

SQL language: basics

SQL language: basics

- ➤ SQL Language
- **≻**Language Instruction
- ➤ Sample notation and database
- >SELECT Statement
- ➤ Aggregate Functions
- ➤ Operator GROUP BY

- A language for managing relational databases
 - Structured Query Language
- SQL provides commands to
 - define the schema of a relational database
 - read and write data
 - define the schema of derived tables
 - define user access privileges
 - manage transactions
- The SQL language may be used in two ways
 - interactive
 - compiled
 - a host language encapsulates the SQL commands
 - SQL commands can be distinguished from the host language commands by means of appropriate syntactic mechanisms

- SQL is a *set-level* language
 - operators are applied to relations (tables)
 - the result is always a relation (table)
- SQL is a *declarative* language
 - it describes what to do and not how to do it
 - it has a higher level of abstraction compared to traditional programming languages

SQL instructions

- Can be divided into
 - DML (Data Manipulation Language)
 - language for querying and updating the data
 - DDL (Data Definition Language)
 - language for defining the database structure

Data Manipulation Language

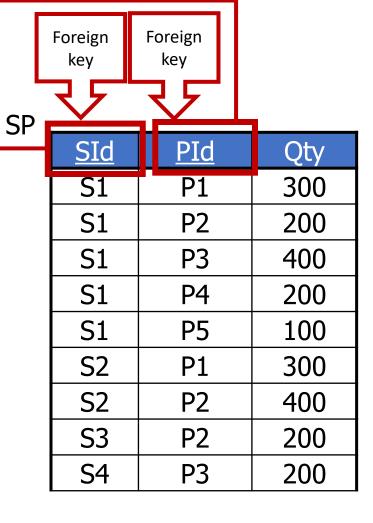
- To query a database in order to extract data of interest
 - SELECT
- To modify a database instance
 - INSERT: insertion of new information into a table
 - UPDATE: update of the information in the database
 - DELETE: cancellazione di dati obsoleti

Data Definition Language

- To define a database schema
 - creation, modification and deletion of tables: CREATE, ALTER, DROP TABLE
- To define derived tables
 - creation, modification and deletion of tables whose content is obtained from other database tables: CREATE, ALTER, DROP VIEW
- To define complementary data structures for efficiently retrieving the data
 - creation and deletion of indices: CREATE, DROP INDEX
- To define user access privileges
 - grant and revocation of privileges on resources: GRANT, REVOKE
- To define transactions
 - termination of a transaction: COMMIT, ROLLBACK

Notation and example database

Syntax of SQL commands


- Notation
 - language keywords
 - upper case, dark blue color
 - variable terms
 - italic font
- Grammar
 - angle brackets < >
 - to isolate a syntactic term
 - square brackets []
 - the enclosed term is optional
 - braces { }
 - the enclosed term may not appear or may be repeated an arbitrary number of items
 - vertical bar
 - a term must be chosen among the options separated by the vertical bars

Example database: Supply-Product

	-			
<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	40	Paris

F		•		
	<u>SId</u>	SName	#Employees	City
	S1	Smith	20	London
	S2	Jones	10	Paris
	S3	Blake	30	Paris
	S4	Clark	20	London
	S5	Adams	30	Athens

S

P

Example database: Supply-Product

- Supplier and part DB
 - table P describes the available products
 - primary key: Pld
 - table S describes the suppliers
 - primary key: SId
 - table SP describes supplies, by relating each product to the suppliers that provide it
 - primary key: (Sld, Pld)
 - Pld: Foreign key (SP) REFERENCES Pld(P)
 - Sid: Foreign key (SP) REFERENCES SId(S)

The SELECT statement: basics

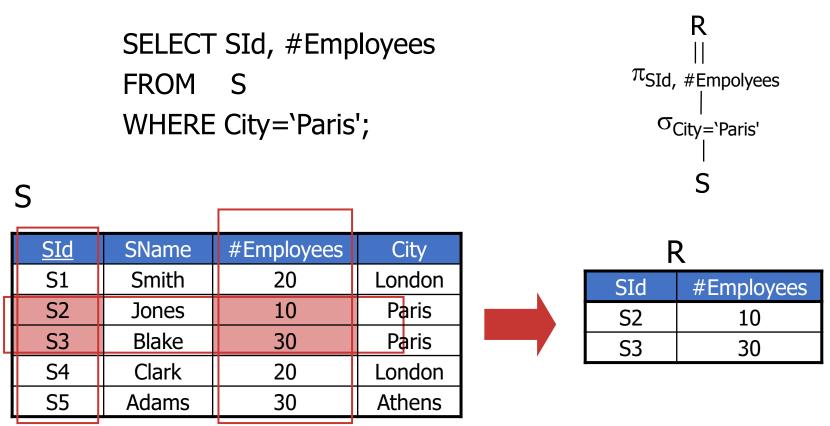
SELECT

SELECT [DISTINCT] ListOfAttributesToDisplay

FROM ListOfTablesToUse

[WHERE TupleConditions]

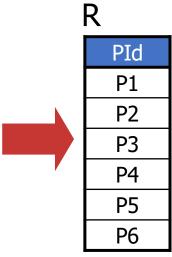
[GROUP BY ListOfGroupingAttributes]


[HAVING AggregateConditions]

[ORDER BY ListOfOrderingAttributes]

Basic SELECT (no.1)

 Find the codes and the number of employees of the suppliers based in Paris



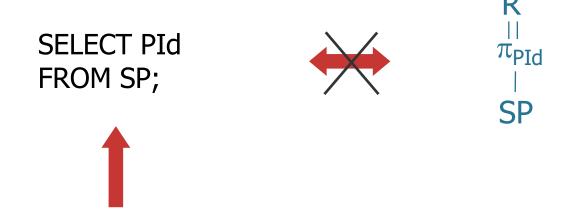
Basic SELECT (no.2)

• Find the codes of all products in the database

Р					_
<u>PId</u>	PName	Color	Size	Store	
P1	Jumper	Red	40	London	
P2	Jeans	Green	48	Paris	
Р3	Blouse	Blue	48	Rome	
P4	Blouse	Blue	44	London	
P5	Skirt	Blue	40	Paris	
P6	Shorts	Red	42	London	

Basic SELECT (no.3)

• Find the codes of the products supplied by at least one supplier


<u>SP</u>				R
<u>SId</u>	<u>PId</u>	Qty		PId
S1	P1	300		P1
S1	P2	200		P2
S1	P3	400		P3
S1	P4	200	SELECT PId	P4
S1	P5	100	FROM SP;	P5
S1	P6	100	,	P6
S2	P1	300		P1
S2	P2	400		P2
S3	P2	200		P2
S4	P3	200		P3
S4	P4	300		P4
S4	P5	400		P5

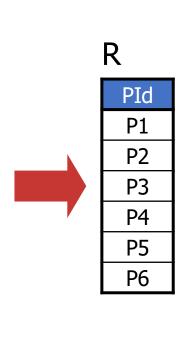
Basic SELECT (no.3)

It does not eliminate duplicates

• Find the codes of the products supplied by at least one supplier

Elimination of duplicates: DISTINCT

DISTINCT keyword allows the elimination of duplicates


• Find the codes of the *distinct* products supplied by at least one

SP

supplier

SELECT DISTINCT PId FROM SP;

<u>SId</u>	<u>PID</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

Selection of all information

Find all information related to products

```
SELECT PId, PName, Color, Size, Store FROM P;

or

SELECT *
FROM P;

R
```

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

Selection with an expression

Find the codes of the products and the sizes expressed with the US standard

SELECT PId, Size-14 [AS USSize] FROM P;

Р

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

PId	USSize
P1	26
P2	34
P3	34
P4	30
P5	26
P6	38

- Definition of a new *temporary* column for the computed expression
 - the name of the temporary column may be defined by means of the AS keyword

The WHERE clause

- It allows expressing selection conditions applied to each tuple individually
- A Boolean expression composed by one or more predicates
- Simple predicates
 - comparison between attributes and constants
 - text search
 - NULL values

The WHERE clause (no.1)

• Find the codes of the suppliers based in Paris

SELECT SId FROM S WHERE City='Paris';

F

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

The WHERE clause (no.2)

 Find the codes and the number of employees of the suppliers that are not based in Paris

> SELECT SId, #Employees FROM S WHERE City<>'Paris';

F

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SId	#Employees
S1	20
S4	20
S5	30

Boolean expressions (no.1)

Find the codes of the suppliers based in Paris that have more than 20 employees

SELECT SId

FROM S

WHERE City='Paris' AND #Employees>20;

S

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Boolean expressions (no.2)

 Find the codes and the number of employees of the suppliers based in Paris or London

SELECT SId, #Employees
FROM S
WHERE City='Paris' OR City='London';

S

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SId	#Employees
F1	20
F2	10
F3	30
F4	20

Boolean expressions (no.3)

- Find the codes and the number of employees of the suppliers based in Paris and in London
 - the query may not be satisfied
 - each supplier has only one city

S

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Text search

LIKE operator

AttributeName LIKE CharacterString

- the _ character represents a single arbitrary character (non-empty)
- the % character represents an arbitrary sequence of characters (possibly empty)

Text search (no.1)

Find the codes and the names of the products whose name begins with the letter B

SELECT Pld, PName FROM P WHERE PName LIKE 'B%';

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

PId	PName
P3	Blouse
P4	Blouse

Text search (no.2)

• The Address attribute contains the string 'London'

Address LIKE '%London%'

- The supplier identification number is 3 and
 - it is preceded by a single unknown character
 - it is exactly 2 characters long

SId LIKE '_3'

• The Store attribute does not have an 'e' in the second position

Store NOT LIKE '_e%'

Searching for NULL values

• IS special operator

AttributeName IS [NOT] NULL

• With NULL values, any comparison predicate is false

Managing NULL values

Find the codes and the names of products with a size greater than 44

SELECT Pld, PName FROM P WHERE Size>44;

P

<u>PId</u>	PName	Color	Size	Store	R	
P1	Jumper	Red	40	London	PId	PName
P2	Jeans	Green	48	Paris	P2	Jeans
P3	Blouse	Blue	48	Rome	P3	Blouse
P4	Blouse	Blue	44	London		
P5	Skirt	Blue	NULL	Paris		
P6	Shorts	Red	42	London		

 The tuples with NULL size are not selected: the predicate Size>44 evaluates to false

With NULL values, any comparison predicate is false

Searching for NULL values (no.1)

• Find the codes and the names of the products whose size is unknown

SELECT PId, PName FROM P WHERE Size IS NULL;

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	NULL	Paris
P6	Shorts	Red	42	London

R
PId PName
P5 Skirt

Searching for NULL values (no.2)

• Find the codes and the names of products with a size greater than 44, or that may have a size greater than 44

SELECT PId, PName FROM P WHERE Size>44 OR Size IS NULL;

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	NULL	Paris
P6	Shorts	Red	42	London

Pname
Jeans
Blouse
Skirt

Result ordering

• ORDER BY clause

ORDER BY AttributeName [ASC | DESC]

{, AttributeName [ASC | DESC]}

- the default ordering is ascending
 - if DESC is not specified
- the ordering attributes must appear in the SELECT clause
 - even implicitly (as in SELECT *)

Result ordering (no.1)

 Find the codes of the products and their sizes, ordering the result by decreasing size

> SELECT PId, Size FROM P ORDER BY Size DESC;

Р

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

F

PId	Size
P2	48
P3	48
P4	44
P6	42
P1	40
P5	40

Result ordering (no.2)

 Find all information related to the products, ordering the result by increasing name and decreasing size

SELECT Pld, PName, Color, Size, Store FROM P
ORDER BY PName, Size DESC;

SELECT *
FROM P
ORDER BY PName, Size DESC;

R

<u>PId</u>	PName	Color	Size	Store
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P2	Jeans	Green	48	Paris
P1	Jumper	Red	40	London
P6	Shorts	Red	42	London
P5	Skirt	Blue	40	Paris

Result ordering (no.3)

• Find the codes of the products and the sizes expressed with the US standard, ordering the result by increasing size

SELECT Pld, Size-14 AS USSize FROM P ORDER BY USSize;

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

R

PId	USSize
P5	26
P1	28
P6	28
P4	30
P2	34
Р3	34

Join

- Defined by the FROM and WHERE clauses
- The result and efficiency of the query
 - are independent of the order of the tables in the FROM clause
 - are independent of the predicate order in the WHERE clause
 - the optimal execution order is selected by the DBMS (optimizer module)
- FROM clause with N Tables
 - at least N-1 join conditions in the WHERE clause

• Find the names of the suppliers that provide product P2

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

<u>SId</u>	<u>PID</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3 P2		200

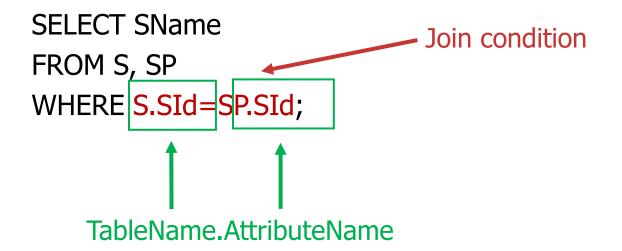
Cartesian product

• Find the names of the suppliers that provide product P2

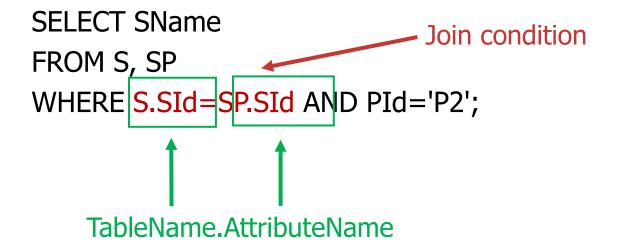
SELECT SName FROM S, SP;

Cartesian product

S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
S1	Smith	20	London	S1	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	P3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
S1	Smith	20	London	S2	P1	300
		•••	•••	•••		•••
S2	Jones	10	Paris	S1	P1	300
		•••	•••	•••		•••
S2	Jones	10	Paris	S2	P1	300
			•••	•••		


			=				
	S.SId	S.SName	S.#Empl	S.City	SP.SIc	SP.PId	SP.Qty
	S1	Smith	20	London	S1	P1	300
ı	S1	Smith	20	London	S1	P2	200
	S1	Smith	20	London	S1	Р3	400
	S1	Smith	20	London	S1	P4	200
	S1	Smith	20	London	S1	P5	100
	S1	Smith	20	London	S1	P6	100
	S1	Smith	20	London	S2	P1	300
	S2	Jones	10	Paris	S1	P1	300
	S2	Jones	10	Paris	S2	P1	300
Ī							

		=				
S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
SI	Smith	20	London	\$1	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	P3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
S2	Jones	10	Paris	S2	P1	300
S2	Jones	10	Paris	S2	P2	400
S3	Blake	30	Paris	S3	P2	200
S4	Clark	20	London	S4	P3	200
S4	Clark	20	London	S4	P4	300
S4	Clark	20	London	S4	P5	400



• Find the names of the suppliers that provide product P2

• Find the names of the suppliers that provide product P2

		=		SP.PId='P2	2'	
S.SId	S.SName	S.#Empl	S.City	SP.SId)	SP.PId	SP.Qty
SI	Smith	20	London	51	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	P3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
S2	Jones	10	Paris	S2	P1	300
S2	Jones	10	Paris	S2	P2	400
S3	Blake	30	Paris	S3	P2	200
S4	Clark	20	London	S4	P3	200
S4	Clark	20	London	S4	P4	300
S4	Clark	20	London	S4	P5	400

S.Sid	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
S1	Smith	20	London	S1	P2	200
S2	Jones	10	Paris	S2	P2	400
S3	Blake	30	Paris	S3	P2	200

R

SMame
Smith
Jones
Blake

- Find the names of the suppliers that provide product P2
 - in relational algebra

SELECT SName
FROM S, SP
FROM S,SP
WHERE S.SId=SP.SId
AND PId='P2';
S.SId=SP.SId;

- The result and efficiency are independent
 - from the order of the predicates in the WHERE clause
 - from the order of the tables in the FROM clause

SQL Declarability

- In relational algebra (procedural language) we define the order in which the operators are applied
- In SQL (declarative language) the best order is chosen by the optimizer independently
 - from the order of the conditions in the WHERE clause
 - from the order of the tables in the FROM clause

• Find the name of suppliers who provide at least one red product

```
SELECT SName
FROM S, SP, P
WHERE S.SId=SP.SId AND P.PId=SP.PId
AND Color='Red';
```

- FROM Clause with N Tables
 - at least N-1 join conditions in the WHERE clause

 Find the pairs of supplier codes such that both suppliers are based in the same city

> SELECT SX.SId, SY.SId FROM S AS SX, S AS SY WHERE SX.City=SY.City;

S AS SX

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

S AS SY

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId FROM S AS SX, S AS SY WHERE SX.City=SY.City;

- The result includes
 - pairs of identical values
 - permutations of the same pairs of values

R

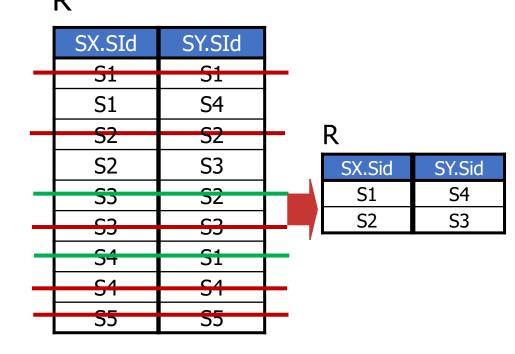
SX.SId	SY.SId
S1	S1
S1	S4
S2	S2
S2	S3
S3	S2
S3	S3
S4	S1
S4	S4
S5	S5

 Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId
FROM S AS SX, S AS SY
WHERE SX.City=SY.City AND
SX.SId <> SY.SId;

It removes pairs of identical values

R


SX.SId	SY.SId	
S1	C 1	
31	51	
S1	S4	
CO	C	
S2	S2	
S2	S3	
S3	S2	
53	53	
55	55	
S4	S1	
CA	C1	
J 1	91	
95	95	
55	55	

 Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId
FROM S AS SX, S AS SY
WHERE SX.City=SY.City AND
SX.SId < SY.SId;

It eliminates the permutations of the same pairs of values

Aggregate Functions

Introduction to SQL

Aggregate function

- It operates on a set of values
- It produces a single (aggregate) value as a result
- It is specified in the SELECT clause
 - non-aggregate attributes may not be specified at the same time
 - multiple aggregate functions may be specified simultaneously
- Aggregate functions are only evaluated once all predicates in the WHERE clause have been applied

Aggregate functions

COUNT: count of elements in a given attribute

SUM: sum of values for a given attribute

AVG: average of values for a given attribute

MAX: maximum value of a given attribute

MIN: minimum value of a given attribute

- Counts the number of elements in a set
 - rows in a table
 - (possibly distinct) values for one or more attributes

COUNT

COUNT (<*| [DISTINCT | ALL] ListOfAttributes >)}

 If the function argument is preceded by DISTINCT, it counts the number of distinct values of the argument

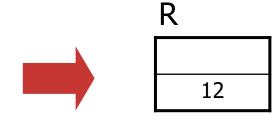
The COUNT function (no.1)

Find the number of suppliers

SELECT COUNT(*) FROM S;

S

				_	
<u>SId</u>	SName	#Employees	City		R
S1	Smith	20	London		
S2	Jones	10	Paris		
S3	Blake	30	Paris		5
S4	Clark	20	London		
S5	Adams	30	Athens		


The COUNT function (no.2)

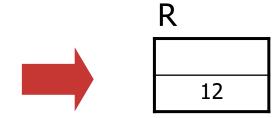
Find the number of suppliers that supply at least one product

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

SELECT COUNT(*) FROM SP;

It counts the number of supplied products, not the suppliers


The COUNT function (no.2)

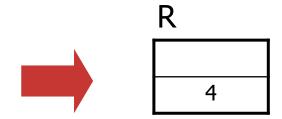
Find the number of suppliers that supply at least one product

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

SELECT COUNT(SId) FROM SP;

• It still counts the number of supplied products, not the suppliers


The COUNT function (no.2)

Trovare il numero di fornitori che hanno almeno una fornitura

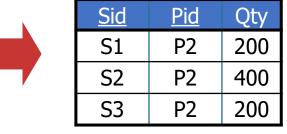
SP

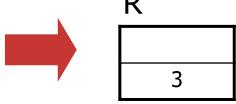
<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

SELECT COUNT(DISTINCT SId) FROM SP;

It counts the number of distinct suppliers

Aggregate functions and WHERE


 Aggregate functions are only evaluated once all predicates in the WHERE clause have been applied


Aggregate functions and WHERE

 Find the number of suppliers providing product P2 SP

<u>SId</u>	<u>PId</u>	Qty	
S1	P1	300	
S1	P2	200	
S1	P3	400	
S1	P4	200	
S1	P5	100	
S1	P6	100	
S2	P1	300	
S2	P2	400	
S3	P2	200	
S4	P3	200	
S4	P4	300	
S4	P5	400	

SELECT COUNT(*)
FROM SP
WHERE PId='P2';

 Aggregate functions are only evaluated once all predicates in the WHERE clause have been applied

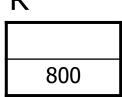
SUM, MAX, MIN, AVG

- SUM, MAX, MIN and AVG
 - they allow an attribute or an expression as argument
- SUM and AVG
 - they only allow numeric type or time interval attributes
- MAX and MIN
 - they require an expression that can be ordered
 - may also be applied to character strings and time instants

The SUM function

Find the overall quantity of supplied pieces for product P2

SP


<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

SELECT SUM(Qty) FROM SP WHERE PId='P2';

<u>SId</u>	<u>PId</u>	Qty
S1	P2	200
S2	P2	400
S3	P2	200

The GROUP BY operator

Introduction to SQL

GROUP BY

- Grouping clause
 - **GROUP BY ListOfGroupingAttributes**
 - The order of grouping attributes is irrelevant
- In the SELECT statement only
 - attributes specified in the GROUP BY clause
 - aggregate functions
 are allowed to appear
- Attributes that are unambiguously determined by other attributes already present in the GROUP BY clause may be added without altering the result

Grouping

• For each product, find the overall quantity of supplied pieces

SP		
<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100

P1

P2

P4

P5

300

400

200

200

300

400

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S 4	D4	300

P5

400

SP

S4

PId	
P1	600
P2	800
Р3	600
P4	500
P5	500
P6	100

S2

S2

S3

S4

S4

S4

Grouping

• For each product, find the overall quantity of supplied pieces

C	D
J	Γ

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

<u>SId</u>	<u>PId</u>	Qty	
S1	P1	300	
S1	P2	200	
S1	P3	400	
S1	P4	200	
S1	P5	100	
S1	P6	100	
S2	P1	300	
S2	P2	400	
S3	P2	200	
S4	P3	200	1
S4	P4	300	
S4	P5	400	

PId	
P1	600
P2	800
P3	600
P4	500
P5	500
P6	100

SELECT PId, SUM(Qty) FROM SP GROUP BY PId;

• For each product, find the overall quantity of pieces supplied by suppliers based in Paris

S

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

 For each product, find the overall quantity of pieces supplied by suppliers based in Paris

```
SELECT ...
FROM SP, S
WHERE SP.SId=S.SId AND City='Paris'
...
```


• For each product, find the overall quantity of pieces supplied by suppliers based in Paris

S.SId	S.SName	S.#Employees	S.City	SP.SId	SP.PId	SP.Qty
S1	Smith	20	London	S1	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	Р3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
<i>S2</i>	Jones	10	Paris	<i>S2</i>	P1	300
<i>S2</i>	Jones	10	Paris	<i>S2</i>	P2	400
<i>S3</i>	Blake	30	Paris	<i>S3</i>	P2	200
S4	Clark	20	London	S4	Р3	200
S4	Clark	20	London	S4	P4	300
S4	Clark	20	London	S4	P5	400

 For each product, find the overall quantity of pieces supplied by suppliers based in Paris

SELECT PId, SUM(Qty)
FROM SP, F
WHERE SP.SId=S.SId AND City='Paris'
GROUP BY PId;

 Products that are not supplied by any supplier are not included in the result

 For each product, find the overall quantity of pieces supplied by suppliers based in Paris

SP.PId	SP.Qty	<u>R</u>	
P1	300	 SP.PId	
P2	400	P1	300
l 		P2	600
P2	200		

GROUP BY and SELECT

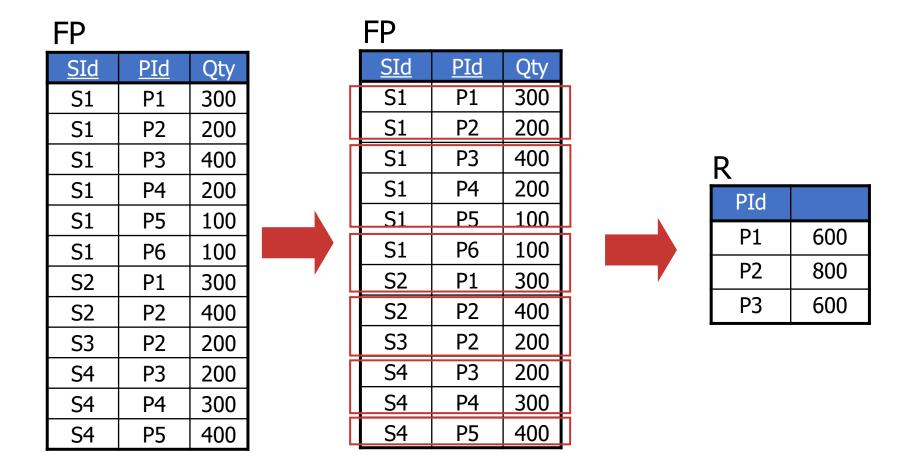
 For each product, find the code, the name and the overall supplied quantity

SELECT P.PId, *PName*, SUM(Qty)
FROM P, SP
WHERE S.PId=SP.PId
GROUP BY P.PId, *PName*

 attributes that are unambiguously determined by other attributes already present in the GROUP BY clause may be added without altering the result

Group selection condition: HAVING

 You cannot use the WHERE clause to define selection conditions on groups


 Selection condition on groups expressed in HAVING clause:

HAVING Group Conditions

Allows you to specify conditions only on aggregated functions

Group selection condition (no.1)

• Find the overall quantity of supplied pieces for the products for which at least 600 pieces are supplied *overall*

Group selection condition (no.1)

 Find the overall quantity of supplied pieces for the products for which at least 600 pieces are supplied overall

SELECT PId, SUM(Qty)
FROM SP
GROUP BY PId
HAVING SUM(Qty)>=600;

 The HAVING clause allows the specification of conditions on the aggregate functions

Group selection condition (no.2)

 Find the codes of the red products supplied by more than one supplier

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
Р3	Blouse	Blue	48	Rome
P4	Blouse	Blue	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

Group selection condition (no.2)

Find the codes of the red products supplied by more than one supplier

SELECT SP.PId
FROM SP, P
WHERE SP.PId=P.PId AND Color='Red'
GROUP BY SP.PId
HAVING COUNT(*)>1;

Group selection condition (no.2)

 Find the codes of the red products supplied by more than one supplier

S.Sid	S.PId	S.Qty	P.PId	P.Pname	P.Colore	P.Size	P.Store
S1	P1	300	P1	Jumper	Red	40	London
S2	P1	300	P1	Jumper	Red	40	London
S1	P6	100	P6	Shorts	Red	42	London

R

PId P1

