
- Introduction
- Definitions
- References between relations
- Incomplete information
- Integrity constraints
- Primary key
- Tuple constraint and domain constraint
- Referential integrity constraint

Introduction

Intuition

- Proposed by E. F. Codd in 1970 to support higher abstract levels compared to the previous models
 - data independence
- Made available in commercial DBMSs in 1981,
 - today it is the main model exploited in commercial DBMSs
- Based on the mathematical concept of *relation*
 - each relation is represented in an informal way by means of a table

Example

Courses

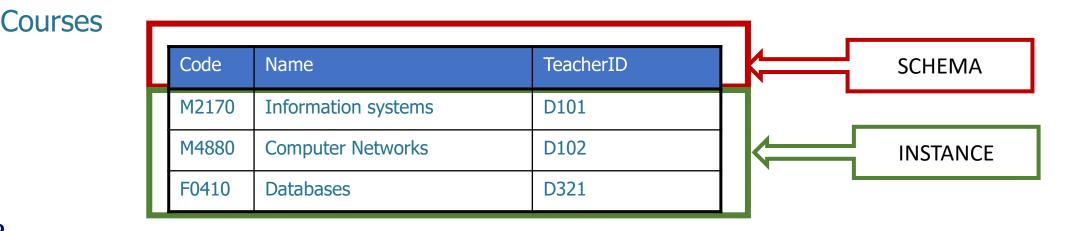
Code	Name	TeacherID
M2170	Information systems	D101
M4880	Computer Networks	D102
F0410	Databases	D321

Teachers	ID	Name	Department	Phone#
	D101	Green	Computer Engeneering	123456
	D102	White	Telecommunications	636363
	D321	Black	Computer Engeneering	414243

Definitions

Definitions

		attributes	
Courses	Code	Name	TeacherID
1	M2170	Information systems	D101
	M4880	Computer Networks	D102
À	F0410	Databases	D321



domain: set of identifiers of the courses held at the Politecnico

Attribute	 Name of a table column
Domain	• The set of values that can be assumed by an attribute
N-tuple (or tuple)	• Table row
Cardinality	 Number of n-tuples in a relation
Degree	 Number of attributes in a relation

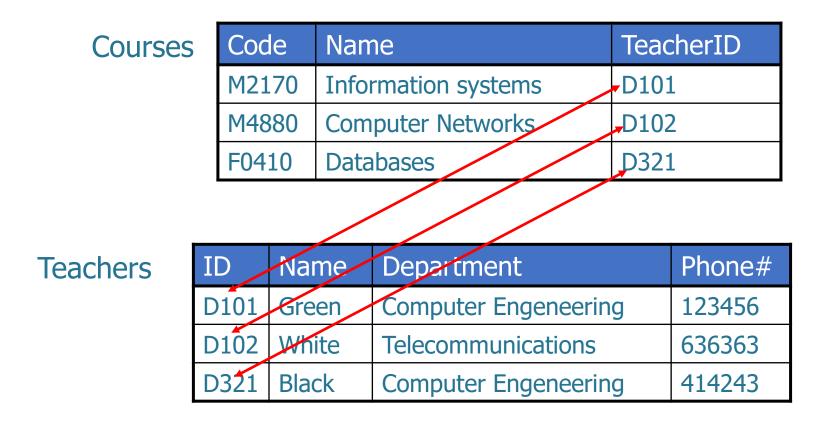
Definitions

- Schema: describes the structure of the data
 - virtually invariant over time
 - is represented by the header of each table (table name and column names)
- *Instance:* consists of the contents of each table, i.e., the actual values of the data
 - variable over time, even very quickly
 - is represented by the rows of the tables

Properties

- Tuples (rows) *are not* ordered
- Tuples are *distinct* among them (there are no duplicated rows)
- Attributes are not ordered
 - it is not possible to identify an attribute by means of its position

References between relations



References between relations

- The relational model is *value-based*
 - references between data in different relations are represented by means of values of the domains
- Advantages:
 - independent of the physical structure
 - only information that is relevant from the application point of view is stored
 - data can be easily transferred across different systems
 - differently from pointers, the link is not oriented

Value-Based Reference: Example

Pointer-based reference: Example

Black

D321

Courses

	Code	Name		TeacherID	
	M2170	Informa	tion systems	_	þ
	M4880	Comput	Computer Networks		╟
	F0410	Databas	Ses	_	╟
Teacher	s ID	Name	Department	Phone#	
	D101	Green	Computer Engeneerin	ng 123456 -	μ
	D102	White	Telecommunications	636363 🔶	

Computer Engeneering

414243

Null values

Incomplete information

- Some information could be not available for all the tuples in the relation
- Example:

Student (StudentID, Surname, BirthDate, Phone#, DegreeYear)

- the phone number could be (temporarily?) unknown
- for students who have not yet graduated, year of degree is not defined

Null values

- To represent lack of information we could use a special value belonging to the domain (0, empty string, 999, ...)
 - an "unused" value is required (example: DegreeYear=0, Phone#=?)
 - "unused" values could become meaningful (Phone#= 999999)
 - it is necessary to deal separately with "special" values in different applications
- This representation is not adequate

Null value

- Special value named *null value* (NULL)
 - it is not a value of the domain
 - it denotes both the absence of a domain value and a value not defined
 - it must be used with caution (example: StudentID=NULL?)
- <u>Notation</u>: attributes that can have a null value (NULL) are often highlighted with superscript * in the relationship schema

ID	Name	Department	Phone#*
D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	NULL
D321	Black	Computer Engeneering	414243

Primary keys

Unique identification for tuples

Students

StudentID	Name	Surname	BirthDate	EnrollementYear
64655	Mike	Red	4/8/1978	1998
81999	Paul	White	4/8/1978	1999
75222	Marco	Red	8/3/1979	1998

- There are no pairs of students with the same value for the StudentID
 - the StudentID uniquely identifies students
- There are no pairs of students with the same values for personal data
 - name, surname and birth date uniquely identify students

Key

- A *key* is an attribute set that uniquely identifies tuples in a relation
 - it is a property of the relational schema
- Formal definition: a set K of attributes is a key in a relation r if
 - the relation r does not contain a pair of distinct tuples with the same values for K (uniqueness)
 - K is minimal (there exists no subset K' of K that is still unique)

Example

• The attribute

{StudentID}

is unique and minimal, thus it is a key

• The attribute set

{Name, Surname, BirthDate}

is unique and minimal (none of its subsets is unique), thus it is a key

Superkey

- A set K of attributes is a key in a relation r if
 - The relation r does not contain a pair of distinct tuples with the same values for K (uniqueness)
 - K is minimal (there are not proper subsets of K still unique)
- If only the first property is satisfied, K is a *superkey* of r

• The attribute set

{StudentID,Name}

is unique, but not minimal (the StudentID is unique), thus the attribute set is a superkey, but it is *not* a key

• The attribute set

{BirthDate, EnrollementYear}

is unique and minimal: is it a general property?

Primary key

- If a key can assume the NULL value, it cannot be a key (the uniqueness property is lost)
 - it is mandatory to avoid the NULL values in the keys
- Solution:
 - A reference key, which does not allow null values, is defined and set as primary key
 - The other keys (candidate keys) can assume null values
 - References between data in different relations are defined by means of the primary key

Primary key

• <u>Notation:</u> The attributes that make up the primary key are often highlighted by underlining in the relationship schema

ID	Name	Department	Phone#*
D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	NULL
D321	Black	Computer Engeneering	414243

Integrity constraints

Integrity constraints

- Integrity constraint: property that must be satisfied by all correct instances of the database
- Types of constraints:
 - Intra-relational constraints
 - defined on the attributes of a single relationship (e.g.: uniqueness constraints, domain constraints, and tuple constraints)
 - Inter-relational constraints
 - defined on multiple relationships at the same time (e.g.: referential integrity constraints)

Uniqueness Constraints: Example

Teachers

Courses	Code	Name	TeacherID
	M2170	Information systems	D101
	F0410	Computer Networks	D102
	F0410	Databases	D321
			•

ID	Name	Department	Phone#
D101	Green	Computer Engineering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engineering	414243

Domain Constraints

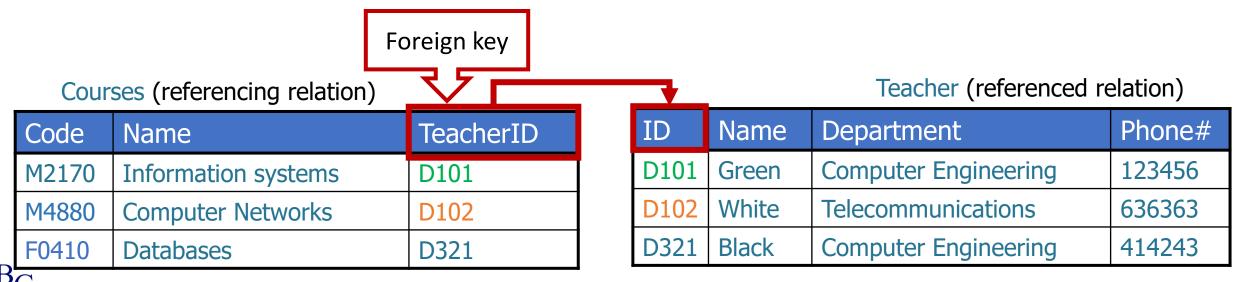
- Domain Constraint
 - expresses conditions on the value assumed by a single attribute of a tuple
 - it can be a Boolean expression (and, or, not) of simple predicates
 - example: Grade > 0 and Grade 30

Exam

<u>StudentID</u>	Grade
S1234	23
S4321	28
s4321	40
	S1234 S4321

Tuple constraint

- Tuple constraint
 - expresses conditions on the values of each tuple, indipendently of other tuples
 - it can correlate many attributes
 - it can be a Boolean expression (and, or, not) of simple predicates (e.g., comparison between attributes, between an attribute and a constant)
 - examples :
 - Price = Cost + TaxPerc*Cost


Exam

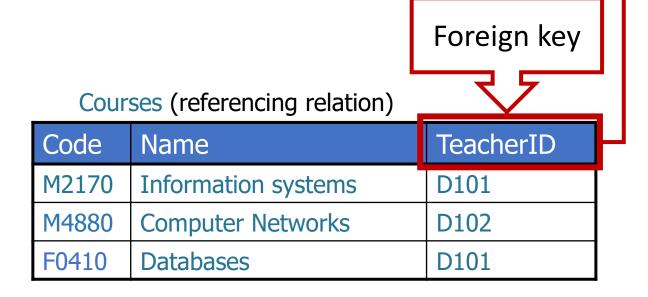
• CumLaude = True if Grade = 30

<u>CourseID</u>	<u>StudentID</u>	Grade	CumLaude
M2170	S1234	23	False
M4880	S4321	30	True
F0410	s4321	26	True

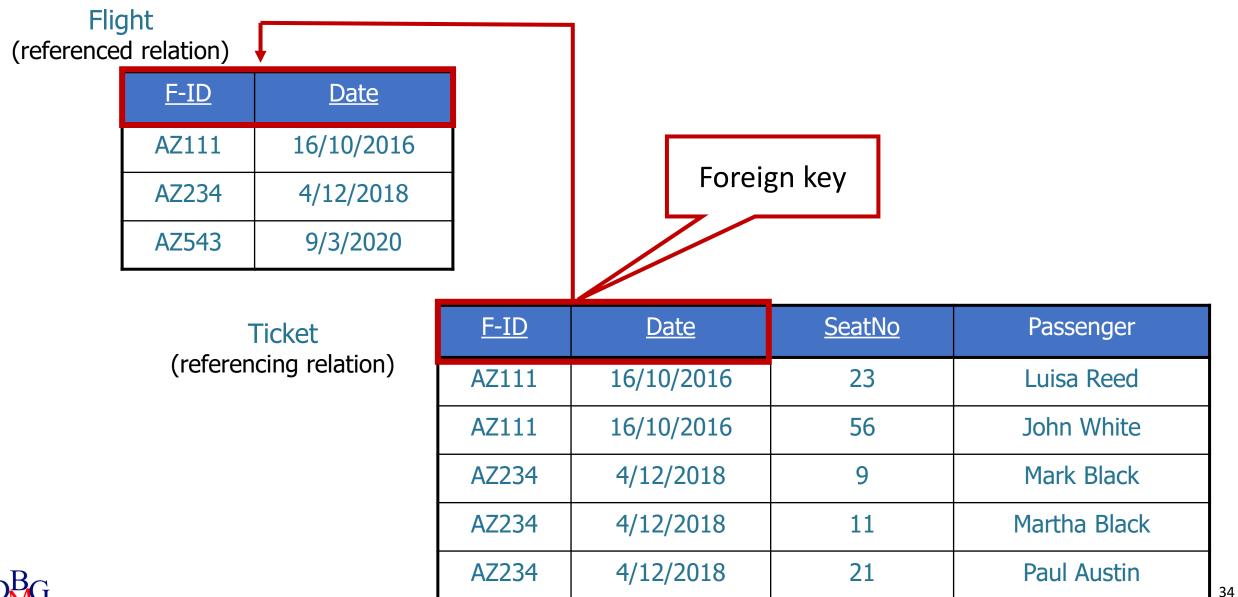
- Information in different relationships is related through common values of one or more attributes
 - the TeacherID attribute in the Courses relation (referencing relation) refers to the StudentID attribute in the Teacher relation (referenced relation)
 - the values assumed by the TeacherID attribute in the Courses relation can only be values taken by the ID attribute, the primary key of the Teacher relation
 - the TeacherID attribute in the Courses relation is the foreign key of Courses

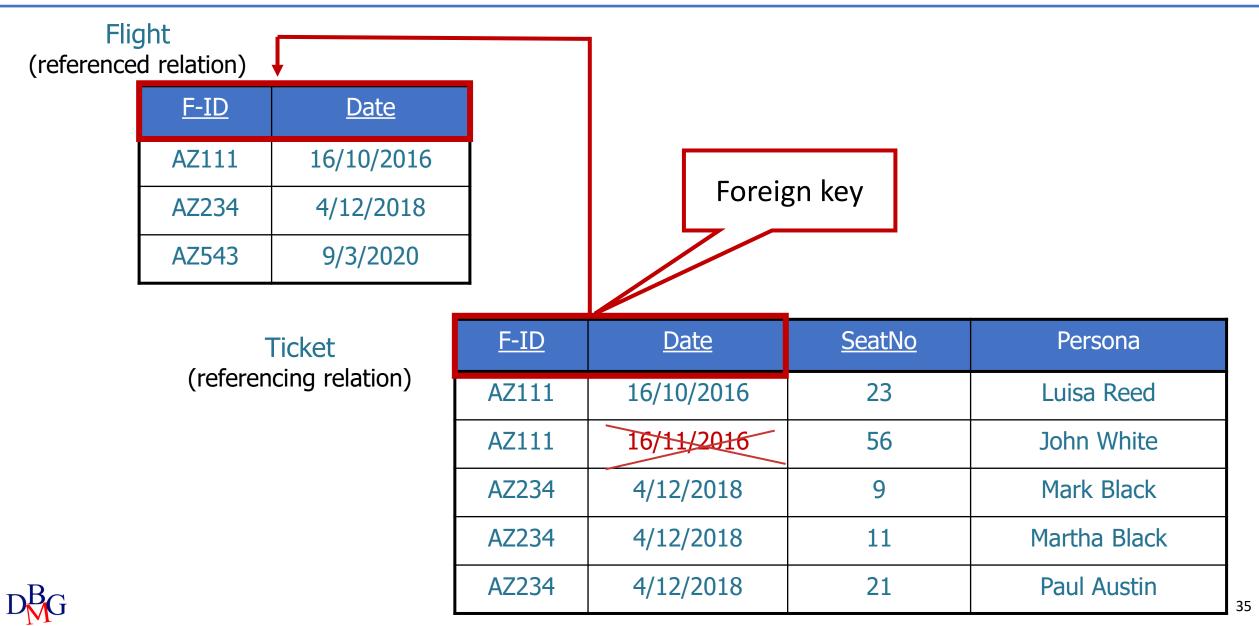
Referential integrity constraint

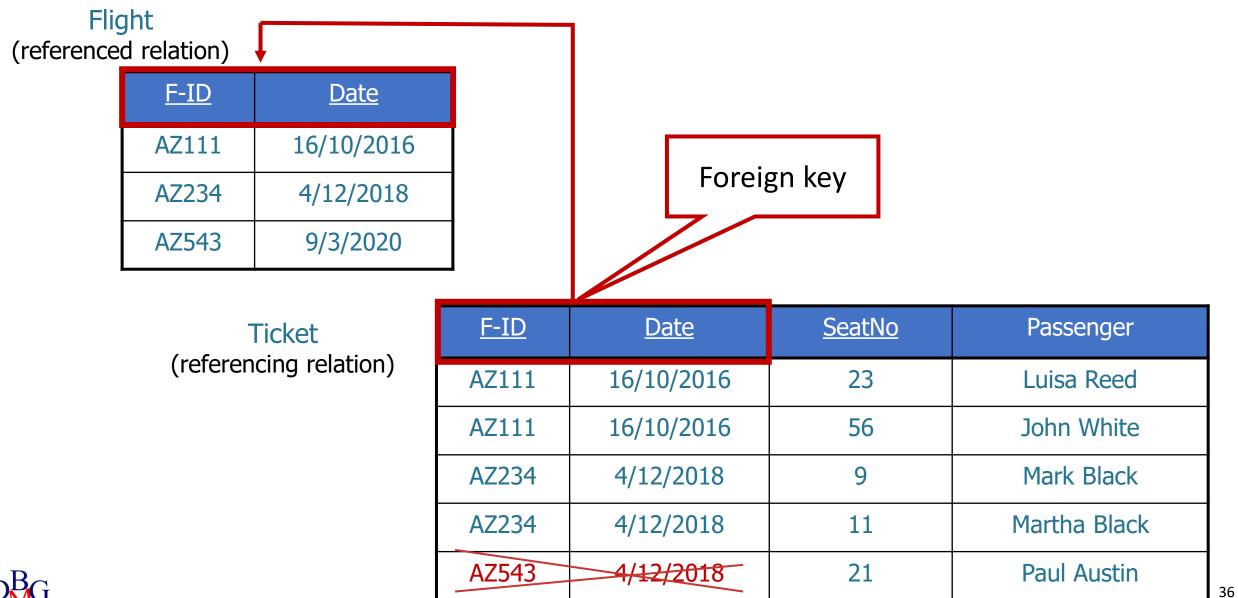
- Given two relations:
 - R (referenced/external relation)
 - S, that refers R through a set X of attributes (referencing/internal relation)


values on a set X of attributes in a relation S can be exclusively values for the primary key of the relation R

- The set X of attributes in S represents its foreign key
- Referential integrity constraints are imposed in order to guarantee that the values in the referencing relation refer to actual values in the referenced relation (the relational model is value-based)




Teacher (referenced relation)


t			
ID	Name	Department	Phone#
D101	Green	Computer Engineering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engineering	414243

						 SP	F	oreign	ke
П	<u>PId</u>	PName	Color	Size	Store	Ĕ			
Ρ	P1	Jumper	Red	40	London	<u>Sld</u>	<u>Pld</u>	Qty	
	P2	Jeans	Green	48	Paris	S1	P1	300	
	P3	Blouse	Blue	48	Rome	S1	P2	200	
	P4	Blouse	Red	44	London	S1	P3	400	
	P5	Skirt	Blue	40	Paris	S1	P4	200	
	P6	Shorts	Red	42	London	S1	P5	100	
S				!!		S1	P6	100	
		SNomo	#Empl		City	S2	P1	300	
	<u>SId</u>	SName	#Empl		City	S2	P2	400	
	S1	Smith	2		London	 S 3	P2	200	
	S2	Jones	1		Paris	S4	P3	200	
	S3	Blake	3	0	Paris	S4	P4	300	
	S4	Clark	2	0	London	S4	P5	400	
	S 5	Adams	3	0	Athens	•			

							SP	Fo	oreign	ke
Ρ	<u>Pld</u>	PName	Color	Size	Store		Ĕ		_	
Ρ	P1	Jumper	Red	40	London		<u>Sld</u>	<u> </u>	Qty	
	P2	Jeans	Green	48	Paris		S1	P1	300	
	P3	Blouse	Blue	48	Rome		S1	P2	200	
	P4	Blouse	Red	44	London		S1	P3	400	
	P5	Skirt	Blue	40	Paris		S1	P4	200	
	P6	Shorts	Red	42	London		S1	P5	100	
S				!!			S1	P6	100	
		SNomo	#Empl		City		S2	P1	300	
	<u>SId</u>	SName	#Empl		City		S2	P2	400	
	S1	Smith	2		London	_	S 3	P2	200	
	S2	Jones	1		Paris		S4	P3	200	
	S3	Blake	3	0	Paris	_	S4	P4	300	
	S4	Clark	2	0	London		3 8	P5	400	
	S 5	Adams	3	0	Athens			. •		

		_					SP	Fo	oreign
	<u>Pld</u>	PName	Color	Size	Store				_
)	P1	Jumper	Red	40	London		<u>Sld</u>	<u>Pld</u>	Qty
	P2	Jeans	Green	48	Paris		S1	P1	300
	P3	Blouse	Blue	48	Rome		S1	P2	200
	P4	Blouse	Red	44	London		S1	P3	400
	P5	Skirt	Blue	40	Paris		S1	P4	200
	P6	Shorts	Red	42	London		S1	P5	100
5				<u> </u>			S1	PK	100
	SId	SName	#Empl		City		S2	P1	300
			#Empl		City		S2	P2	400
	S1	Smith	2		London		S3	P2	200
	S2	Jones	1		Paris	_	S4	P3	200
	S3	Blake	3	0	Paris	_	S4	P4	300
	S4	Clark	2	0	London		S4	P5	400
	S 5	Adams	3	0	Athens		•	. •	

