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Lab 6: Clustering with Scikit-Learn

The objective of this notebook is to learn about the Scikit-Learn library (official documentation) and clustering. You can find a good guide

at this link.

You can find an overview of all the available clustering algorithms in Scikit-Learn here.

Outline

1. Load Dataset

2. K-Means

3. Hierarchical Clustering

4. DBScan

5. Chameleon clusters data

First, run the following cell to import some useful libraries to complete this Lab. If not already done, you must install them in your virtual

environment

If the previous cell outputs one the following error: ModuleNotFoundError: No module named 'sklearn' , then, you have to install

the Scikit-Learn package. If you don't remember how to install a Python package, please retrieve the guide on Anaconda-Navigator.

To install sklearn you can use one of the following commands from the terminal of your virtual environment:

pip install -U scikit-learn
conda install -c intel scikit-learn

1. Load dataset

Exercise 1.1

Firstly, you will load the first dataset for this lab. Read the csv file from the following path "data_lab6/lab6_data.csv"  into a

DataFrame df . The separator of the csv file is the comma , . You should skip the header of the first row (i.e., skip the first row) and set

the column names to the list stored in the variable columns .

Hints

x y gt

0 516.012706 393.014514 0

1 436.211762 408.656585 0

2 512.052601 372.022014 0

3 489.140464 401.807159 0

4 446.207986 338.516682 0

... ... ... ...

331 638.916471 323.569096 1

332 542.005901 347.527070 0

333 611.964612 377.254978 0

334 520.654168 455.996453 0

335 594.479314 392.901455 0

336 rows × 3 columns

Expected output

In [1]: import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.mixture import GaussianMixture
from sklearn.metrics import silhouette_score, adjusted_rand_score

In [49]: columns = ['x', 'y', 'gt']

#### START CODE HERE (~1 line) ####
df = pd.read_csv("data_lab6/lab6_data.csv", sep=",", names=columns, skiprows=1)
#### END CODE HERE ####

df

Out[49]:

https://scikit-learn.org/stable/
https://www.w3schools.com/python/python_ml_k-means.asp
https://scikit-learn.org/stable/modules/clustering.html
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x             y     gt
0    516.012706  393.014514  0
1    436.211762  408.656585  0
2    512.052601  372.022014  0
3    489.140464  401.807159  0
4    446.207986  338.516682  0
...         ...         ...    ...
331  638.916471  323.569096  1
332  542.005901  347.527070  0
333  611.964612  377.254978  0
334  520.654168  455.996453  0
335  594.479314  392.901455  0
336 rows × 3 columns

The dataset is composed of the x  and y  coordinates for 336 points, and the True label in the column gt . The next cell will create a

DataFrame with the input features (i.e., all the x  and y  coordinates of the points) into a new DataFrame df_X , and a Series containing

the ground-truth labels gt_series . Run the next cell to create the DataFrame and the Series. Notice that, in this case, we also have the

true labels. Normally, when using clustering, the true labels are not available.

The next cell defines a function that takes a DataFrames in input, and plots the scatter plot (i.e., the points) contained in the x  and y
columns. Run the next cell to define the function.

The next cell calls the previously defined function and plots all the points in the input dataset in the plane. All points are plotted with the

same color because you still have not applied clustering. Run the next cell to plot all the points in the plane.

Notice that, with 2-dimensional data (like in this case), you can easily visualize the number of clusters because you can plot the points in a

plane. In this case, it is reasonable to think that there are 3 distinct clusters. However, the procedure that we will apply in this notebook can

also be applied with higher dimensional data, which is not visualizable in a plane. Therefore, for high dimensional data, it is challenging to

visualize the correct number of clusters. You have to select the best number of clusters based on the analysis of the data.

The next cell defines a function that visualizes each cluster in a plane with a different color. It takes as parameters the points stored in a

DataFrame df  with the  and  coordinates of points stored in the x  and y  columns, respectively, the list with the predicted cluster id

for each point y_pred , and an optional plot title title . Run the next cell to define the function.

In [4]: df_X = df[["x","y"]].copy()
gt_series = df["gt"].copy()

In [5]: def plot_2d_scatter(df, title=""): 
    """Display a 2D scatter plot
    :param df: input data points, DataFrame ('x' and 'y' coordinates in the first and second column, respectively)
    :return: fig, ax, objects
    """
    fig, ax = plt.subplots(figsize=(6, 5), dpi=90) 
    ax.scatter(df.iloc[:,0], df.iloc[:,1])
    ax.set_xlabel("x", fontsize=14)
    ax.set_ylabel("y", fontsize=14)
    ax.set_title(title)
    ax.grid(True)
    return fig, ax # use them for further modifications

In [6]: _, _ = plot_2d_scatter(df_X, "Points in the plane")

x y
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Firstly, we will plot the points with a different color based on the ground-truth labels present in the dataset. As discussed before, this

dataset contains the true labels. However, the true labels are usually not available when performing clustering. We can see that there are 3

well-separated different clusters. However, some noise is present in the clusters (i.e., some green points are closer to the blue cluster

than to the green one, etc.).

Run the next cell to plot the points based on the ground-truth.

2. K-Means

Exercise 2.1

We know from the ground-truth plot that the best number of clusters is 3. Now you will perform the K-Means algorithm with 3 as the

number of clusters  to see if the algorithm can correctly identify the clusters. Create a KMeans object into a variable called kmeans
with 3 as the number of clusters  and the number of initialization equal to 10 with the n_init  parameter (the n_init parameter specifies

the number of times the k-means algorithm is run with different centroid seeds). Then, fit the KMeans algorithm and predict the cluster

label for the input points stored in df_X . Store the predicted label in a new variable called y_pred_kmeans .

You can read the official documentation for the Scikit-Learn implementation of the K-Means algorithm here.

Hints

In [7]: def plot_2d_scatter_with_clusters(df, y_pred, title=""): 
    """Display a 2D scatter plot with each cluster with a different color
    :param df: input data points, DataFrame ('x' and 'y' coordinates in the 'x' and 'y' columns, respectively)
    :param y_pred: numpy array with the predicted label for each pointù
    :param title: string containing the title of the chart
    :return: fig, ax, objects
    """    
    fig, ax = plt.subplots(figsize=(6, 5), dpi=90) 
    ax.set_xlabel("x", fontsize=14)
    ax.set_ylabel("y", fontsize=14)
    
    n_clusters = list(set(y_pred)) 
    labels = [f"Cluster {c}" for c in n_clusters]
    
    for i, label in enumerate(n_clusters):
        
        if label == -1:
            label_name = "Outliers"
        else:
            label_name = labels[i]

        #add data points 
        ax.scatter(x=df.loc[y_pred==label, 'x'], 
                    y=df.loc[y_pred==label,'y'], 
                    alpha=0.7, label=label_name)
        
    ax.legend(loc=(1.1, 0.5))
    ax.set_title(title)
    ax.grid(True)
    
    return fig, ax # use them for further modifications

In [8]: _, _ = plot_2d_scatter_with_clusters(df_X, gt_series, "Ground-Truth")

k

k

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Now, run the next cell to visualize the predicted clusters in the plane.

The chart shows that the algorithm, with this data, can correctly identify the 3 clusters.

Exercise 2.2

Often, you cannot visualize the results of the clustering algorithm graphically because the input features can be high-dimensional.

Moreover, usually, the true labels are not available when performing clustering (i.e., unsupervised learning). Now, you will evaluate the

performance of the K-Means algorithm with  with the silhouette metric.

Compute the average silhouette for the cluster division with  into a variable silh_avg . Then, print the silhouette value.

Remember, the silhouette is a score in the range [-1, 1] that measures the cohesion and the separation of clusters (i.e., points within the

same cluster must be very cohesive with each other and well separated from points in other clusters). The higher the value, the better the

cluster. You can learn more about silhouette here and here.

Hints

0.6112689520666093

Expected output

0.6112689520666093

The silhouette value shows that K-Means algorithm with  performs well with a value that is approximately 0.61.

Exercise 2.3

Now, you will evaluate the predicted clusters with respect to the true labels. Again, usually, the true labels are not available. Therefore,

you cannot evaluate the clustering algorithm with the true labels. However, the true labels can be available to some datasets used to

evaluate new clustering algorithms (e.g., if you want to propose a new clustering algorithm). As a quantitative evaluation metric you can

use the rand index. You can learn more about rand index here.

The Rand index always takes on a value between 0 and 1, where 0 indicates that two clustering methods do not agree on the clustering of

any pair of elements, and 1 indicates that two clustering methods perfectly agree on the clustering of every pair of elements (i.e., the higher

the value, the better the performance of the algorithm).

Now, compute and print the rand index of the predicted cluster labels and the true labels. Remember that the true labels are stored in the

gt_series  variable.

Hints

In [9]: #### START CODE HERE (~2 lines) ####
kmeans = KMeans(n_clusters=3, n_init=10)
y_pred_kmeans = kmeans.fit_predict(df_X)
#### END CODE HERE ####

In [10]: _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_kmeans, "K-Means with $k=3$")

k = 3

k = 3

In [11]: #### START CODE HERE (~2 lines) ####
silh_avg = silhouette_score(df_X, y_pred_kmeans)
print(silh_avg)
#### END CODE HERE ####

k = 3

https://tushar-joshi-89.medium.com/silhouette-score-a9f7d8d78f29
https://towardsdatascience.com/silhouette-coefficient-validating-clustering-techniques-e976bb81d10c
https://www.statology.org/rand-index/
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0.9308764986695224

Expected output

0.9308764986695224

The rand index value shows that K-Means algorithm with  performs well. It correctly assigns most of the cluster labels.

Exercise 2.4

Can we identify the best number of clusters  without visualizing the ground-truth or the points in a plane?

As discussed before, ground-truth labels are usually not available. Moreover, clustering can also be performed with high dimensional data

where you can not visualize the samples in a plane (i.e., identifying the number of clusters just by visualizing it will be difficult).

Now you will perform the KMeans algorithm for different values of . Then, you will visualize and evaluate each  division to

select the best  with the silhouette score and the cluster charts.

Implement a loop for each value of  from min_k  to max_k  (both included). Then, for each value of  (i.e., each iteration) create a

KMeans object with the current number of clusters and the parameter n_init  equal to 10. Predict the cluster labels for the points stored

in df_X  with the current  (i.e., using the current kmeans object). Append to y_pred_list  the predicted cluster labels for the current 

. Compute the current silhouette and append it to silh_list .

You can read the official documentation for the Scikit-Learn implementation of the K-Means algorithm here.

Replace None  with your code.

The next cell visualizes the plots of all the  values

In [12]: #### START CODE HERE (~2 lines) ####
ars = adjusted_rand_score(gt_series, y_pred_kmeans)
print(ars)
#### END CODE HERE ####

k = 3

k

k ∈ [2, 10] k

k

k k

k k

In [34]: min_k = 2 # Starting from 2 clusters
max_k = 10 # Until 10 clusters

silh_list = [] # List of avg silouhette values for each cluster division (k)
y_pred_list = [] # list of numpy arrays containing the predicted clusters labels for each k

#### START CODE (~6 lines) HERE ####
for k in range(min_k, max_k+1): # Define a loop for each k in [2, 10] (both included)
    kmeans_k = KMeans(n_clusters=k, n_init=10) # Create the K-Means object with current k
    y_pred_kmeans_k = kmeans_k.fit_predict(df_X) # Predict the cluster labels with current k
    
    y_pred_list.append(y_pred_kmeans_k) # Append the list of predicted cluster labels 
    
    silh_avg_k = silhouette_score(df_X, y_pred_kmeans_k) # Compute the average silhouette for current k
    silh_list.append(silh_avg_k) # Append the average silhoette
    
#### END CODE HERE ####

k

In [36]: for k in range(min_k, max_k+1):
    _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_list[k-min_k], f"K-Means Clustering with {k} clusters")

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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What do you think is the best k-value? Why?

Now, you will plot the average silhouette value for each  value analyzed. Please, run the next cell to visualize the plot.

In [15]: #### START ANSWER HERE ####

#### END ANSWER HERE ####

k

In [16]: fig, ax = plt.subplots(figsize=(7, 4))
x = range(len(silh_list))
x_ticks = range(min_clusters, max_clusters+1)

ax.plot(x, silh_list, marker='*')
ax.set_xticks(x, x_ticks)
ax.set_xlabel("Number of clusters (k)")
ax.set_ylabel("Silhouette")
ax.grid(True)
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From this silhouette graph, what do you think is the best k-value? Has your answer changed since before?

3. Hierarchical Clustering

Here, is already provided to you the code to run the Hierarchical clustering. Run the next cells to perform the hierarchical clustering. The

dendrogram of the hierarchical clustering is automatically cut to match the n_clusters  specified. You can read the documentation of the

agglomerative clustering here.

0.6110715619378334

You can see that the result is practically the same.

4. DBScan

Here, is already provided to you the code to run the Density-based clustering (dbscan). Run the next cells to perform the dbscan

clustering. The dbscan does not require the specification of the number of clusters. Moreover, it also identifies the outliers. However, it

require the specification of two parameters: epsilon and the minimum number of points that are often difficult to set. You can read the

documentation of the dbscan clustering here.

In [17]: #### START ANSWER HERE ####

#### END ANSWER HERE ####

In [18]: n_clusters = 3
hc = AgglomerativeClustering(n_clusters)
y_pred_hc = hc.fit_predict(df_X)

In [19]: _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_hc, f"Hierarchical Clustering with {n_clusters} clusters")

In [50]: silh_avg_hc = silhouette_score(df_X, y_pred_hc)
print(silh_avg_hc)

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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The red points are the outliers.

5. Chameleon clusters data

Now, you will move to another dataset, the chameleon_clusters  data. This time the true labels are not available. The next cell loads the

data into a DataFrame df_X_cc . Please run the next cell to load the data.

x y

0 68.601997 102.491997

1 454.665985 264.808990

2 101.283997 169.285995

3 372.614990 263.140991

4 300.989014 46.555000

... ... ...

7995 442.420990 303.721985

7996 495.451996 288.502991

7997 267.605011 141.725006

7998 238.358002 252.729996

7999 159.242004 177.431000

8000 rows × 2 columns

Run the next cell to plot the points in the plane.

In [21]: dbscan = DBSCAN(eps=20, min_samples=10)

In [22]: y_pred_dbscan= dbscan.fit_predict(df_X)

In [23]: _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_dbscan, "DBScan Clustering")

In [39]: df_X_cc = pd.read_csv("data_lab6/chameleon_clusters.csv", sep=",")
df_X_cc

Out[39]:

In [40]: _, _ = plot_2d_scatter(df_X_cc, "Points in the plane")
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You can see that this time the points are distributed in a more complicated manner. It is also more difficult to identify the best number of

clusters. In addition, there are many points that are outliers.

Exercise 5.1

Now, you will implement the same loop as for exercise 2.4. The loop iterates over different values of  from min_k  to max_k . For each 

value (i.e., each iteration) create a KMeans object with the current number of clusters and the parameter n_init  equal to 10. Predict the

cluster labels for the points stored in df_X_cc  with the current  (i.e., using the current kmeans object). Append to y_pred_list  the

predicted cluster labels for the current . Compute the current silhouette and append it to silh_list .

You can read the official documentation for the Scikit-Learn implementation of the K-Means algorithm here.

Replace None  with your code.

The next cell visualizes the clusters plots of all the  values.

k k

k

k

In [41]: min_k = 2 # Starting from 2 clusters
max_k = 10 # Until 10 clusters
silh_list = [] # List of avg silouhette values for each cluster division (k)
y_pred_list = [] # list of numpy arrays containing the predicted clusters labels for each k

#### START CODE (~6 lines) HERE ####
for k in range(min_k, max_k+1): # Define a loop for each k in [min_k, max_k]
    kmeans_k = KMeans(n_clusters=k, n_init=10) # Define the kmeans object with current k and n_init = 10
    y_pred_kmeans_k = kmeans_k.fit_predict(df_X_cc) # Predict the cluster labels with current k
    
    y_pred_list.append(y_pred_kmeans_k) # Append the predicted labels to the list of predictions
    
    silh_avg_k = silhouette_score(df, y_pred_kmeans_k) # Compute the average silhouette for the current k
    silh_list.append(silh_avg_k) # Append the current average silhouette to the list of silhouette values
#### END CODE HERE ####

k

In [42]: for k in range(min_k, max_k+1):
    _, _ = plot_2d_scatter_with_clusters(df_X_cc, y_pred_list[k-min_k], f"K-Means Clustering with {k} clusters")

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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In this case, KMeans performs worse. In fact, it fails to detect clusters correctly. You can see that it tends to form spherical clusters.

Moreover, it is not suitable for clusters and points with different densities.

Now, you will plot the average silhouette value for each  value analyzed. Please, run the next cell to visualize the plot.k

In [28]: fig, ax = plt.subplots(figsize=(7, 4))
x = range(len(silh_list))
x_ticks = range(min_clusters, max_clusters+1)

ax.plot(x, silh_list, marker='*')
ax.set_xticks(x, x_ticks)
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From the silhouette graph, the best k-number seems to be 2. However, we can visually see that it is not very effective.

Exercise 5.2

For this type of data with different densities, dbscan may be a better choice. Perform the clustering with the dbscan algorithm for the data

stored in df_X_cc . Store the predicted labels in a variable y_pred_dbscan . Set the parameters of the DBSCAN object as follows:

eps =10 and min_samples =20. Go ahead and try changing the values to see how the results change. You can read the documentation of

the dbscan clustering here.

Now, run the next cell to plot the results.

Graphically, you can see that the DBScan seems to perform much better in this case. It can identify clusters of points and also outliers.

ax.set_xlabel("Number of clusters (k)")
ax.set_ylabel("Silhouette")
ax.grid(True)

In [47]: #### START CODE HERE (~2 lines) ####
dbscan = DBSCAN(eps=10, min_samples=20)
y_pred_dbscan = dbscan.fit_predict(df_X_cc)
#### END CODE HERE ####

In [45]: _, _ = plot_2d_scatter_with_clusters(df_X_cc, y_pred_dbscan, "DBScan Clustering")

In [ ]:  

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

