your
application on a remote machine (the gateway) and submit your application on the
BigData@Polito cluster. The second objective is to write your first MapReduce application.

1. Compiling using the VSCode IDE

In this task, we will “compile” the source code of a simple Hadoop application and we will
create a jar file with the class files of the project. The shared VSCode project contains the
basic libraries that are needed to develop the application and create the class and jar files.
You cannot use this project to run locally on the PC of the Lab or on your own PC the
MapReduce application (other libraries are needed to run locally this application).

The imported project is the MapReduce implementation of the word count application.

Download from the course web page the zip file Lab1_BigData_with_libraries.zip, which
contains the MapReduce-based implementation of the word count application and the
example data folder example_data (direct link: https://dbdmg.polito.it/dbdmg_web/wp-
content/uploads/2023/04/Lab1_BigData_with_libraries_vscode.zip).

Decompress the zip file inside a local folder on the PC of the LAB or on your PC.

Here, you will find the steps necessary to import the project in VSCode. If you need a more
complete guide on how to use VSCode throughout this course, you can find it here.

If you are using your own PC, verify that the Java extension is correctly installed on VSCode
and import the project in your IDE. Finally, you will learn how to compile and export your
application as a jar file.

1. Open VSCode
2. (Optional) Go under Extension tab and check whether “Extension Pack for Java” is

https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2023/04/Lab1_BigData_with_libraries_vscode.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2023/10/BigData_labs-VSCode_guide.pdf

2

installed
3. If not installed, you can click on the “Install” button in the page associated to the

extension.

4. Simply Open the folder containing the project under File -> “Open folder…” or “Open

folder…” in the initial screen. VSCode will automatically detect whether it’s a pure-
Java project or Maven-based.

5. Have a look at the source files and the structure of the project. Where is the mapper?

Where is the reducer?

6. Under the JAVA PROJECTS tab (bottom-left), check if the JRE System Library is set
to JAVASE-1.8. If not, click on the three dots next to "JAVA PROJECTS" (More
Actions), select the "Configure Java Runtime" option, and, finally, set the "Java
Version" field to Java 8/1.8.

7. Since we cannot use maven on the PC of the LAB, we cannot count on it to

generate the jar file. You can instead build a jar manually using the “Export
jar…” command, as in the following steps. Remember to avoid inserting all the
libraries in your jar, or you would end up producing a fat jar heavy to transfer.

We need these libraries locally to compile, but they are already present in the
classpath of the cluster and there is no need to include them in the jar again.

a. In the lower-left part of VSCode, in the Java Project menu, select the

Export Jar button (right arrow symbol)

3

b. In the upper area, in the center, VSCode, will ask you to choose the
main class for your project. Select <without main class>

c. Next, you will be prompted to add all the files that your jar file should
contain. You can keep only the content of “bin” folder (since libraries

are already present on our cluster).
d. You will find the jar file in the main folder of your project. You can

upload such jar file directly on jupyter.polito.it cluster

2. Upload your application on BigData@Polito

The objective of this task is to upload your application on the cluster BigData@Polito.

1. Connect to https://jupyter.polito.it
2. Upload the jar file containing your application on the local file system of the gateway

3. Manage HDFS through the HUE web interface

In this task, you will learn how to do basic management of the HDFS file system. To this
goal, we will use a web interface called HUE.

1. Go to https://hue.polito.it/ and login with your usual BigData@Polito credentials.

https://jupyter.polito.it/
https://hue.polito.it/hue

4

2. Go to the “Browsers/Files” tab. You should find your HDFS home, as shown below.

Note that this is not the same file system as in task 2 (i.e., it is not the local file

system of the gateway), so you will find probably an empty folder now.1

Your HDFS home is not located on the gateway, but is stored in the Hadoop cluster.

3. Create the folder example_data on HDFS

4. Upload the sample files from the local folder example_data available on your PC to

the folder example_data on HDFS.

5. Find out on your own how to delete/move the files, or download them. It will be

helpful in the next labs.

4. Submit a job

Now we have everything we need to submit our sample application. It is finally time to open
a shell.

1. Connect to https://jupyter.polito.it

2. Open a terminal clicking on “Terminal” inside the Launcher area.

1
 If the difference between the two “homes” is not clear to you at this point, do not keep on. Spend

some time to clarify your ideas.

https://jupyter.polito.it/

5

3. Now that you have a terminal on the gateway, launch a MapReduce job (i.e., run

your application on the cluster) using the following command (which must be

specified in single line, i.e., do not press enter after “Exercise1-1.0.0.jar”!):

hadoop jar Exercise1-1.0.0.jar
it.polito.bigdata.hadoop.DriverBigData 2 example_data ex1_out

where:
- “Exercise1-1.0.0.jar” is the JAR file containing your application

- “example_data” is the input HDFS folder. A relative path starts in your home in

HDFS. You can also use an absolute path in HDFS.

- “ex1_out” is the output folder in HDFS, not on the gateway local file system. You

can see its content in HUE (a relative path starts in your home in HDFS)

4. Check the number of mappers (i.e., the number of instances of the mapper class)

- You can retrieve the information about the number of mappers (map tasks) and

other statistics in the information showed on the terminal during the execution of

your application (last part of the showed information).

5. Find your job from the command line. You have two alternative options available:

a. Find the applicationId directly from the output of hadoop command (point 3):

6

b. On the terminal type the following command: yarn application -list

and find the applicationId associated to your job (by finding your username).

6. Retrieve the logs as stated in the “Retrieve the logs” section in this document

7. Try to re-run the same job. Does it succeed this time? What’s the problem?

- To remove a folder from HDFS, you can use HUE or you can use the hdfs

command line tool executing the following command in the terminal you opened

on jupyter.polito.it:

hdfs dfs -rm -r <path of the HDFS folder you want to delete>

8. Run again the application on the cluster by changing the number of reducers (first

parameter of the application) and analyze the content of the output folder of the

HDFS file system.

Retrieve the logs
If you need to access the log files associated with the execution of your application by using
the command line, use the following commands in the terminal of jupyter.polito.it:

1. To retrieve the log associated with the standard output

◦ yarn logs -applicationId <id of your application> -log_files stdout

▪ The “id of your application” is printed on the terminal at the beginning of the
execution of your application

 The format of “id of your application” is application_number_number

 Example of “application id” application_1584304411500_0009

▪ You can retrieve the application id also from the HUE interface

◦ The returned result contains one stdout log section for each task (driver, map and
reduce tasks)

▪ One for the Driver

▪ One for each Mapper

▪ One for each Reducer

2. To retrieve the log associated with the standard error

◦ yarn logs -applicationId <id of your application> -log_files stderr

Test on a bigger file
Now you will execute your application on a larger file that we already uploaded on the HDFS
file system of BigData@Polito.
The absolute path of that file in HDFS is the following:
 /data/students/bigdata-01QYD/Lab1/finefoods_text.txt
It is a large collection of Amazon reviews in the food category. Each line of finefoods_text.txt
contains one review.

1. Launch your application on the Amazon review file:

a. Set the second parameter of your application to
/data/students/bigdata-01QYD/Lab1/finefoods_text.txt

2. Analyze the results.
a. Can you understand any interesting facts from your results?
b. Do you see any space for improvements in your analysis?

3. The following figure was done on a small sample of your data (10000 reviews).
a. Is it consistent with what you found on the complete dataset?
b. Do you think a small sample is enough to represent the whole?

7

5. Bonus track

A word count can be seen as a special case of an n-gram count, where n is equal to 1.
n-grams, in our context, are sets of contiguous words of length n.

For example, in the sentence “She sells seashells by the seashore“, 2-grams are: “She
sells”, “sells seashells”, “seashells by”, “by the”, “the seashore”.

Modify your word count program to count 2-grams frequencies. Consider each line of text as
a separate document, as in the Amazon reviews file (so, do not count as contiguous words
on separate lines).

1. What is the complexity of your program?
2. How long would you expect it to run, compared to the simple word count?
3. Try to run it on the toy text and on the Amazon reviews.

Shut down JupyterHub container
As soon as you complete all the tasks and activities on JupyterHub environment,

please remember to shut down the container to let all your colleagues in all the sessions

connect on JupyterHub and do all the lab activities.

1. Go into File -> Hub Control Panel menu
2. A new browser tab opens with the “Stop My Server” button. Click on it and

wait till it disappears.

8

1.

2.

Click the “Stop My

Server” button

