
4/15/2024

1

Advanced queries
SQL Language

SQL language: advanced queries
➢Derived tables

➢CTE

➢Spatial queries

➢JSON queries

1

Derived tables

• Define a temporary table that can be used for
further computations

• A derived table
• has the structure of a SELECT statement

• is defined within a FROM clause

• may be referenced as a normal table

• Derived tables allow
• to calculate multiple levels of aggregation

• an equivalent formulation of queries that require the
use of correlation

2

Computing two-level aggregates (no.1)
• Find the maximum average (achieved by a student)

Step 1: Find the average for each student

3

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

SELECT MAX(StudentAVG)

FROM (SELECT SId, AVG(Grade) AS StudentAVG

FROM PASSED-EXAM

GROUP BY SId) AS AVERAGES;

Computing two-level aggregates (no.1)
• Find the maximum average (achieved by a student)

Step 2: Find the maximum value of the average

SELECT MAX(StudentAVG)

FROM (SELECT SId, AVG(Grade) AS StudentAVG

FROM PASSED-EXAM

GROUP BY SId) AS AVERAGES;Derived table

4

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

Computing two-level aggregates (no.2)
• For each year of enrolment, find the highest average (achieved by a

student)

• 2-step solution
• Find the average for each student

• Group students by year of enrolment and calculate the maximum average

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

5

0 1

2 3

4 5

4/15/2024

2

Computing two-level aggregates (no.2)
• For each year of enrolment, find the highest average (achieved by a

student)

• Step 1: Find the average for each student

6

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

SELECT YearOfEnrolment, MAX(StudentAVG)

FROM STUDENT,

(SELECT SId, AVG(Grade) AS StudentAVG

FROM PASSED-EXAM

GROUP BY SId) AS AVERAGES

WHERE STUDENT.SId=AVERAGES.SId

GROUP BY YearOfEnrolment;

Computing two-level aggregates (no.2)
• For each year of enrolment, find the highest average (achieved by a

student)

• Step 2: Group students by year of enrollment and calculate the
maximum average

7

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

SELECT …

FROM STUDENT,

(SELECT SId, AVG(Grade) AS StudentAVG

FROM PASSED-EXAM

GROUP BY SId) AS AVERAGES

WHERE STUDENT.SId=AVERAGES.SId

….

Derived
tables

Join condition

Computing two-level aggregates (no.2)
• For each year of enrolment, find the highest average (achieved by a

student)

• Step 2: Group students by year of enrollment and calculate the
maximum average

8

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

SELECT

FROM STUDENT,

(SELECT SId, AVG(Grade) AS StudentAVG

FROM PASSED-EXAM

GROUP BY SId) AS AVERAGES

WHERE STUDENT.SId=AVERAGES.SId

GROUP BY YearOfEnrolment;

Computing two-level aggregates (no.2)
• For each year of enrolment, find the highest average (achieved by a

student)

• Step 2: Group students by year of enrollment and calculate the
maximum average

9

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

SELECT YearOfEnrolment, MAX(StudentAVG)

FROM STUDENT,

(SELECT SId, AVG(Grade) AS StudentAVG

FROM PASSED-EXAM

GROUP BY SId) AS AVERAGES

WHERE STUDENT.SId=AVERAGES.SId

GROUP BY YearOfEnrolment;

Correlation with derived tables
• For each product, find the ID of the supplier that provides the

maximum quantity

• 2-step solution
• Calculate the maximum quantity supplied for each product

• Select suppliers that supply the maximum quantity, product by product

P (PId, PName, Color, Size, Store)

S (SId, SName, #Employees, City)

SP (SId, PId, Qty)

10

Correlation with derived tables
• For each product, find the ID of the supplier that provides the

maximum quantity

• Step 1: Calculate the maximum quantity supplied for each product

SELECT PId, MAX(Qty) AS MQty
FROM SP
GROUP BY PId

11

P (PId, PName, Color, Size, Store)

S (SId, SName, #Employees, City)

SP (SId, PId, Qty)

6 7

8 9

10 11

4/15/2024

3

Correlation with derived tables
• For each product, find the ID of the supplier that provides the

maximum quantity

• Step 2: Select suppliers that supply the maximum quantity, product by product

12

SELECT PId, SId

FROM SP,

 (SELECT PId, MAX(Qty) AS MQty

 FROM SP GROUP BY PId

) AS TMax

WHERE SP.PId = TMax.PId

AND SP.Qty = TMax.MQty;

Derived table

Join condition

Correlation condition

P (PId, PName, Color, Size, Store)

S (SId, SName, #Employees, City)

SP (SId, PId, Qty)

Common Table
Expression

• Defines a temporary table that can be used for
further computation

• A CTE
• has the structure of a SELECT

• is defined by the WITH clause

• can be referenced like a normal table

• A CTE can be used to
• to calculate multiple levels of aggregation

• provide an equivalent formulation of queries that require
the use of correlation

• References
• to CTE previously defined in the same WITH clause

• recursive

13

CTE vs Derived tables
• CTE is preferred when

• you must reference a derived table multiple times in a single query

• you must perform the same calculation multiple times in multiple parts of the
query

• you want to increase the readability of complex queries

14

Syntax to define CTEs
WITH

cte_1 [(field_A, ...)] AS

(CTE query 1)

{, cte_X AS (CTE query X) }

SELECT field_A, field_B, ...

FROM cte_1

CTE Name

CTE query

Query

15

Computing two-level aggregations (no.1)
• Find the maximum average (achieved by a student)

• 2-step solution
• find the average for each student

• find the maximum value of the average

16

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

AVERAGES;

Computing two-level aggregations (no.1)
• Find the maximum average (achieved by a student)

WITH AVERAGES AS

(SELECT SId, AVG(Grade) AS StudentAVG

FROM PASSED-EXAM

GROUP BY SId)

SELECT MAX(StudentAVG)

FROM AVERAGES

17

STUDENT (SId, YearOfEnrolment)
PASSED-EXAM (SId, CId, Date, Grade)

12 13

14 15

16 17

4/15/2024

4

Calculating aggregations with different granularities
• Find all airlines where the average salary of all pilots of that airline is

higher than the average of the salaries of all pilots in the database

• 3-step solution:
• find the average salary for each airline

• find the average salary considering all pilots

• find airlines with an average salary higher than the global average salary

PILOTS (PID, Name, Surname, Airline, Salary)

18

Calculating aggregations with different granularities
• Step 1: find the average salary for each airline

WITH AverageAirlineSalary AS

 (SELECT Airline, AVG(Salary) AS AvgAirlineSal

 FROM PILOTS

 GROUP BY Airline)

19

Calculating aggregations with different granularities
• Step 2: find the average salary considering all pilots

WITH AverageAirlineSalary AS

 (SELECT Airline, AVG(Salary) AS AvgAirlineSal

 FROM PILOTS

 GROUP BY Airline),

AvgSalary AS

 (SELECT AVG(Salary) AS AvgSal

 FROM PILOTS)

20

Calculating aggregations with different granularities
• Step 3: find airlines with an average salary higher than the global

average salary

WITH AverageAirlineSalary AS

 (SELECT Airline, AVG(Salary) AS AvgAirlineSal

 FROM PILOTS

 GROUP BY Airline)

AvgSalary AS

 (SELECT AVG(SAlary) AS AvgSal

 FROM PILOTS)

SELECT Airline

FROM AverageAirlineSalary, AvgSalary

WHERE AverageAirlineSalary. AvgAirlineSal > AvgSalary. AvgSal

21

Referenced CTE
• Considering the average distances traveled for each city, calculate the

maximum distance traveled within each region

• 3-step solution:
• calculate the distance traveled for each city by each driver

• calculate the average distance for each city

• calculate the maximum distance per region

CITY (CodeC, CName, Region)
DRIVER (CodeD, DName, Surname, CodeC)
DAILY_RUN (Date, CodeD, Amount, Distance)

22

Referenced CTE
• Step 1: calculate the distance traveled for each city by each driver

WITH totDistanceDrive AS

 (SELECT SUM(Distance) AS TotalDistance, DR.CodeD, DR.CodeC, CName, Region

 FROM DAILY_RUN DR, DRIVER D, CITY C

 WHERE DR.CodeD = D.CodeD AND D.CodeC = C.CodeC

 GROUP BY DR.CodeD, DR.CodeC, CName, Region)

23

18 19

20 21

22 23

4/15/2024

5

Referenced CTE
• Step 2: calculate the average distance for each city

WITH totDistanceDrive AS

 (SELECT SUM(Distance) AS TotalDistance, DR.CodeD, DR.CodeC, CName, Region

 FROM DAILY_RUN DR, DRIVER D, CITY C

 WHERE DR.CodeD = D.CodeD AND D.CodeC = C.CodeC

 GROUP BY DR.CodeD, DR.CodeC, CName, Region)

averageDistance AS

 (SELECT AVG(TotalDistance) AS avgDist, CodeC, Region

 FROM totDistanceDrive

 GROUP BY CodeC, Region)

24

Referenced CTE
• Step 3: calculate the maximum average distance per region

WITH totDistanceDrive AS

 (SELECT SUM(Distance) AS TotalDistance, DR.CodeA, DR.CodeC, Name, Region

 FROM DAILY_RUN DR, CITY C

 WHERE DR.CodeA, DR.CodeC,

 GROUP BY DR.CodeA, DR.CodeC, Name, Region),

averageDistance AS

 (SELECT AVG(TotalDistance) AS avgDist, CodC, Region

 FROM totDistanceDrive

 GROUP BY CodeC, Region)

SELECT MAX(avgDist), Region

FROM averageDistance

GROUP BY Region

25

Recursive CTE syntax
WITH RECURSIVE

cte_1 AS

(CTE query 1

UNION ALL

CTE query 2

)

SELECT *

FROM cte_1

Name of CTE

Initial query

Recursive query

26

Recursive CTEs
• For each employee, find the boss and level in the hierarchy

EMPLOYEES (EID, Name, Surname, BossID*)

EID Name Surname BossId*

1 Domenic Leaver 5

2 Cleveland Hewins 1

3 Kakalina Atherton 7

4 Roxanna Fairlie NULL

5 Hermie Comsty 4

6 Pooh Goss 7

7 Faulkner Challiss 5

27

Recursive CTEs

WITH RECURSIVE hierarchy AS (

SELECT EID, Name, Surname, BossID, 0 AS level

FROM EMPLOYEES

WHERE BossID IS NULL

UNION ALL

SELECT E.EID, E.Nome, E.Cognome, E.BossID, level +1

FROM EMPLOYEES E, hierarchy H

WHERE E.BossID = H.EID

)

SELECT G.Name, G.Surname, E. Name AS BossName, E. Surname AS BossSurname, level

FROM hierarchy G LEFT JOIN EMPLOYEES E ON G.BossID= E.EID

ORDER BY level;

28

Recursive CTEs
• For each employee, find the boss and level in the hierarchy

EID Name Surname BossId* Level

4 Roxanna Fairlie NULL 0

29

hierarchy

EID Name Surname BossId*

1 Domenic Leaver 5

2 Cleveland Hewins 1

3 Kakalina Atherton 7

4 Roxanna Fairlie NULL

5 Hermie Comsty 4

6 Pooh Goss 7

7 Faulkner Challiss 5

EMPLOYEES

24 25

26 27

28 29

4/15/2024

6

Recursive CTEs
• For each employee, find the boss and level in the hierarchy

EID Name Surname BossId* Level

4 Roxanna Fairlie NULL 0

5 Hermie Comsty 4 1

1 Domenic Leaver 5 2

7 Faulkner Challiss 5 2

30

hierarchy

EID Name Surname BossId*

1 Domenic Leaver 5

2 Cleveland Hewins 1

3 Kakalina Atherton 7

4 Roxanna Fairlie NULL

5 Hermie Comsty 4

6 Pooh Goss 7

7 Faulkner Challiss 5

EMPLOYEES

Recursive CTEs
• For each employee, find the boss and level in the hierarchy

EID Name Surname BossId* Level

4 Roxanna Fairlie NULL 0

5 Hermie Comsty 4 1

1 Domenic Leaver 5 2

7 Faulkner Challiss 5 2

3 Kakalina Atherton 7 3

6 Pooh Goss 7 3

2 Cleveland Hewins 1 3

31

hierarchy

EID Name Surname BossId*

1 Domenic Leaver 5

2 Cleveland Hewins 1

3 Kakalina Atherton 7

4 Roxanna Fairlie NULL

5 Hermie Comsty 4

6 Pooh Goss 7

7 Faulkner Challiss 5

EMPLOYEES

Spatial queries

• Spatial data can be represented by different
geometries
• Point
• Polygon
• Lines,
• etc.

• MySQL provides functions to:
• create geometries in various formats (WKT, WKB,

internal)
• convert geometries between different formats
• access the qualitative or quantitative properties of a

geometry
• describe the relationships between two geometries
• create new geometries from existing ones

32

Creating Geometry (MySQL)
• Point(x, y)

• constructs a point using its coordinates

• LineString(pt [, pt] ...)
• constructs a line using the points provided (at least 2)

• Polygon(ls [, ls] ...)
• constructs a polygon from a series of lines

33

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

Geometry Properties (MySQL)
• ST_Dimension(g)

• Returns the intrinsic dimension of the geometric value g

• Size can be -1, 0, 1 or 2

• ST_Envelope(g)
• Returns the minimum bounding rectangle (MBR) for the geometric value g

• The result is returned as a polygon value defined by the corner points of the
bounding rectangle

• ST_GeometryType(g)
• Returns a string indicating the name of the geometry type of which geometry

instance G is a member

34

Geometry Properties (MySQL)
• ST_X(p)

• Returns the value of the X-coordinate of the Point p

• ST_Y(p)
• Returns the Y-coordinate value of the Point p

• ST_Length(ls)
• Returns the length of a line

• ST_Area(poly)
• Returns the area of a polygon

• ST_Centroid(poly)
• Returns the centroid of a polygon

35

30 31

32 33

34 35

4/15/2024

7

Geometry Relationships (MySQL)
• ST_Difference(g1, g2)

• Returns a geometry that represents the difference in the point set of
geometries G1 and G2

• ST_Intersects(g1, g2)
• Returns 1 or 0 to indicate whether G1 spatially intersects G2

• ST_Distance_Sphere(g1, g2 [, radius])
• Returns the minimum spherical distance between two points and/or more

points on a sphere, in meters

• The optional radius argument must be indicated in meters. If omitted, the
default radius is 6,370,986 meters

36

SELECT ST_Distance_Sphere(ST_GeomFromText('POINT(0 0)'), ST_GeomFromText('POINT(180 0)'));

RESULT

20015042.813723423

JSON Query

• JSON, short for JavaScript Object Notation, is a
format for exchanging data in client-server
applications

• JSON data functions depend on the DBMS used

• JSON data functions used for
• create data in JSON format

• search within a JSON based on the path provided

• edit JSON fields

37

JSON file example

38

{
name: "Agritourism Mario Bros",
address:{

street: "Via Idraulici",
number: 1
city: "Funghetti",

},
Reviews:[

{text: "Adventurous experience",
timestamp: "2023-04-05T16:19:00",
stars: 5}

],
nReviews: 1,
tags: ["agritourism", "nature"]

}

Key

Value

Embedded JSON

Array

Create JSON (MySQL)
• JSON_ARRAY(target, candidate[, path])

• evaluates a list of values (possibly empty) and returns a JSON array containing
those values

• JSON_OBJECT([key, val[, key, val] ...])
• evaluates a (possibly empty) list of key-value pairs and returns a JSON object

containing those pairs

39

SELECT JSON_ARRAY(1, "abc", NULL, TRUE, CURTIME()) AS RESULT;

SELECT JSON_OBJECT('id', 87, 'name', 'carrot') AS RESULT;

RESULT

[1, "abc", null, true, "11:30:24.000000"]

RESULT

{"id": 87, "name": "carrot"}

Search within JSON (MySQL)
• JSON_CONTAINS(target, candidate[, path])

• returns 1 or 0
• if a JSON candidate document is contained in the JSON target document

• if the candidate is in a specific path within the target document

• returns NULL
• if any of the arguments is NULL

• If the path does not identify a section of the target document

• Path notation:
• $: Document root

• dot notation to specify the path (eg. $.a)

• [i]: to access the i-th element of an array

• wildcard * or ** ($.*)

40

SELECT JSON_CONTAINS('{"a": 1, "b": 2, "c": {"d": 4}}', '1', '$.a') AS RESULT;

RESULT

1

Search within JSON (MySQL)
• JSON_EXTRACT(json_doc, path[, path])

• returns data from a JSON document in the paths provided as parameters

• returns NULL if
• any argument is NULL

• no path locates a value in the document

• Alternative:
• Use the operator ->

41

SELECT c, JSON_EXTRACT(c, "$.id")
FROM jemp
WHERE JSON_EXTRACT(c, "$.id") > 1
ORDER BY JSON_EXTRACT(c, "$.name");

c c->"$.id"

{"id": "3", "name": "Barney"} "3"

{"id": "4", "name": "Betty"} "4"

{"id": "2", "name": "Wilma"} "2"

SELECT c, c->"$.id"
FROM jemp
WHERE c->"$.id" > 1
 ORDER BY c->"$.name";

36 37

38 39

40 41

4/15/2024

8

Edit JSON (MySQL)
• JSON_ARRAY_APPEND(json_doc, path, val[, path, val] ...)

• appends the values to the end of the indicated arrays and returns the result

• JSON_INSERT(json_doc, path, val[, path, val] ...)
• inserts values into the JSON file and returns the result

42

SELECT JSON_ARRAY_APPEND('["a", ["b", "c"], "d"]', '$[1]', 1) AS RESULT;

RESULT

["a", ["b", "c", 1], "d"]

SELECT JSON_INSERT('{ "a": 1, "b": [2, 3]}', '$.a', 10, '$.c', '[true, false]') AS RESULT;

RESULT

{"a": 1, "b": [2, 3], "c": "[true, false]"}

Edit JSON (MySQL)
• JSON_SET(json_doc, path, val[, path, val] ...)

• inserts or updates JSON document values and returns the result

• JSON_REMOVE(json_doc, path, [, path] ...)
• removes the path in the JSON document and returns the result

43

SELECT JSON_SET('{ "a": 1, "b": [2, 3]}' '$.a', 10, '$.c', '[true, false]') AS RESULT;

RESULT

{"a": 10, "b": [2, 3], "c": "[true, false]"}

SELECT JSON_REMOVE('["a", ["b", "c"], "d"]', '$[1]') AS RESULT;

RESULT

["a", "d"]

42 43

	Copertina
	Slide 0: Advanced queries

	Materiale didattico
	Slide 1: SQL language: advanced queries
	Slide 2: Derived tables
	Slide 3: Computing two-level aggregates (no.1)
	Slide 4: Computing two-level aggregates (no.1)
	Slide 5: Computing two-level aggregates (no.2)
	Slide 6: Computing two-level aggregates (no.2)
	Slide 7: Computing two-level aggregates (no.2)
	Slide 8: Computing two-level aggregates (no.2)
	Slide 9: Computing two-level aggregates (no.2)
	Slide 10: Correlation with derived tables
	Slide 11: Correlation with derived tables
	Slide 12: Correlation with derived tables
	Slide 13: Common Table Expression
	Slide 14: CTE vs Derived tables
	Slide 15: Syntax to define CTEs
	Slide 16: Computing two-level aggregations (no.1)
	Slide 17: Computing two-level aggregations (no.1)
	Slide 18: Calculating aggregations with different granularities
	Slide 19: Calculating aggregations with different granularities
	Slide 20: Calculating aggregations with different granularities
	Slide 21: Calculating aggregations with different granularities
	Slide 22: Referenced CTE
	Slide 23: Referenced CTE
	Slide 24: Referenced CTE
	Slide 25: Referenced CTE
	Slide 26: Recursive CTE syntax
	Slide 27: Recursive CTEs
	Slide 28: Recursive CTEs
	Slide 29: Recursive CTEs
	Slide 30: Recursive CTEs
	Slide 31: Recursive CTEs
	Slide 32: Spatial queries
	Slide 33: Creating Geometry (MySQL)
	Slide 34: Geometry Properties (MySQL)
	Slide 35: Geometry Properties (MySQL)
	Slide 36: Geometry Relationships (MySQL)
	Slide 37: JSON Query
	Slide 38: JSON file example
	Slide 39: Create JSON (MySQL)
	Slide 40: Search within JSON (MySQL)
	Slide 41: Search within JSON (MySQL)
	Slide 42: Edit JSON (MySQL)
	Slide 43: Edit JSON (MySQL)

