Restructuring the ER model

Restructuring the ER model

Logical Design

- Introduction
- Restructuring of the Entity-Relationship schema
- Removing generalizations
- Partitioning of concepts
- Removing multivalued attributes
- Removing composed attributes
- Selection of primary identifiers

Logical design steps

2

Restructuring the ER model

- The restructured ER model takes into account implementation aspects
 - It is no longer a conceptual model
- Objectives
 - To eliminate constructs for which there is no direct representation in the relational model
 - To transform the data representation in order to increase the efficiency of data access operations

Restructuring tasks

- Eliminating composite attributes
- Eliminating multivalued attributes
- Eliminating generalizations
- Analysis of redundancies
- Partitioning concepts (Entities, Relationships)
- Choosing primary identifiers

Eliminating composite attributes

Restructuring the ER model

Eliminating composite attributes

- Composite attributes are not representable in the relational model.
- Attributes can be deleted by:
 - separately representing individual sub-attributes
 - if you need to access each attribute separately
 - Introducing a single attribute that represents the concatenation of the composite attributes
 - if access to the overall information is sufficient

Option 1: separate attributes

Option 2: single attribute

Eliminating multivalued attributes

Restructuring the ER model

Eliminating multivalued attributes

- They cannot be represented in the relational model
- Multivalued attributes are represented using a relationship between:
 - the initial entity
 - a new entity
- Pay attention to the cardinality of the new relationship

Shared information

A person can have more than one educational qualification and that the same educational qualification can be held by several people

Shared information: *Has_qualification* cardinality

Shared information: *Has_qualification* cardinality

A person can have more than one educational qualification and that the same educational qualification can be held by several people ¹³

Unique information

A person can have more than one telephone number, but a given telephone number can be held only by one person

Unique information: *Has_telephone* cardinality

Unique information: *Has_telephone* cardinality

A person can have more than one telephone number, but a given telephone number can be held only by one person

Removing generalizations

Restructuring the ER model

Removing generalizations

- The relational model does not allow direct representation of generalizations of the ER model
 - We need, therefore, to trasform these into entities and relationships
- Possible methods:
 - Child entities merged into parent entity
 - Parent entity merged into child entities
 - Generalization translated into relatioships

Merging child entities into the parent entity

Attributes of child entities

Relationships with child entities

The «Type» attribute

• The Type attribute indicates the original entity (doctor or volunteer) to which each occurrence of the parent entity (staff) belongs

Merging child entities into the parent entity

- Can be used for all types of generalization
 - in case of overlapping entities, many combinations are possible as Type values, e.g., skier and sailor

Back to the example

Merging the parent into the child entities

Attributes of the parent entity

Relationships with parent entity

• Relationships with the parent entity need to be split

Cardinality of Works in relationship

Merging the parent into the child entities

- Cannot be used for **partial** generalizations
 - however, generalizations can be transformed from partial to total by adding a new entity Others
- Cannot be used for **overlapping** generalizations
 - due to duplicate identifiers

Back to the original example

Child entities' identifier

Cardinality of *is a* relationship

Generalization translated into relationships

- This solution is more general and can be used for all generalizations
 - But it may be expensive to reconstruct the original data

Assessment of alternatives

- Merging child entities into parent entity is appropriate when:
 - access operations apply to instances and attributes of child and parent entitites more or less in the same way (optimize data access)
 - child entities are mildly differentiated (few null values)
- Merging parent entity into child entities is appropriate when:
 - the generalization is total
 - there are operations that refer only to specific child entities and therefore it is useful to distinguish between different child entities (optimize data access)
- "Mixed" representations are also possible:
 - there are operations that refer only to instances of some child entities (optimize data access)
- In the presence of hierarchical generalization, apply the same procedure, starting from the lower levels

Redundancy analysis

Restructuring the ER model

Redundancy analysis

- They represent information that is relevant to the application, but can be derived from other concepts
 - it must be decided whether to keep them
- Effects of redundancies on the logical schema
 - simplifying and speeding up queries
 - increased complexity and slower updates
 - increased storage requirements

Redundant attribute example

- The Avg_grade attribute is redundant:
 - Useful for speeding up queries that require calculating the average of students' grades
 - if preserved, the relational schema must be supplemented with proper documentation that the attribute is redundant (and derivation rules)

Partitioning concepts

Restructuring the ER model

Partitioning of concepts

- Partitioning of entities and relationships
 - better representation of different concepts
 - separating attributes of the same concept that are accessed by different operation
 - improve the efficency of the operations

Entity partitioning

Relationship partitioning

Choosing Primary Identifiers

Restructuring the ER model

Selection of primary identifiers

- It is necessary to define the relation *primary keys*
- The criteria for this decision are as follows
 - Attributes with **null** values **cannot** form primary identifiers.
 - Just **one** (better) or **few** attributes
 - An internal identifier is preferable to an external one
 - It is used by many operations to access the occurrences
 - It may be useful to introduce an additional attribute to represent the entity, often called code or ID, e.g. «ProductCode»

