
Lab 5 Solution

April 22, 2024

1 LAB 05 - Python version
Luca Catalano, Daniele Rege Cambrin, Eleonora Poeta

1.0.1 Disclaimer

The purpose of creating this material is to enhance the knowledge of students who are interested in
learning how to solve problems presented in laboratory classes using Python. This decision stems
from the observation that some students have opted to utilize Python for tackling exam projects
in recent years.

To solve these exercises using Python, you need to install Python (version 3.9.6 or later) and some
libraries using pip or conda.

Here’s a list of the libraries needed for this case:

• os: Provides operating system dependent functionality, commonly used for file operations
such as reading and writing files, interacting with the filesystem, etc.

• pandas: A data manipulation and analysis library that offers data structures and functions
to efficiently work with structured data.

• numpy: A numerical computing library that provides support for large, multi-dimensional
arrays and matrices, along with a collection of mathematical functions to operate on these
arrays.

• matplotlib.pyplot: A plotting library for creating visualizations like charts, graphs, his-
tograms, etc.

• sklearn: Machine learning algorithms and tools.
• xlrd: A Python library used for reading data and formatting information from Excel files

(.xls and .xlsx formats). It provides functionality to extract data from Excel worksheets,
including cells, rows, columns, and formatting details.

You can download Python from here and follow the installation instructions for your operating
system.

For installing libraries using pip or conda, you can use the following commands:

• Using pip:

pip install pandas numpy matplotlib ltk scikit-learn xlrd

• Using conda:

conda install pandas numpy matplotlib scikit-learn xlrd

1

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/
https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Make sure to run these commands in your terminal or command prompt after installing Python.
You can also execute them in a cell of a Jupyter Notebook file (.ipynb) by starting the command
with ‘!’.

2 Exercise 1
Import some libraries

[1]: import pandas as pd

from sklearn.preprocessing import LabelEncoder
from sklearn.tree import export_text
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix

2.1 Read file excel “user.xlsx”
To read the Excel file using a function integrated into the pandas library, you can use the
pd.read_excel() function. Rewrite the instruction with the argument as the path of the file
to be read

[2]: # Read file excel
dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/

↪com~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB05/
↪Lab5Materiale/user.xlsx")

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no
default style, apply openpyxl's default

warn("Workbook contains no default style, apply openpyxl's default")

In a Jupyter Notebook cell, you can print a subset of the representation by simply calling the name
of the variable containing the DataFrame.

[3]: # print dataset
dataset

[3]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced

2

997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Response
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

2.2 Define the label column in the dataset data frame
Rename the ‘Response’ column to ‘Label’ [use dataset.rename(columns={‘actual_col_name’:
‘new_col_name’})]

[4]: # rename column Response to Label
dataset = dataset.rename(columns={'Response': 'Label'})

[5]: # print datsaset to check if the column has been renamed
dataset

[5]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Label
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative

3

3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

2.3 Separate the dataset into features, referred to as X, and labels, referred to
as y. Afterwards, utilize Label Encoder to encode the categorical features.

[You can achieve this by selecting columns using the [] operator on the dataframe, then initializing
the Label Encoder and applying its fit_transform method]

[6]: # Split the dataset into features (X) and target variable (y)
X = dataset.drop(columns=['Label']) # Features
y = dataset['Label'] # Target variable

Label encoding
labelencoder = LabelEncoder()
Apply label encoding to each column, except for the age column
for column in X.columns:

if column != 'Age':
X[column] = labelencoder.fit_transform(X[column])

print X
X

[6]: Age Workclass Education Marital Status Occupation Relationship \
0 39.0 5 9 4 0 1
1 50.0 4 9 2 3 0
2 38.0 2 11 0 5 1
3 53.0 2 1 2 5 0
4 28.0 2 9 2 9 5
.. … … … … … …
995 56.0 2 11 2 3 0
996 45.0 2 12 0 9 1
997 48.0 0 9 0 3 4
998 40.0 2 15 2 6 0
999 39.0 3 9 2 3 0

Race Sex Native Country
0 4 1 27
1 4 1 27

4

2 4 1 27
3 2 1 27
4 2 0 4
.. … … …
995 4 1 27
996 4 1 27
997 4 1 27
998 4 1 27
999 4 1 27

[1000 rows x 9 columns]

2.4 Use the decision tree classifier model.
Set these parameters:

• Criterion: ‘entropy’
• Max Depth: 20
• Min Impurity Decrease: 0.001

[Use DecisionTreeClassifier() and its .fit function]

[7]: # Initialize the Decision Tree Classifier
clf = DecisionTreeClassifier(criterion='entropy', max_depth=20,␣

↪min_impurity_decrease=0.001)
Train the Decision Tree Classifier
clf.fit(X, y)

[7]: DecisionTreeClassifier(criterion='entropy', max_depth=20,
min_impurity_decrease=0.001)

2.5 Print the structure of the decision tree
[use export_text(classifier_name, feature_names=list(x.columns))]

[8]: # Print the structure of the decision tree
tree_structure = export_text(clf, feature_names=list(X.columns))
print(tree_structure)

|--- Marital Status <= 2.50
| |--- Marital Status <= 1.50
| | |--- Education <= 10.50
| | | |--- Workclass <= 0.50
| | | | |--- class: Positive
| | | |--- Workclass > 0.50
| | | | |--- Education <= 8.50
| | | | | |--- Age <= 42.50
| | | | | | |--- Age <= 34.50
| | | | | | | |--- class: Negative

5

| | | | | | |--- Age > 34.50
| | | | | | | |--- Age <= 35.50
| | | | | | | | |--- class: Positive
| | | | | | | |--- Age > 35.50
| | | | | | | | |--- Age <= 40.00
| | | | | | | | | |--- class: Negative
| | | | | | | | |--- Age > 40.00
| | | | | | | | | |--- class: Positive
| | | | | |--- Age > 42.50
| | | | | | |--- class: Negative
| | | | |--- Education > 8.50
| | | | | |--- Education <= 9.50
| | | | | | |--- Race <= 3.00
| | | | | | | |--- class: Positive
| | | | | | |--- Race > 3.00
| | | | | | | |--- Workclass <= 2.50
| | | | | | | | |--- Age <= 38.50
| | | | | | | | | |--- class: Negative
| | | | | | | | |--- Age > 38.50
| | | | | | | | | |--- Age <= 44.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | | |--- Age > 44.50
| | | | | | | | | | |--- Age <= 55.00
| | | | | | | | | | | |--- class: Negative
| | | | | | | | | | |--- Age > 55.00
| | | | | | | | | | | |--- truncated branch of depth 2
| | | | | | | |--- Workclass > 2.50
| | | | | | | | |--- class: Negative
| | | | | |--- Education > 9.50
| | | | | | |--- class: Positive
| | |--- Education > 10.50
| | | |--- Age <= 42.50
| | | | |--- class: Negative
| | | |--- Age > 42.50
| | | | |--- Age <= 44.50
| | | | | |--- class: Negative
| | | | |--- Age > 44.50
| | | | | |--- Occupation <= 2.50
| | | | | | |--- Occupation <= 1.00
| | | | | | | |--- class: Negative
| | | | | | |--- Occupation > 1.00
| | | | | | | |--- Relationship <= 2.50
| | | | | | | | |--- class: Positive
| | | | | | | |--- Relationship > 2.50
| | | | | | | | |--- class: Negative
| | | | | |--- Occupation > 2.50
| | | | | | |--- class: Negative
| |--- Marital Status > 1.50

6

| | |--- Age <= 28.50
| | | |--- Occupation <= 9.50
| | | | |--- Education <= 8.50
| | | | | |--- class: Negative
| | | | |--- Education > 8.50
| | | | | |--- Education <= 10.00
| | | | | | |--- Race <= 3.00
| | | | | | | |--- class: Negative
| | | | | | |--- Race > 3.00
| | | | | | | |--- class: Positive
| | | | | |--- Education > 10.00
| | | | | | |--- Relationship <= 2.50
| | | | | | | |--- class: Negative
| | | | | | |--- Relationship > 2.50
| | | | | | | |--- Native Country <= 23.00
| | | | | | | | |--- class: Negative
| | | | | | | |--- Native Country > 23.00
| | | | | | | | |--- Race <= 3.50
| | | | | | | | | |--- class: Negative
| | | | | | | | |--- Race > 3.50
| | | | | | | | | |--- class: Positive
| | | |--- Occupation > 9.50
| | | | |--- class: Negative
| | |--- Age > 28.50
| | | |--- Education <= 6.50
| | | | |--- Occupation <= 6.50
| | | | | |--- Workclass <= 2.50
| | | | | | |--- Age <= 40.50
| | | | | | | |--- Age <= 36.00
| | | | | | | | |--- class: Negative
| | | | | | | |--- Age > 36.00
| | | | | | | | |--- class: Positive
| | | | | | |--- Age > 40.50
| | | | | | | |--- Education <= 0.50
| | | | | | | | |--- Age <= 53.50
| | | | | | | | | |--- Age <= 46.50
| | | | | | | | | | |--- class: Negative
| | | | | | | | | |--- Age > 46.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | |--- Age > 53.50
| | | | | | | | | |--- class: Negative
| | | | | | | |--- Education > 0.50
| | | | | | | | |--- class: Negative
| | | | | |--- Workclass > 2.50
| | | | | | |--- Education <= 0.50
| | | | | | | |--- class: Negative
| | | | | | |--- Education > 0.50
| | | | | | | |--- Occupation <= 2.50

7

| | | | | | | | |--- class: Negative
| | | | | | | |--- Occupation > 2.50
| | | | | | | | |--- class: Positive
| | | | |--- Occupation > 6.50
| | | | | |--- class: Negative
| | | |--- Education > 6.50
| | | | |--- Education <= 10.50
| | | | | |--- Occupation <= 4.50
| | | | | | |--- Occupation <= 2.50
| | | | | | | |--- Age <= 45.00
| | | | | | | | |--- Age <= 38.50
| | | | | | | | | |--- Native Country <= 24.50
| | | | | | | | | | |--- Education <= 7.50
| | | | | | | | | | | |--- class: Negative
| | | | | | | | | | |--- Education > 7.50
| | | | | | | | | | | |--- truncated branch of depth 2
| | | | | | | | | |--- Native Country > 24.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | |--- Age > 38.50
| | | | | | | | | |--- Race <= 1.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | | |--- Race > 1.50
| | | | | | | | | | |--- class: Negative
| | | | | | | |--- Age > 45.00
| | | | | | | | |--- class: Positive
| | | | | | |--- Occupation > 2.50
| | | | | | | |--- Age <= 39.50
| | | | | | | | |--- class: Positive
| | | | | | | |--- Age > 39.50
| | | | | | | | |--- Workclass <= 3.50
| | | | | | | | | |--- Age <= 40.50
| | | | | | | | | | |--- Education <= 8.50
| | | | | | | | | | | |--- class: Positive
| | | | | | | | | | |--- Education > 8.50
| | | | | | | | | | | |--- class: Negative
| | | | | | | | | |--- Age > 40.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | |--- Workclass > 3.50
| | | | | | | | | |--- class: Negative
| | | | | |--- Occupation > 4.50
| | | | | | |--- Race <= 3.00
| | | | | | | |--- class: Positive
| | | | | | |--- Race > 3.00
| | | | | | | |--- Education <= 9.50
| | | | | | | | |--- Occupation <= 12.50
| | | | | | | | | |--- Age <= 31.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | | |--- Age > 31.50

8

| | | | | | | | | | |--- Native Country <= 25.00
| | | | | | | | | | | |--- class: Negative
| | | | | | | | | | |--- Native Country > 25.00
| | | | | | | | | | | |--- truncated branch of depth 5
| | | | | | | | |--- Occupation > 12.50
| | | | | | | | | |--- class: Negative
| | | | | | | |--- Education > 9.50
| | | | | | | | |--- class: Positive
| | | | |--- Education > 10.50
| | | | | |--- Education <= 11.50
| | | | | | |--- Native Country <= 8.50
| | | | | | | |--- class: Positive
| | | | | | |--- Native Country > 8.50
| | | | | | | |--- Race <= 3.00
| | | | | | | | |--- Age <= 63.50
| | | | | | | | | |--- Occupation <= 3.50
| | | | | | | | | | |--- Age <= 46.50
| | | | | | | | | | | |--- truncated branch of depth 2
| | | | | | | | | | |--- Age > 46.50
| | | | | | | | | | | |--- class: Negative
| | | | | | | | | |--- Occupation > 3.50
| | | | | | | | | | |--- class: Negative
| | | | | | | | |--- Age > 63.50
| | | | | | | | | |--- class: Positive
| | | | | | | |--- Race > 3.00
| | | | | | | | |--- Age <= 64.50
| | | | | | | | | |--- Workclass <= 0.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | | |--- Workclass > 0.50
| | | | | | | | | | |--- Occupation <= 8.00
| | | | | | | | | | | |--- truncated branch of depth 10
| | | | | | | | | | |--- Occupation > 8.00
| | | | | | | | | | | |--- truncated branch of depth 9
| | | | | | | | |--- Age > 64.50
| | | | | | | | | |--- class: Negative
| | | | | |--- Education > 11.50
| | | | | | |--- Occupation <= 12.50
| | | | | | | |--- Age <= 32.50
| | | | | | | | |--- Occupation <= 10.00
| | | | | | | | | |--- class: Negative
| | | | | | | | |--- Occupation > 10.00
| | | | | | | | | |--- class: Positive
| | | | | | | |--- Age > 32.50
| | | | | | | | |--- Age <= 76.50
| | | | | | | | | |--- Workclass <= 0.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | | |--- Workclass > 0.50
| | | | | | | | | | |--- Occupation <= 2.50

9

| | | | | | | | | | | |--- truncated branch of depth 5
| | | | | | | | | | |--- Occupation > 2.50
| | | | | | | | | | | |--- truncated branch of depth 10
| | | | | | | | |--- Age > 76.50
| | | | | | | | | |--- class: Negative
| | | | | | |--- Occupation > 12.50
| | | | | | | |--- class: Negative
|--- Marital Status > 2.50
| |--- Age <= 36.50
| | |--- Age <= 27.50
| | | |--- class: Negative
| | |--- Age > 27.50
| | | |--- Occupation <= 8.50
| | | | |--- class: Negative
| | | |--- Occupation > 8.50
| | | | |--- Education <= 11.50
| | | | | |--- class: Negative
| | | | |--- Education > 11.50
| | | | | |--- Occupation <= 9.50
| | | | | | |--- Age <= 35.50
| | | | | | | |--- Sex <= 0.50
| | | | | | | | |--- class: Negative
| | | | | | | |--- Sex > 0.50
| | | | | | | | |--- class: Positive
| | | | | | |--- Age > 35.50
| | | | | | | |--- class: Negative
| | | | | |--- Occupation > 9.50
| | | | | | |--- class: Negative
| |--- Age > 36.50
| | |--- Occupation <= 8.50
| | | |--- Occupation <= 3.50
| | | | |--- Occupation <= 2.50
| | | | | |--- class: Negative
| | | | |--- Occupation > 2.50
| | | | | |--- Education <= 8.50
| | | | | | |--- class: Negative
| | | | | |--- Education > 8.50
| | | | | | |--- Education <= 10.00
| | | | | | | |--- class: Positive
| | | | | | |--- Education > 10.00
| | | | | | | |--- Marital Status <= 4.50
| | | | | | | | |--- Native Country <= 16.00
| | | | | | | | | |--- class: Negative
| | | | | | | | |--- Native Country > 16.00
| | | | | | | | | |--- class: Positive
| | | | | | | |--- Marital Status > 4.50
| | | | | | | | |--- class: Negative
| | | |--- Occupation > 3.50

10

| | | | |--- class: Negative
| | |--- Occupation > 8.50
| | | |--- Workclass <= 3.50
| | | | |--- Age <= 61.50
| | | | | |--- Age <= 59.00
| | | | | | |--- Education <= 13.50
| | | | | | | |--- Marital Status <= 4.50
| | | | | | | | |--- Age <= 40.50
| | | | | | | | | |--- class: Positive
| | | | | | | | |--- Age > 40.50
| | | | | | | | | |--- Workclass <= 0.50
| | | | | | | | | | |--- class: Positive
| | | | | | | | | |--- Workclass > 0.50
| | | | | | | | | | |--- Age <= 53.00
| | | | | | | | | | | |--- truncated branch of depth 3
| | | | | | | | | | |--- Age > 53.00
| | | | | | | | | | | |--- class: Negative
| | | | | | | |--- Marital Status > 4.50
| | | | | | | | |--- class: Positive
| | | | | | |--- Education > 13.50
| | | | | | | |--- class: Negative
| | | | | |--- Age > 59.00
| | | | | | |--- class: Positive
| | | | |--- Age > 61.50
| | | | | |--- class: Negative
| | | |--- Workclass > 3.50
| | | | |--- class: Negative

2.6 Use the trained model on unseen data
Now that we have trained the model using the fit function, we can apply it to a dataset that
the model hasn’t seen before and evaluate its performance. [We’ll use the variable clf that was
declared previously (without redefining it) and apply the predict function to make predictions on
the new dataset]

Another way to store the trained model for later reuse is by using serialization techniques such as
joblib or pickle. These libraries allow you to save the trained model to a file, which can then be
loaded and used whenever needed without having to retrain the model from scratch.

2.6.1 Load the new dataset “prospects.xlsx”

[10]: # load the new dataset. [Use pd.read_excel() function to load the dataset. Use␣
↪the path of the file as an argument of the function.]

new_dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/
↪com~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB05/
↪Lab5Materiale/prospect.xlsx")

11

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no
default style, apply openpyxl's default

warn("Workbook contains no default style, apply openpyxl's default")

[11]: # print the new dataset
new_dataset

[11]: Age Workclass Education Marital Status \
0 25.0 Private HS-grad Never-married
1 46.0 Private 9th Married-civ-spouse
2 37.0 Private 1st-4th Married-civ-spouse
3 41.0 Private Some-college Married-civ-spouse
4 44.0 Private HS-grad Never-married
… … … … …
28255 27.0 Private Assoc-acdm Married-civ-spouse
28256 40.0 Private HS-grad Married-civ-spouse
28257 58.0 Private HS-grad Widowed
28258 22.0 Private HS-grad Never-married
28259 52.0 Self-emp-inc HS-grad Married-civ-spouse

Occupation Relationship Race Sex \
0 Farming-fishing Unmarried White Male
1 Other-service Husband White Male
2 Craft-repair Husband Asian-Pac-Islander Male
3 Craft-repair Husband White Male
4 Adm-clerical Own-child White Male
… … … … …
28255 Tech-support Wife White Female
28256 Machine-op-inspct Husband White Male
28257 Adm-clerical Unmarried White Female
28258 Adm-clerical Own-child White Male
28259 Exec-managerial Wife White Female

Native Country
0 United-States
1 United-States
2 Cambodia
3 United-States
4 United-States
… …
28255 United-States
28256 United-States
28257 United-States
28258 United-States
28259 United-States

12

[28260 rows x 9 columns]

Please be mindful that in this scenario, we lack the variable “Label” (nor “Response”). As a matter
of fact, we are unaware of the outcomes, yet we aim to forecast them using a model pre-trained on
actual values.

2.7 Utilize Label Encoder to encode the categorical features.
[Rename the dataframeas X, then initializing the Label Encoder and applying the fit_transform
method]

[12]: X = new_dataset
Label encoding for the new_dataset
labelencoder = LabelEncoder()
Apply label encoding to each column, except for the age column
for column in X.columns:

if column != 'Age':
X[column] = labelencoder.fit_transform(X[column])

print X
X

[12]: Age Workclass Education Marital Status Occupation Relationship \
0 25.0 3 11 4 4 4
1 46.0 3 6 2 7 0
2 37.0 3 3 2 2 0
3 41.0 3 15 2 2 0
4 44.0 3 11 4 0 3
… … … … … … …
28255 27.0 3 7 2 12 5
28256 40.0 3 11 2 6 0
28257 58.0 3 11 6 0 4
28258 22.0 3 11 4 0 3
28259 52.0 4 11 2 3 5

Race Sex Native Country
0 4 1 38
1 4 1 38
2 1 1 0
3 4 1 38
4 4 1 38
… … … …
28255 4 0 38
28256 4 1 38
28257 4 0 38
28258 4 1 38
28259 4 0 38

[28260 rows x 9 columns]

13

2.8 Apply the pretrained Decision Tree model

[13]: # Predict the target variable of the new dataset
y_pred = clf.predict(X)
print the prediction
y_pred

[13]: array(['Negative', 'Negative', 'Negative', …, 'Negative', 'Negative',
'Positive'], dtype=object)

3 Exercise 2
3.1 Read file excel “user.xlsx”
To read the Excel file using a function integrated into the pandas library, you can use the
pd.read_excel() function. Rewrite the instruction with the argument as the path of the file
to be read

[14]: dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/
↪com~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB05/
↪Lab5Materiale/user.xlsx")

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no
default style, apply openpyxl's default

warn("Workbook contains no default style, apply openpyxl's default")

In a Jupyter Notebook cell, you can print a subset of the representation by simply calling the name
of the variable containing the DataFrame.

[15]: # print dataset
dataset

[15]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Response
0 Adm-clerical Not-in-family White Male United-States Negative

14

1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

3.2 Define the label column in the dataset data frame
Rename the ‘Response’ column to ‘Label’ [use dataset.rename(columns={‘actual_col_name’:
‘new_col_name’})]

[16]: # rename column Response to Label
dataset = dataset.rename(columns={'Response': 'Label'})

[17]: # print datsaset to check if the column has been renamed
dataset

[17]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Label
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive

15

998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

3.3 Separate the dataset into features, referred to as X, and labels, referred to
as y. Afterwards, utilize Label Encoder to encode the categorical features.

[You can achieve this by selecting columns using the [] operator on the dataframe, then initializing
the Label Encoder and applying the fit_transform method]

[18]: # Split the dataset into features (X) and target variable (y)
X = dataset.drop(columns=['Label']) # Features
y = dataset['Label'] # Target variable

Label encoding
labelencoder = LabelEncoder()
Apply label encoding to each column, except for the age column
for column in X.columns:

if column != 'Age':
X[column] = labelencoder.fit_transform(X[column])

print X
X

[18]: Age Workclass Education Marital Status Occupation Relationship \
0 39.0 5 9 4 0 1
1 50.0 4 9 2 3 0
2 38.0 2 11 0 5 1
3 53.0 2 1 2 5 0
4 28.0 2 9 2 9 5
.. … … … … … …
995 56.0 2 11 2 3 0
996 45.0 2 12 0 9 1
997 48.0 0 9 0 3 4
998 40.0 2 15 2 6 0
999 39.0 3 9 2 3 0

Race Sex Native Country
0 4 1 27
1 4 1 27
2 4 1 27
3 2 1 27
4 2 0 4
.. … … …
995 4 1 27
996 4 1 27

16

997 4 1 27
998 4 1 27
999 4 1 27

[1000 rows x 9 columns]

3.4 Validation of Decision Tree classification model using Cross Validation
Cross-validation is a technique used to assess the performance and generalization ability of machine
learning models, particularly in the context of classification tasks. It involves partitioning the
dataset into multiple subsets, known as folds.

1. Partitioning the Dataset: The dataset is divided into k equal-sized folds.

2. Training and Testing: The model is trained k times, each time using k-1 folds for training
and the remaining fold for testing.

3. Evaluation: The performance of the model is evaluated on each fold, and the results are
averaged to obtain a robust estimate of the model’s performance.

4. Advantages: Cross-validation provides a more reliable estimate of the model’s performance
compared to a single train-test split. It helps to detect overfitting and assesses the model’s
ability to generalize to unseen data.

[Use cross_val_score and cross_val_predict to perform cross-validation easily. Follow the
same instruction of Exercise 1 to initialise and use the model]

Set these parameters for Decision Classfier model:

• Criterion: ‘entropy’
• Max Depth: 25
• Min Impurity Decrease: 0.01

[19]: # Initialize the decision tree classifier
clf = DecisionTreeClassifier(criterion='entropy', max_depth=25,␣

↪min_impurity_decrease=0.01)

Perform cross-validation predictions
y_pred = cross_val_predict(clf, X, y, cv=5)

Calculate confusion matrix
conf_matrix = confusion_matrix(y, y_pred)

Evaluate accuracy
accuracy = accuracy_score(y, y_pred)
Print accuracy
print("Accuracy:", accuracy)

Print confusion matrix
conf_matrix = pd.DataFrame(conf_matrix, columns=['Predicted No', 'Predicted␣

↪Yes'], index=['Actual No', 'Actual Yes'])

17

conf_matrix

Accuracy: 0.808

[19]: Predicted No Predicted Yes
Actual No 730 38
Actual Yes 154 78

18

	LAB 05 - Python version
	Disclaimer

	Exercise 1
	Read file excel ``user.xlsx''
	Define the label column in the dataset data frame
	Separate the dataset into features, referred to as X, and labels, referred to as y. Afterwards, utilize Label Encoder to encode the categorical features.
	Use the decision tree classifier model.
	Print the structure of the decision tree
	Use the trained model on unseen data
	Load the new dataset ``prospects.xlsx''

	Utilize Label Encoder to encode the categorical features.
	Apply the pretrained Decision Tree model

	Exercise 2
	Read file excel ``user.xlsx''
	Define the label column in the dataset data frame
	Separate the dataset into features, referred to as X, and labels, referred to as y. Afterwards, utilize Label Encoder to encode the categorical features.
	Validation of Decision Tree classification model using Cross Validation

