
Triggers

Triggers
➢Active Database Systems

➢Oracle Triggers

➢Differences between Oracle and DB2 Triggers

➢Guidelides in writing triggers in Oracle

➢Trigger Design

1

Active Database Systems

2

Triggers

Active Database Systems
• Traditional DBMS operation is passive

• Queries and updates are explicitly requested by users

• The knowledge of processes operating on data is typically embedded into
applications

• Active database systems
• Reactivity is a service provided by a normal DBMS

• Reactivity monitors specific database events and triggers actions in response

3

Active Database Systems
• Reactivity is provided by automatically executing rules

• Rules are in the form
• Event

• Condition

• Action

• Also called active or ECA rules

4

Active rules

• Event
• Database modification operation

• Condition
• Predicate on the database state

• If the condition is true, the action is executed

• Action
• Sequence of SQL instructions or application procedure

5

Rule engine
• Component of the DBMS, in charge of

• Tracking events

• Executing rules when appropriate
• based on the execution strategy of the DBMS

• Rule execution is interleaved with traditional transaction execution

6

Example
• The active rule manages reorder in an inventory stock

• when the stocked quantity of a product goes below a given threshold

• a new order for the product should be issued

• Event
• Update of the stocked quantity for product x

• Insert of a new product x

• Condition
• The stocked quantity of product x is below a given threshold

and there are no pending orders for product x

• Action
• Issue a new order of a pre-determined quantity for product x

7

Applications of active rules
• Internal applications

• maintenance of complex integrity constraints

• replication management

• materialized view maintenance

• Business Rules
• Incorporate into the DBMS application knowledge

• E.g., reorder rule

• Alerters
• widely used for notification

8

Triggers
• Commercial products implement active rules by means of triggers

• SQL provides instructions for defining triggers
• Triggers are defined by means of the DDL instruction CREATE TRIGGER

• Trigger syntax and semantics are covered in the SQL3 standard
• Some commercial products implement different features with respect to the

standard

9

Trigger structure
• Event

• Insert, delete, update of a table

• Each trigger can only monitor events on a single table

• Condition
• SQL predicate (it is optional)

• Action
• Sequence of SQL instructions

• Proprietary programming language blocks
• e.g. Oracle PL/SQL

• Java block

10

Execution process
When the events take place [triggering]

If the condition is true [evaluation]

Then the action is executed [execution]

• Seems very simple but…
• Execution modes

• Execution granularity

11

Execution mode
• Immediate

• The trigger is executed immediately before or after the triggering statement

• Deferred
• The trigger is executed immediately before commit

• Only the immediate option is available in commercial systems

12

Execution granularity
• Tuple (or row level)

• One separate execution of the trigger for each tuple affected by the triggering
statement

• Statement
• One single trigger execution for all tuples affected by the triggering statement

13

Granularity example
• Table T

• Transaction statement

• Trigger execution
• A row level trigger executes twice

• A statement level trigger executes once

14

A B

1 5

2 9

8 20

UPDATE T

SET A=A+1

WHERE B<10;

Triggers in Oracle

15

Triggers

Trigger syntax
CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

16

Trigger syntax
CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

17

• Mode is BEFORE or AFTER

• Also INSTEAD OF but it should be avoided

Trigger syntax
CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

18

• Event ON TargetTable is

• INSERT

• DELETE

• UPDATE [OF ColumnName]

Trigger syntax
CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

19

• FOR EACH ROW specifies row level execution semantics
• If omitted, the execution semantics is statement level

Trigger syntax
CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

20

• To rename the state variables
• REFERENCING OLD AS OldVariableName

• similarly for NEW

Trigger syntax
CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

21

• Only for row level execution semantics (i.e., FOR EACH ROW)
• A condition may be optionally specified

• The old and new state variables may be accessed

Trigger syntax
CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

22

• The action is
• a sequence of SQL instructions

• a PL/SQL block

• No transactional and DDL instructions

Trigger semantics
• Execution modes

• immediate before

• immediate after

• Granularity is
• row (tuple)

• statement

• Execution is triggered by insert, delete, or update statements in a
transaction

23

Execution algorithm
1. Before statement triggers are executed

2. For each tuple in TargetTable affected by the triggering statement
a) Before row triggers are executed

b) The triggering statement is executed

+ integrity constraints are checked on tuples

c) After row triggers are executed

3. Integrity constraints on tables are checked

4. After statement triggers are executed

24

Trigger semantics
• The execution order for triggers with the same event, mode and

granularity is not specified
• it is a source of nondeterminism

• When an error occurs
• rollback of all operations performed by the triggers

• rollback of the triggering statement in the triggering transaction

25

Non termination
• Trigger execution may activate other triggers

• Cascaded trigger activation may lead to non termination of trigger execution

• A maximum length for the cascading trigger execution may be set
• default = 32 triggers

• If the maximum is exceeded
• an execution error is returned

26

Mutating tables
• A mutating table is the table modified by the statement (i.e., event)

triggering the trigger

• The mutating table
• cannot be accessed in row level triggers

• may only be accessed in statement triggers

• Limited access on mutating tables only characterizes Oracle applications
• accessing mutating tables is always allowed in SQL3

27

Example
• Trigger to manage reorder in an inventory stock

• when the stocked quantity of a product goes below a given threshold

• a new order for the product should be issued

• The following database schema is given
Inventory (Part#, QtyOnHand, ThresholdQty, ReorderQty)

PendingOrders(Part#, OrderDate, OrderedQty)

28

Example
• Trigger to manage reorder in an inventory stock

• when the stocked quantity of a product goes below a given threshold

• a new order for the product should be issued

• Event
• Update of the quantity on hand for product x

• Insert of a new product x

• Execution semantics
• After the modification event

• Separate execution for each row of the Inventory table

29

Trigger example
CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory

FOR EACH ROW

30

Example
• Trigger to manage reorder in an inventory stock

• when the stocked quantity of a product goes below a given threshold

• a new order for the product should be issued

• Condition
• The quantity on hand is below a given threshold

31

Trigger example
CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory

FOR EACH ROW

WHEN (NEW.QtyOnHand < NEW.ThresholdQty)

32

Example
• Trigger to manage reorder in an inventory stock

• when the stocked quantity of a product goes below a given threshold

• a new order for the product should be issued

• Condition
• The quantity on hand is below a given threshold

and there are no pending orders for product x
• This part cannot be introduced into the WHEN clause

• Action
• Issue an order with given reorder quantity for product x

33

Example: Trigger body
DECLARE

N number;

BEGIN

select count(*) into N

from PendingOrders

where Part# = :NEW.Part#;

If (N=0) then

insert into PendingOrders(Part#,OrderedQty,OrderDate)

values (:NEW.Part#, :NEW.ReorderQty, SYSDATE);

end if;

END;
34

Complete trigger example
CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory

FOR EACH ROW

WHEN (NEW.QtyOnHand < NEW. ThresholdQty)

DECLARE

N number;

BEGIN

select count(*) into N

from PendingOrders

where Part# = :NEW.Part#;

If (N==0) then

insert into PendingOrders(Part#,OrderedQty,OrderDate)

values (:NEW.Part#, :NEW.ReorderQty, SYSDATE);

end if;

END;
35

Concise comparison between
Oracle and DB2 Triggers

36

Differences between Oracle and DB2

37

Oracle DB2

Reference to Old_Table and New_Table in
statement triggers

No Yes

When clause in statement triggers No Yes

Execution order between row and statement
triggers with same mode

Specified Arbitrary

Execution order between triggers with same event,
mode and granularity

Unspecified Creation
Order

More than one triggering event allowed Yes No

Forbidden access to the mutating table
Yes for row

triggers
No

Availability of the instead semantics Yes No

Database modifications allowed in before triggers
Yes Only NEW

variables

Guidelines in writing triggers in
Oracle

38

Guidelines in writing triggers in Oracle
• Execution Mode INSTEAD OF is allowed in Oracle but it should be avoided

• Usage of before triggers in Oracle to be compliant with the standard
• Modifications of the NEW variable in tuples affected by the triggering statement are

allowed in before triggers

• Other databases modifications apart those reported in the previous point are not
allowed on before triggers

• Before triggers cannot trigger other triggers

39

Triggers Design

40

Trigger design
• The design of a single trigger is usually simple

• Identify
• execution semantics

• event

• condition (optional)

• action

41

Trigger design
• Understanding mutual interactions among triggers is more complex

• The action of one trigger may be the event of a different trigger
• Cascaded execution

• If mutual triggering occurs
• Infinite execution is possible

42

Trigger execution properties
• Termination

• For an arbitrary database state and user transaction, trigger execution terminates
in a final state (also after an abort)

• Confluence
• For an arbitrary database state and user transaction, trigger execution terminates

in a unique final state, independently of the execution order of triggers

• Termination is the most important property

• Confluence is enforced by deterministic trigger execution

43

Guaranteeing termination
• Termination is guaranteed at run time by aborting trigger execution after

a given cascading length

• Termination may be verified at design time by means of the triggering
graph
• a node for each trigger

• a directed edge Ti Tj if trigger Ti is performing an action triggering trigger Tj

• A cycle in the graph shows potential non terminating executions

44

Tj
Ti

Example
• Trigger managing salary amounts

• When a given average salary value is exceeded, a salary reduction is automatically
enforced

• The following table is given
Employee (Emp#, Ename, …, Salary)

• Execution semantics
• After the modification events

• Separate execution for each update instruction

• No condition for execution

45

Example
CREATE TRIGGER SalaryMonitor

AFTER UPDATE OF Salary ON Employee

FOR EACH STATEMENT

BEGIN

update Employee

set Salary = Salary * K

where 2500 < (select AVG (Salary) from Employee);

END;

46

The value of K may be
K = 0.9 execution terminates
K = 1.1 infinite execution

SalaryMonitor

Trigger applications
• Internal applications

• maintenance of complex integrity constraints

• replication management

• materialized view maintenance

• Business Rules
• Incorporate into the DBMS application knowledge

• E.g., reorder rule

• Alerters
• widely used for notification

47

Triggers for constraint management
• Triggers are exploited to enforce complex integrity constraints

• Design procedure
1. Write the constraint as a SQL predicate

• It provides a condition for the trigger execution

2. Identify the events which may violate the constraint
• i.e., the condition

3. Define the constraint management technique in the action

48

Design example (1)
• The following tables are given

• Supplier S (S#, SName, …)

• Part P (P#, PName, …)

• Supply SP (S#, P#, Qty)

• Constraint to be enforced
• A part may be supplied by at most 10 different suppliers

49

Design example (1)
• Constraint predicate

• set of parts violating the constraint

• Events
• insert on SP

• update of P# on SP

• Action
• reject the violating transaction

50

select P#

from SP

group by P#

having count(*) > 10

Design example (1)
• Execution semantics

• after the modification

• statement level
• to capture the effect of the entire modification

• (Oracle) to allow access to the mutating table

• (Oracle) No condition
• The condition cannot be specified in the WHEN clause

• It is checked in the trigger body

• Design for Oracle trigger semantics

51

Design example (1)
• The following tables are given

• Supplier S (S#, SName, …)

• Part P (P#, PName, …)

• Supply SP (S#, P#, Qty)

• Constraint to be enforced
• A part may be supplied by at most 10 different suppliers

52

Design example (1)
CREATE TRIGGER TooManySuppliers
AFTER UPDATE OF P# OR INSERT ON SP
DECLARE
N number;

BEGIN
select count(*) into N
from SP
where P# IN (select P# from SP

group by P#
having count(*) > 10);

if (N <> 0) then
raise_application_error (xxx, ‘constraint violated’);

end if;
END;

53

Design example (2)
• The following tables are given

• Supplier S (S#, SName, …)

• Part P (P#, PName, …)

• Supply SP (S#, P#, Qty)

• Constraint to be enforced
• The quantity of a product supply cannot be larger than 1000. If it is larger, trim it

to 1000.

• Check constraints do not allow compensating actions
• Implement with a trigger

54

Design example (2)
• Constraint predicate

• Qty > 1000

• It is also the trigger condition

• Events
• insert on SP

• update of Qty on SP

• Action
• Qty = 1000

55

Design example (2)
• Execution semantics

• before the modification takes place
• its effect can be changed before the constraint is checked

• row level
• each tuple is modified separately

56

Design example (2)
CREATE TRIGGER ExcessiveQty

BEFORE UPDATE OF Qty OR INSERT ON SP

FOR EACH ROW

WHEN (NEW.Qty > 1000)

BEGIN

:NEW.Qty := 1000;

END;

57

Triggers for materialized view maintenance
• Materialized views are queries persistently stored in the database

• provide increased performance

• contain redundant information
• e.g., aggregate computations

• Triggers are exploited to maintain redundant data
• Propagate data modifications on tables to materialized view

58

Design example (3)
• Tables

• Student S (SId, SName, DCId)

• Degree course DC (DCId, DCName)

• Materialized view
• Enrolled students ES (DCId, TotalStudents)

• For each degree course, TotalStudents counts the total number of enrolled students

• Defined by query

59

SELECT DCId, COUNT(*)

FROM S

GROUP BY DCId;

Design example (3)
• Tables

• Student S (SId, SName, DCId)

• Degree course DC (DCId, DCName)

• Materialized view
• Enrolled students ES (DCId, TotalStudents)

• For each degree course, TotalStudents counts the total number of enrolled students

• A new degree course is inserted in materialized view ES when the first student is
enrolled in it

• A degree course is deleted from ES when the last student quits it

60

Design example (3)
• Database schema

S (SId, SName, DCId)

DC (DCId, DCName)

ES (DCId, TotalStudents)

• Propagate modifications on table S to materialized view (table) ES
• Inserting new tuples into S

• Deleting tuples from S

• Updating the DCId attribute in one or more tuples of S

61

Design example (3)
• Design three triggers to manage separately each data modification

• Insert trigger, delete trigger, update trigger

• All triggers share the same execution semantics

• Execution semantics
• after the modification takes place

• Table ES is updated after table S has been modified

• row level
• Separate execution for each tuple of table S

• significantly simpler to implement

62

Insert trigger (3)
• Event

• insert on S

• No condition
• It is always executed

• Action
• if table ES contains the DCId in which the student is enrolled

• increment TotalStudents

• otherwise
• add a new tuple in table ES for the degree course, with TotalStudents set to 1

63

Insert trigger (3)
CREATE TRIGGER InsertNewStudent

AFTER INSERT ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- check if table ES contains the tuple for the degree

--- course NEW.DCId in which the student enrolls

select count(*) into N

from ES

where DCId = :NEW. DCId;
64

Insert trigger (3)
if (N <> 0) then

--- the tuple for the NEW.DCId degree course is

--- available in ES

update ES

set TotalStudents = TotalStudents +1

where DCId = :NEW.DCId;

else

--- no tuple for the NEW.DCId degree course is

--- available in ES

insert into ES (DCId, TotalStudents)

values (:NEW.DCId, 1);

end if;

END;
65

Delete trigger (3)
• Event

• delete from S

• No condition
• It is always executed

• Action
• if the student was the only student enrolled in the degree course

• delete the corresponding tuple from ES

• otherwise
• decrement TotalStudents

66

Delete trigger (3)
CREATE TRIGGER DeleteStudent

AFTER DELETE ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- read the number of students enrolled on

--- the degree course OLD.DCId

select TotalStudents into N

from ES

where DCId = :OLD.DCId;
67

Delete trigger (3)
if (N > 1) then

--- there are many enrolled students

update ES

set TotalStudents = TotalStudents – 1

where DCId = :OLD.DCId;

else

--- there is a single enrolled student

delete from ES

where DCId = :OLD.DCId;

end if;

END;

68

Update trigger (3)
• Event

• Update of DCId on S

• No condition
• It is always executed

• Action
• update table ES for the degree course where the student was enrolled

• decrement TotalStudents, or delete tuple if last student

• update table ES for the degree course where the student is currently enrolled
• increment TotalStudents, or insert new tuple if first student

69

Update trigger (3)
CREATE TRIGGER UpdateDegreeCourse
AFTER UPDATE OF DCId ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- read the number of students enrolled in

--- degree course OLD.DCId

select TotalStudents into N

from ES

where DCId = :OLD.DCId;
70

Update trigger (3)
if (N > 1) then

--- there are many enrolled students

update ES

set TotalStudents = TotalStudents – 1

where DCId = :OLD.DCId;

else

--- there is a single enrolled student

delete from ES

where DCId = :OLD.DCId;

end if;

71

Update trigger (3)
--- check if table ES contains the tuple for the degree
--- course NEW.DCId in which the student is enrolled

select count(*) into N

from ES

where DCId = :NEW. DCId;

72

Update trigger (3)
if (N <> 0) then

--- the tuple for the NEW.DCId degree course is available in ES

update ES

set TotalStudents = TotalStudents +1

where DCId = :NEW.DCId;

else

--- no tuple for the NEW.DCId degree course is available in ES

insert into ES (DCId, TotalStudents)

values (:NEW.DCId, 1);

end if;

END;
73

	Copertina
	Slide 0: Triggers

	Materiale didattico
	Slide 1: Triggers
	Slide 2: Active Database Systems
	Slide 3: Active Database Systems
	Slide 4: Active Database Systems
	Slide 5: Active rules
	Slide 6: Rule engine
	Slide 7: Example
	Slide 8: Applications of active rules
	Slide 9: Triggers
	Slide 10: Trigger structure
	Slide 11: Execution process
	Slide 12: Execution mode
	Slide 13: Execution granularity
	Slide 14: Granularity example
	Slide 15: Triggers in Oracle
	Slide 16: Trigger syntax
	Slide 17: Trigger syntax
	Slide 18: Trigger syntax
	Slide 19: Trigger syntax
	Slide 20: Trigger syntax
	Slide 21: Trigger syntax
	Slide 22: Trigger syntax
	Slide 23: Trigger semantics
	Slide 24: Execution algorithm
	Slide 25: Trigger semantics
	Slide 26: Non termination
	Slide 27: Mutating tables
	Slide 28: Example
	Slide 29: Example
	Slide 30: Trigger example
	Slide 31: Example
	Slide 32: Trigger example
	Slide 33: Example
	Slide 34: Example: Trigger body
	Slide 35: Complete trigger example
	Slide 36: Concise comparison between Oracle and DB2 Triggers
	Slide 37: Differences between Oracle and DB2
	Slide 38: Guidelines in writing triggers in Oracle
	Slide 39: Guidelines in writing triggers in Oracle
	Slide 40: Triggers Design
	Slide 41: Trigger design
	Slide 42: Trigger design
	Slide 43: Trigger execution properties
	Slide 44: Guaranteeing termination
	Slide 45: Example
	Slide 46: Example
	Slide 47: Trigger applications
	Slide 48: Triggers for constraint management
	Slide 49: Design example (1)
	Slide 50: Design example (1)
	Slide 51: Design example (1)
	Slide 52: Design example (1)
	Slide 53: Design example (1)
	Slide 54: Design example (2)
	Slide 55: Design example (2)
	Slide 56: Design example (2)
	Slide 57: Design example (2)
	Slide 58: Triggers for materialized view maintenance
	Slide 59: Design example (3)
	Slide 60: Design example (3)
	Slide 61: Design example (3)
	Slide 62: Design example (3)
	Slide 63: Insert trigger (3)
	Slide 64: Insert trigger (3)
	Slide 65: Insert trigger (3)
	Slide 66: Delete trigger (3)
	Slide 67: Delete trigger (3)
	Slide 68: Delete trigger (3)
	Slide 69: Update trigger (3)
	Slide 70: Update trigger (3)
	Slide 71: Update trigger (3)
	Slide 72: Update trigger (3)
	Slide 73: Update trigger (3)

