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Stages of Explainability

Explainability involves the entire AI development pipeline 

2

Post-modelling 
explainability

Explainable 
modeling

Pre-modelling 
explainability

Before building the model
• Data exploration
• Data selection
• Feature engineering

Build inherently 
interpretable models
• Manage the accuracy and 

interpretability trade-off

After model development
• Explaining predictions 

and behavior of trained 
models



Stages of Explainability –
Explainable modelling
Design, train and adopt more interpretable/explainable models

• Adopting an inherently explainable models
• does not automatically guarantee explainability (e.g., deep trees, linear models on 

high dimensional data)
• Problem of explainability vs performance trade-off: interpretable models are 

typically less performing
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Lakkaraju et al. "Interpretable decision sets: A joint 
framework for description and prediction." KDD 2016

Caruana  et al. "Intelligible Models for HealthCare: 
Predicting Pneumonia Risk and Hospital 30-day 
Readmission." KDD 2015

Decision sets - RulesGAMs, GA2Ms, GLMsTrees Linear models
𝛽! + ∑" 𝛽"𝑥"

Concept-based models

Koh, Pang Wei, et al. "Concept bottleneck 
models." ICML 2020.



Decision trees

• Simple supervised models used for both 
classification and regression tasks.

• Tree-like structure

• Each internal node represents a decision 
based on a feature

• Each leaf node represents the outcome or 
the decision
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Structure - Decision trees

Structure

• Root Node: topmost node where the first 
decision is made

• Decision or Inner Nodes: Nodes that 
represent decisions or tests on attribute

• Edges: possible outcomes of a decision

• Leaf Nodes: terminal nodes that provide 
the final decision
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Building a Decision Tree

1. Begin with the entire dataset at the root node

2. Select best splitting attribute and value based on a splitting criterion (e.g., Gini 
Impurity).

3. Partition the dataset into subsets based on the values of the selected attribute.

4. Recursively apply steps 2 and 3 to each subset until one of the following conditions is 
met:
• All instances in the subset belong to the same class.
• No more attributes to split on.
• Stopping criteria (e.g., maximum depth, minimum leaf samples per leaf) are met.

5. Assign a class label to each leaf node based on the majority

attribute

yes no
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Decision trees interpretability

• Decision trees offer both

• Global interpretability
• Local interpretability
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Global interpretability for Decision trees

Global interpretability focuses on understanding the overall behavior and workings of the 
model across the entire dataset. 

• Tree Structure
• Decision rules from the tree
• Feature Importance
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Global interpretability for Decision trees

Tree structure 

Analyze the decision paths of the tree models
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Global interpretability for Decision trees

Decision rules from the tree

10

width<0.9 à setosa
width in [0.8, 1.7], length<4.9 à versicolor
width in [0.8, 1.7], length>4.9 à virginica
width > 1.7], length>4.9 à virginica

For some users, rules are more easy to understand
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Global interpretability for Decision trees

Feature Importance 
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Feature Importance for Decision Trees

Multiple ways to compute the feature importance

• Impurity-based feature importance
• The importance of a feature is the (normalized) total reduction of the impurity 

criterion obtained by using that feature for splitting
• Also known as GINI importance

• Depth-based Importance
• Higher importance to features that appear closer to the root node

• Path-based Importance
• Features that appear more frequently in the tree have higher important
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Impurity-based feature importance

Based on the notion of impurity, e.g., Gini Index

Gini Index for a given node t:

where 𝑝 𝑗|𝑡 is the relative frequency of class j at node t
• Maximum (1 - 1/nc ) when each class occurs with equal probability, implying higher 

impurity degree 
• Minimum (0.0) when all instances belong to one class, implying lower impurity degree

13

𝐺𝐼𝑁𝐼 𝑡 = 1 −+
%

[𝑝 𝑗|𝑡 ]^2

# Class 1: 10
# Class 2: 10

t

# Class 1: 20
# Class 2: 0

t GINI = 0

GINI = 0.5



Impurity-based feature importance

The importance of a feature is computed as the (normalized) total reduction of the impurity 
criterion obtained by using that feature for splitting. 

Computation

• For each split, measure how much it has reduced the impurity (e.g., Gini index) compared to 
the parent node
• Difference in impurity between the parent node and its child nodes
• Weight the difference by the number of samples in each node
• Increment the total importance of the attribute used for the splitting by this importance

• Scale the sum of all importance in the scale 0-1
• Each feature importance indicates its relevance to overall model importance.
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Impurity-based feature importance

Global interpretability
Global importance of each attribute
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Local interpretability for Decision trees

Local interpretability refers to understanding the behavior and predictions of the model for 
individual instances. 
It explain why a particular prediction is made for a specific input.

• Path Explanation: tracing the decision path from the root node to the leaf node for an 
instance
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Example

Instance
Petal width = 1.1, petal length=5, sepal width = 1, sepal 
lenght=1

Decision Path
Petal width<0.8 = False, petal width <1.7 = True, Petal 
legth < 4.9 = False

Local interpretability for Decision trees
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Advantages of Trees

• Offer multiple insights
• Global interpretability
• Local interpretability
• + Subgroup. Each path actually covers a subset of the data. Easier to understand than 

individual points

• (Generally) Easy to interpret, also globally
• Human-friendly explanations, the interpretation is simple

• Tree structures offers a build-in visualization, enhance understanding
• Facilitates communication with non-technical stakeholders
• Being interpretable, users can assess if they can trust the model
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Limitations of Trees

• Low accuracy compared to more complex model
• Interpretability accuracy trade-off

• Decision trees are very interpretable – if they are small!
• Few splitting nodes
• Low depth
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Decision rules

Classify instances by using “if…then…” rules 

• Rule: (Condition) → y where 
• Condition is a conjunction of simple predicates
• y is the class label

• Rule extraction
• Rule Induction Algorithms

• e.g., CN2 or RIPPER, explicitly generate rules from the training data based 
• Associative classifiers
• From decision trees
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Decision rules

• Decision list
• Ordered decision rules 
• Prediction based on the first rule satisfying the instance

• Decision set
• Independent rules 
• Rules are mutually exclusive, or there is a strategy for 

resolving conflicts, such as majority voting

21Lakkaraju et al. "Interpretable decision sets: A joint 
framework for description and prediction." KDD 2016



Global Interpretability for Decision rules 

• Analyze rules themselves
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Global Interpretability for Decision rules 

• Feature importance
• Features that appear in multiple decision rules are likely to be more important
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Local Interpretability for Decision rules 

• Analyze individual rule satisfying the instance
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Advantages of Rules

• Offer multiple insights
• Global interpretability
• Local interpretability
• + Subgroup. Each rule actually covers a subset of the data

• (Generally) easy to interpret, also globally
• Human-friendly explanations, the interpretation is simple

• Expressive as tree, but more compact
• Some users find them more interpretable than trees

• Facilitates communication with non-technical stakeholders
• Being interpretable, users can assess if they can trust the model
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Limitations of Rules

• Often require categorical data
• Numerical feature should be discretized

• Low accuracy compared to more complex model
• Interpretability accuracy trade-off

• Rules are very interpretable – if they are compact!
• Few rules
• Short rules



Linear regression

A linear regression model predicts the target as a weighted sum of the feature inputs. 

Interpret the Coefficients
• The coefficients β! represents the change in the dependent variable for a one-unit change in 

the corresponding independent variable, holding all other variables constant.
• i.e., Increasing x! by one unit changes the estimated outcome by its β! .

• If β! is positive, it indicates that as x! increases, 𝑦 also increases.
• If β! is negative, it indicates that as x! increases, 𝑦 decreases.

• The intercept β! represents the value of the dependent variable when all independent 
variables are set to zero.
• In some cases, the interpretation might not be meaningful, especially if zero doesn't have a 

practical meaning for the variables. 27

𝑦 = β! + β#𝑥# +β$𝑥$+. . +β%𝑥%



Example - Interpreting Linear Regression

Goal. Predict the salaries of individuals based on their years of experience and level of education. 
We want to build a linear regression model to predict salaries based on these two variables.

Model. 

𝛽" = 40000, 𝛽# = 3000, 𝛽$ = 2000

• Intercept : A person with zero years of experience and zero years of education would have a predicted salary 
of $40,000. 

• For each additional year of experience, the predicted salary is expected to increase by $3000, holding the 
level of education constant.

• For each additional year of education, the predicted salary is expected to increase by $2000, holding years of 
experience constant. 
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𝑆𝑎𝑙𝑎𝑟𝑦 = 𝛽! + 𝛽#×𝑌𝑒𝑎𝑟𝑠 𝑜𝑓 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝛽#×𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛



Inherently explainable models
Logistic regression
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𝑃(𝑦 = 1) =
1

1 + exp(−(β! + β#𝑥# + β$𝑥$+. . +β%𝑥%))

𝑦 = β! + β#𝑥# +β$𝑥$+. . +β%𝑥%
logistic(𝑥) = #

#&'()(+,)



Logistic regression

Log odds

ln
𝑃 𝑦 = 1

1 − 𝑃 𝑦 = 1 = ln 𝑂𝑑𝑑𝑠 = β" + β#𝑥# + β$𝑥$+. . +β%𝑥%

• The coefficients represent the change in the log odds of the event occurring for a one-
unit change in the corresponding predictor variable, holding all other variables constant.
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𝑃(𝑦 = 1) =
1
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Logistic regression

𝑃 𝑦 = 1
1 − 𝑃 𝑦 = 1 = 𝑂𝑑𝑑𝑠 = exp(β" + β#𝑥# + β$𝑥$+. . +β%𝑥%)

We compare what happens when we increase one of the feature values by 1. 
We look at the ratio of the two predictions:

• If we increase the value of feature 𝑥& by one unit, the estimated odds change by a factor 
of exp(β&)
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𝑂𝑑𝑑𝑠,!&#
𝑂𝑑𝑑𝑠,!

=
exp(β! + β#𝑥# +. . +β. (𝑥.+1)+. . +β%𝑥%)
exp(β! + β#𝑥# +. . +β.𝑥.+. . +β%𝑥%)

= exp β.(𝑥.+1 − β.𝑥.) = exp(β.)



Example - Logistic regression

Let's consider a hypothetical example where we want to predict the likelihood of a student 
passing an exam based on the number of hours they studied and whether they attended a 
preparatory course. 

𝛽" = -2, 𝛽# = 0.8, 𝛽$ = 1.2

• For every additional hour studied, the odds of passing the exam increase by 
approximately 2.22 (≈ e^0.8) times.

• Students who attended a preparatory course have odds 3.32 (≈ e^1.2) times higher of 
passing the exam compared to those who did not attend the preparatory course, holding 
the hours studied constant.
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𝑃(𝑦 = 1) =
1

1 + exp(−(β! + β#𝐻𝑜𝑢𝑟𝑠 𝑆𝑡𝑢𝑑𝑖𝑒𝑑 + β$𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑦 𝐶𝑜𝑢𝑟𝑠𝑒))



Advantages of Linear/Logistic Regression

• Simple Interpretation
• Via coefficients

• Provide variable importance
• Via the magnitude and sign of the coefficients 
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Limitations of Linear/Logistic Regression

• Low accuracy compared to more complex model
• Interpretability accuracy trade-off

• Limited to Linear Decision Boundaries
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Interpreting Naïve Bayes

• Feature Importance
• Given by the conditional probabilities of features given the class labels.

• For each class, Naive Bayes calculates the probability of each feature occurring given 
that class. Higher probabilities indicate that the feature is more indicative of that 
class.
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𝑃 𝐶/|𝑥 =
1
𝑍 P C0 L

"1#

2

𝑃(𝑥"|𝐶/)



Advantages and Disadvantages of Naïve Bayes

Advantages
• Simple and easy to implement
• Provide feature importance

Disadvantage
• Assumption of Feature Independence
• Limited expressiveness, low performance
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Instance-based classifiers - KNN

• Prediction based on the K nearest neighbors of the instance

• Explanation by example
• Set instances, the K nearest neighbours

• Do not offer global interpretability
• It is inherently local!
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Advantages and Limitations of KNN

Advantages
• Easy to derive the explanation

• Explanation by example is close as how often human reason

• Intuitive for some data types
• e.g., similar images

Disadvantages
• Difficult to interpret as we increase the number of features
• Other form of explanations, e.g., feature importance, could be preferred
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Stages of Explainability –
Explainable modelling
• Targeting interpretability by design

• Design high-performing models imposing interpretability constraints to enable their 
interpretability

• e.g., Explainability via regularization
• Apply regularization to improve model explainability

39
Cynthia Rudin et al. “Interpretable machine learning: Fundamental principles and 10 grand challenges”, 2021 



Targeting interpretability by design

• Trees

• Linear models
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Problem: these models could still underperform compared to more complex models

Wu, Mike, et al. "Beyond sparsity: Tree regularization of deep models for interpretability." AAAI 2018.
Cynthia Rudin et al. “Interpretable machine learning: Fundamental principles and 10 grand challenges”, 2021 



Targeting interpretability by design -
Concept-based models
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• E.g., Concept Bottleneck Models

Koh, Pang Wei, et al. "Concept bottleneck models." International conference on machine learning. PMLR, 2020.



Stages of Explainability –
Explainable modelling
• Explanations-in-the-loop

Train AI systems to jointly provide a prediction and its explanation

42
Hind et al. TED: Teaching AI to Explain its Decisions. AIES 2019



TED - Teaching Explanations for Decisions

Train a model to jointly produce both a decision as well as an explanation

Analogy – Teaching & Learning process
• Training: As a supervisor show the new employee several example situations and teach them the 

correct action: approve or reject a loan application, and explain the reason for the action, such as 
“insufficient salary”. 

• Deployment: The new employee will be able to make independent decisions on new loan applications 
and will give explanation based on the explanations they learned from their supervisor 

TED
• Training: Teach the model to make correct predictions but also to learn their explanations, by 

providing them

• Test/Deployment: For a new sample, the model generates the prediction and its explanation
43

Hind et al. TED: Teaching AI to Explain its Decisions. AIES 2019



TED - Teaching Explanations for Decisions

• Training data
• X, Y, E (Explanation)
• E is a rationales: human annotations that can explain labels, ground truth explanation

• Training
• Learn Y+E from X
• Generic classification model f
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Hind et al. TED: Teaching AI to Explain its Decisions. AIES 2019



TED - Teaching Explanations for Decisions

• Test/Deployment
• Predict Y+E from new instances
• Decompose Y, E
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Hind et al. TED: Teaching AI to Explain its Decisions. AIES 2019



Advantages of Explanation-in-the-loop

• Explainability directly in the training process

• Teach the model what important for us as human
• Alignment to human reasoning and values

• Explanation can be tailored for the target audience
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Hind et al. TED: Teaching AI to Explain its Decisions. AIES 2019



Limitations of Explanation-in-the-loop

• Require a dataset annotated with explanations
• The paper tests the approach with synthetic rationales..

• Rationales as rules and predict which one matches the input, encoded as an integer

• Explanations may not necessarily reflect of how model predictions were made but what 
humans expects

• Faithfulness to the model vs Plausibility
• Faithfulness: whether the explanation matches the model inner working
• Plausibility: whether the explanation matches what humans expect

47
Hind et al. TED: Teaching AI to Explain its Decisions. AIES 2019



Teach Me to Explain –
Datasets annotated with explanations
• Goal

• to train better models via additional training supervision 
• to train interpretable models that explain their own predictions 
• to evaluate plausibility of model-generated explanations by measuring their agreement 

with human explanations

• Multiple examples, especially for text data
• Highlight – part of the input --> What a wonderful day! Sentiment: positive
• Free text --> ‘The answer is correct because the person said it with a joyful voice’
• Structured --> e.g., constrained text/form ’Is it joyful? Yes/no’ Yes, ‘Is it loud?’ Yes 

48Wiegreffe, Sarah, and Ana Marasovic. "Teach Me to Explain: A Review of Datasets for Explainable Natural Language 
Processing.” Neurips Benchmark and Datasets 2021
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