Lab 5 Solution

April 22, 2024

1 LAB 05-Python version

Luca Catalano, Daniele Rege Cambrin, Eleonora Poeta

1.0.1 Disclaimer

The purpose of creating this material is to enhance the knowledge of students who are interested in learning how to solve problems presented in laboratory classes using Python. This decision stems from the observation that some students have opted to utilize Python for tackling exam projects in recent years.

To solve these exercises using Python, you need to install Python (version 3.9.6 or later) and some libraries using pip or conda.

Here's a list of the libraries needed for this case:

- os: Provides operating system dependent functionality, commonly used for file operations such as reading and writing files, interacting with the filesystem, etc.
- pandas: A data manipulation and analysis library that offers data structures and functions to efficiently work with structured data.
- numpy: A numerical computing library that provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
- matplotlib.pyplot: A plotting library for creating visualizations like charts, graphs, histograms, etc.
- sklearn: Machine learning algorithms and tools.
- xlrd: A Python library used for reading data and formatting information from Excel files (.xls and .xlsx formats). It provides functionality to extract data from Excel worksheets, including cells, rows, columns, and formatting details.

You can download Python from here and follow the installation instructions for your operating system.

For installing libraries using pip or conda, you can use the following commands:

- Using pip:

```
pip install pandas numpy matplotlib ltk scikit-learn xlrd
```

- Using conda:

```
conda install pandas numpy matplotlib scikit-learn xlrd
```

Make sure to run these commands in your terminal or command prompt after installing Python. You can also execute them in a cell of a Jupyter Notebook file (.ipynb) by starting the command with '!!

2 Exercise 1

Import some libraries
[1]:

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import export_text
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
```


2.1 Read file excel "user.xlsx"

To read the Excel file using a function integrated into the pandas library, you can use the pd.read_excel() function. Rewrite the instruction with the argument as the path of the file to be read
[2]:

```
# Read file excel
dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/
    ccom~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB05/
    ヶLab5Materiale/user.xlsx")
```

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no
default style, apply openpyxl's default
warn("Workbook contains no default style, apply openpyxl's default")

In a Jupyter Notebook cell, you can print a subset of the representation by simply calling the name of the variable containing the DataFrame.
[3](%5Cbegin%7Btabular%7D%7Blrrrr%7D) :

```
# print dataset
dataset
```

\& Age \& Workclass \& Education \& Marital Status

0 \& 39.0 \& State-gov \& Bachelors \& Never-married

1 \& 50.0 \& Self-emp-not-inc \& Bachelors \& Married-civ-spouse

2 \& 38.0 \& Private \& HS-grad \& Divorced

3 \& 53.0 \& Private \& 11th \& Married-civ-spouse

4 \& 28.0 \& Private \& Bachelors \& Married-civ-spouse

\ldots \& \ldots \& \ldots \& \ldots \& \ldots

995 \& 56.0 \& Private \& HS-grad \& Married-civ-spouse

996 \& 45.0 \& Private \& Masters \& Divorced
\end{tabular}

Federal-gov

Bachelors	Divorced
Some-college	Married-civ-spouse
Bachelors	Married-civ-spouse

999 39.0 Self-emp-inc Bachelors Married-civ-spouse

0	Adm-clerical	Not-in-family	White	Male	United-States	Negative
1	Exec-managerial	Husband	White	Male	United-States	Negative
2	Handlers-cleaners	Not-in-family	White	Male	United-States	Negative
3	Handlers-cleaners	Husband	Black	Male	United-States	Negative
4	Prof-specialty	$\ldots .$.	Wife	Black	Female	Cuba
Negative						
\ldots	$\ldots . .$.	\ldots		\ldots	\ldots	
995	Exec-managerial	Husband	White	Male	United-States	Positive
996	Prof-specialty	Not-in-family	White	Male	United-States	Negative
997	Exec-managerial	Unmarried	White	Male	United-States	Positive
998	Machine-op-inspct	Husband	White	Male	United-States	Negative
999	Exec-managerial	Husband	White	Male	United-States	Positive

[1000 rows x 10 columns]

2.2 Define the label column in the dataset data frame

Rename the 'Response' column to 'Label' [use dataset.rename(columns=\{'actual_col_name': 'new__col__name'\})]
[4]:

```
# rename column Response to Label
dataset = dataset.rename(columns={'Response': 'Label'})
```

[5](%5Cbegin%7Btabular%7D%7Blrrrr%7D) :

```
# print datsaset to check if the column has been renamed
dataset
```

\& Age \& Workclass \& Education \& Marital Status

0 \& 39.0 \& State-gov \& Bachelors \& Never-married

1 \& 50.0 \& Self-emp-not-inc \& Bachelors \& Married-civ-spouse

2 \& 38.0 \& Private \& HS-grad \& Divorced

3 \& 53.0 \& Private \& 11th \& Married-civ-spouse

4 \& 28.0 \& Private \& Bachelors \& Married-civ-spouse

\ldots \& $\ldots .$. \& \ldots \& \ldots

995 \& 56.0 \& Private \& HS-grad \& Married-civ-spouse

996 \& 45.0 \& Private \& Masters \& Divorced

997 \& 48.0 \& Federal-gov \& Bachelors \& Divorced

998 \& 40.0 \& Private \& Some-college \& Married-civ-spouse

999 \& 39.0 \& Self-emp-inc \& Bachelors \& Married-civ-spouse
\end{tabular}

	Occupation	Relationship	Race	Sex Native Country	Label	
0	Adm-clerical	Not-in-family	White	Male	United-States	Negative
1	Exec-managerial	Husband	White	Male	United-States	Negative
2	Handlers-cleaners	Not-in-family	White	Male	United-States	Negative

3	Handlers-cleaners	Husband	Black	Male	United-States	Negative
4	Prof-specialty	Wife	Black	Female	Cuba	Negative
\ldots	$\ldots . .$.	\ldots	\ldots	\ldots		
995	Exec-managerial	Husband	White	Male	United-States	Positive
996	Prof-specialty	Not-in-family	White	Male	United-States	Negative
997	Exec-managerial	Unmarried	White	Male	United-States	Positive
998	Machine-op-inspct	Husband	White	Male	United-States	Negative
999	Exec-managerial	Husband	White	Male	United-States	Positive

2.3 Separate the dataset into features, referred to as X, and labels, referred to as y. Afterwards, utilize Label Encoder to encode the categorical features.

[You can achieve this by selecting columns using the [] operator on the dataframe, then initializing the Label Encoder and applying its fit_transform method]
[6]:

```
# Split the dataset into features (X) and target variable (y)
X = dataset.drop(columns=['Label']) # Features
y = dataset['Label'] # Target variable
# Label encoding
labelencoder = LabelEncoder()
# Apply label encoding to each column, except for the age column
for column in X.columns:
    if column != 'Age':
            X[column] = labelencoder.fit_transform(X[column])
# print X
X
```


2	4	1		27
3	2	1		27
4	2	0		4
\ldots	\cdots	\ldots		\cdots

[1000 rows x 9 columns]

2.4 Use the decision tree classifier model.

Set these parameters:

- Criterion: 'entropy'
- Max Depth: 20
- Min Impurity Decrease: 0.001
[Use DecisionTreeClassifier() and its .fit function]
[7]:

```
# Initialize the Decision Tree Classifier
clf = DecisionTreeClassifier(criterion='entropy', max_depth=20,\sqcup
    min_impurity_decrease=0.001)
# Train the Decision Tree Classifier
clf.fit(X, y)
```

[7]: DecisionTreeClassifier(criterion='entropy', max_depth=20, min_impurity_decrease=0.001)

2.5 Print the structure of the decision tree

[use export__text(classifier_name, feature__names=list(x.columns))]
[8] :

```
# Print the structure of the decision tree
tree_structure = export_text(clf, feature_names=list(X.columns))
print(tree_structure)
```

|--- Marital Status $<=2.50$
| |--- Marital Status <= 1.50
| | |--- Education $<=10.50$
| | | |--- Workclass $<=0.50$
| | | | |--- class: Positive
| | | |--- Workclass > 0.50
$|\quad| \quad|\quad|---$ Education <= 8.50
$|||||\mid--$ Age $<=42.50$
$|||||\mid--$ Age $<=34.50$
$|\quad| \quad|\quad| \quad|\quad| \quad \mid--$ class: Negative

2.6 Use the trained model on unseen data

Now that we have trained the model using the fit function, we can apply it to a dataset that the model hasn't seen before and evaluate its performance. [We'll use the variable clf that was declared previously (without redefining it) and apply the predict function to make predictions on the new dataset]

Another way to store the trained model for later reuse is by using serialization techniques such as joblib or pickle. These libraries allow you to save the trained model to a file, which can then be loaded and used whenever needed without having to retrain the model from scratch.

2.6.1 Load the new dataset "prospects.xlsx"

[10]:

```
# load the new dataset. [Use pd.read_excel() function to load the dataset. Use
    \leftrightarrow \text { the path of the file as an argument of the function.]}
new_dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/
    ヶcom~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB05/
    &Lab5Materiale/prospect.xlsx")
```

/Users/luca/Library/Python/3.9/lib/python/sitepackages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no default style, apply openpyxl's default
warn("Workbook contains no default style, apply openpyxl's default")
[11](%5Cbegin%7Btabular%7D%7Blrrrr%7D):

```
# print the new dataset
new_dataset
```

\& Age \& Workclass \& Education \& Marital Status

0 \& 25.0 \& Private \& HS-grad \& Never-married

1 \& 46.0 \& Private \& 9th \& Married-civ-spouse

2 \& 37.0 \& Private \& 1st-4th \& Married-civ-spouse

3 \& 41.0 \& Private \& Some-college \& Married-civ-spouse

4 \& 44.0 \& Private \& HS-grad \& Never-married

\ldots \& \ldots \& \ldots \& \ldots

28255 \& 27.0 \& Private \& Assoc-acdm \& Married-civ-spouse

28256 \& 40.0 \& Private \& HS-grad \& Married-civ-spouse

28257 \& 58.0 \& Private \& HS-grad \& Widowed

28258 \& 22.0 \& Private \& HS-grad \& Never-married

28259 \& 52.0 \& Self-emp-inc \& HS-grad \& Married-civ-spouse
\end{tabular}

	Occupation Relationship		Race	Sex
0	Farming-fishing	Unmarried	White	Male
1	Other-service	Husband	White	Male
2	Craft-repair	Husband	Asian-Pac-Islander	Male
3	Craft-repair	Husband	White	Male
4	Adm-clerical	Own-child	White	Male
...	
28255	Tech-support	Wife	White	Female
28256	Machine-op-inspct	Husband	White	Male
28257	Adm-clerical	Unmarried	White	Female
28258	Adm-clerical	Own-child	White	Male
28259	Exec-managerial	Wife	White	Female

	Native Country
0	United-States
1	United-States
2	Cambodia
3	United-States
4	United-States
$\ldots .$.	
28255	United-States
28256	United-States
28257	United-States
28258	United-States
28259	United-States

```
[28260 rows x 9 columns]
```

Please be mindful that in this scenario, we lack the variable "Label" (nor "Response"). As a matter of fact, we are unaware of the outcomes, yet we aim to forecast them using a model pre-trained on actual values.

2.7 Utilize Label Encoder to encode the categorical features.

[Rename the dataframeas X, then initializing the Label Encoder and applying the fit_transform method]

2.8 Apply the pretrained Decision Tree model

[13]:

```
# Predict the target variable of the new dataset
y_pred = clf.predict(X)
# print the prediction
y_pred
```

[13]:

```
array(['Negative', 'Negative', 'Negative', ..., 'Negative', 'Negative',
'Positive'], dtype=object)
```


3 Exercise 2

3.1 Read file excel "user.xlsx"

To read the Excel file using a function integrated into the pandas library, you can use the pd.read_excel() function. Rewrite the instruction with the argument as the path of the file to be read
[14]:

```
dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/
    ¢com~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB05/
    "Lab5Materiale/user.xlsx")
```

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no default style, apply openpyxl's default
warn("Workbook contains no default style, apply openpyxl's default")
In a Jupyter Notebook cell, you can print a subset of the representation by simply calling the name of the variable containing the DataFrame.
[15](%5Cbegin%7Btabular%7D%7Blrrrr%7D) :

```
# print dataset
dataset
```

\& Age \& Workclass \& Education \& Marital Status

0 \& 39.0 \& State-gov \& Bachelors \& Never-married

1 \& 50.0 \& Self-emp-not-inc \& Bachelors \& Married-civ-spouse

2 \& 38.0 \& Private \& HS-grad \& Divorced

3 \& 53.0 \& Private \& 11th \& Married-civ-spouse

4 \& 28.0 \& Private \& Bachelors \& Married-civ-spouse

\ldots \& \ldots \& \ldots \& \ldots \& \ldots

995 \& 56.0 \& Private \& HS-grad \& Married-civ-spouse

996 \& 45.0 \& Private \& Masters \& Divorced

997 \& 48.0 \& Federal-gov \& Bachelors \& Divorced

998 \& 40.0 \& Private \& Some-college \& Married-civ-spouse

999 \& 39.0 \& Self-emp-inc \& Bachelors \& Married-civ-spouse
\end{tabular}

Occupation	Relationship	Race	Sex Native Country
Adm-clerical	Not-in-family	White	Male

1	Exec-managerial	Husband	White	Male	United-States	Negative
2	Handlers-cleaners	Not-in-family	White	Male	United-States	Negative
3	Handlers-cleaners	Husband	Black	Male	United-States	Negative
4	Prof-specialty	Wife	Black	Female	Cuba	Negative
\ldots	\ldots	$\ldots . .$.	\ldots		\ldots	\ldots

[1000 rows x 10 columns]

3.2 Define the label column in the dataset data frame

Rename the 'Response' column to 'Label' [use dataset.rename(columns=\{'actual_col_name': 'new_col__name'\})]
[16]:

```
# rename column Response to Label
dataset = dataset.rename(columns={'Response': 'Label'})
```

[17](%5Cbegin%7Btabular%7D%7Blrrrr%7D):

```
# print datsaset to check if the column has been renamed
dataset
```

\& Age \& Workclass \& Education \& Marital Status

0 \& 39.0 \& State-gov \& Bachelors \& Never-married

1 \& 50.0 \& Self-emp-not-inc \& Bachelors \& Married-civ-spouse

2 \& 38.0 \& Private \& HS-grad \& Divorced

3 \& 53.0 \& Private \& 11th \& Married-civ-spouse

4 \& 28.0 \& Private \& Bachelors \& Married-civ-spouse

\ldots \& $\ldots .$. \& \ldots \& \ldots

995 \& 56.0 \& Private \& HS-grad \& Married-civ-spouse

996 \& 45.0 \& Private \& Masters \& Divorced

997 \& 48.0 \& Federal-gov \& Bachelors \& Divorced

998 \& 40.0 \& Private \& Some-college \& Married-civ-spouse

999 \& 39.0 \& Self-emp-inc \& Bachelors \& Married-civ-spouse
\end{tabular}

	Occupation	Relationship	Race	Sex Native Country	Label	
0	Adm-clerical	Not-in-family	White	Male	United-States	Negative
1	Exec-managerial	Husband	White	Male	United-States	Negative
2	Handlers-cleaners	Not-in-family	White	Male	United-States	Negative
3	Handlers-cleaners	Husband	Black	Male	United-States	Negative
4	Prof-specialty	Wife	Black	Female	Cuba	Negative
\ldots	\ldots	\ldots	\ldots.		\ldots	\ldots

| 998 | Machine-op-inspct | Husband White | Male United-States Negative |
| :--- | ---: | :--- | :--- | :--- |
| 999 | Exec-managerial | Husband White | Male United-States Positive |

[1000 rows x 10 columns]
3.3 Separate the dataset into features, referred to as X, and labels, referred to as y. Afterwards, utilize Label Encoder to encode the categorical features.
[You can achieve this by selecting columns using the [] operator on the dataframe, then initializing the Label Encoder and applying the fit_transform method]
[18](%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7C%7D):

```
# Split the dataset into features (X) and target variable (y)
X = dataset.drop(columns=['Label']) # Features
y = dataset['Label'] # Target variable
# Label encoding
labelencoder = LabelEncoder()
# Apply label encoding to each column, except for the age column
for column in X.columns:
        if column != 'Age':
            X[column] = labelencoder.fit_transform(X[column])
# print X
X
```

\hline \& Age \& Workclass \& Education \& Marital Status \& Occupation \& Relationship

\hline 0 \& 39.0 \& 5 \& 9 \& 4 \& 0 \& 1

\hline 1 \& 50.0 \& 4 \& 9 \& 2 \& 3 \& 0

\hline 2 \& 38.0 \& 2 \& 11 \& 0 \& 5 \& 1

\hline 3 \& 53.0 \& 2 \& 1 \& 2 \& 5 \& 0

\hline 4 \& 28.0 \& 2 \& 9 \& 2 \& 9 \& 5

\hline . \& ... \& ... \& ... \& ... \& \cdots \& \cdots

\hline 995 \& 56.0 \& 2 \& 11 \& 2 \& 3 \& 0

\hline 996 \& 45.0 \& 2 \& 12 \& 0 \& 9 \& 1

\hline 997 \& 48.0 \& 0 \& 9 \& 0 \& 3 \& 4

\hline 998 \& 40.0 \& 2 \& 15 \& 2 \& 6 \& 0

\hline 999 \& 39.0 \& 3 \& 9 \& 2 \& 3 \& 0

\hline
\end{tabular}

	Race	Sex	Native	Country
0	4	1		27
1	4	1		27
2	4	1		27
3	2	1		27
4	2	0		4
\ldots	$\ldots . .$.		\ldots	
995	4	1		27
996	4	1		27

997	4	1	27
998	4	1	27
999	4	1	27
[1000 rows x 9	columns]		

3.4 Validation of Decision Tree classification model using Cross Validation

Cross-validation is a technique used to assess the performance and generalization ability of machine learning models, particularly in the context of classification tasks. It involves partitioning the dataset into multiple subsets, known as folds.

1. Partitioning the Dataset: The dataset is divided into k equal-sized folds.
2. Training and Testing: The model is trained k times, each time using $\mathrm{k}-1$ folds for training and the remaining fold for testing.
3. Evaluation: The performance of the model is evaluated on each fold, and the results are averaged to obtain a robust estimate of the model's performance.
4. Advantages: Cross-validation provides a more reliable estimate of the model's performance compared to a single train-test split. It helps to detect overfitting and assesses the model's ability to generalize to unseen data.
[Use cross_val_score and cross_val_predict to perform cross-validation easily. Follow the same instruction of Exercise 1 to initialise and use the model]

Set these parameters for Decision Classfier model:

- Criterion: 'entropy'
- Max Depth: 25
- Min Impurity Decrease: 0.01
[19]:

```
# Initialize the decision tree classifier
clf = DecisionTreeClassifier(criterion='entropy', max_depth=25,\sqcup
    `min_impurity_decrease=0.01)
# Perform cross-validation predictions
y_pred = cross_val_predict(clf, X, y, cv=5)
# Calculate confusion matrix
conf_matrix = confusion_matrix(y, y_pred)
# Evaluate accuracy
accuracy = accuracy_score(y, y_pred)
# Print accuracy
print("Accuracy:", accuracy)
# Print confusion matrix
conf_matrix = pd.DataFrame(conf_matrix, columns=['Predicted No', 'Predicted
    ¢Yes'], index=['Actual No', 'Actual Yes'])
```

conf_matrix

Accuracy: 0.808
[19]: Predicted No Predicted Yes

Actual No	730	38
Actual Yes	154	78

