

Post-modeling Explainability

Explainable and Trustworthy AI

Eliana Pastor

Stages of Explainability

• Explainability involves the entire AI development pipeline

Scope of Explainability

• What do we explain?

Generalizability of Explainability

Model dependent solutions

- Only applicable for specific models
 - e.g., specific approaches for explaining SVM, approaches for explaining a specific neural network
- Relies on the model structure/properties

- Model agnostic solutions
 - Applicable to any model
 - Relies on the model as an oracle (model predictions, output probabilities)

Model agnostic solution

Advantages of model agnostic solutions

Model Flexibility/Compatibility

- Explain complex and high-performing model
- Model agnostic methods can be used across different frameworks and libraries

• Explanation Flexibility

• Adopt the explanation representation/format more suitable for target users and domains

Representation Flexibility

• The representation used for the explanations (e.g., patches of the image, set of words) can differ from the ones used by the models (e.g., pixels, embeddings)

• Lower Cost to Switch

• We can change the underlying model while preserving the explanation representation

Model comparison

• Easier to compare models if the explanation representation is the same

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Model-agnostic interpretability of machine learning." arXiv preprint (2016).

Scope of Explainability – Global explanations

Global methods describe the overall behavior of model Explain how the model works in general

Interpretable global surrogate models

Partial dependence plots

Permutation feature importance.

Dependence between the target response and an input feature of interest

Global surrogate model

- Interpretable surrogate or proxy for a complex (black-box) model
 - Trained to approximate the predictions of the black box model
 - Simplified and understandable representation

Goal

- Approximate the black box prediction function f with a surrogate model prediction function g. The surrogate model g should closely mimic the behavior of f, under the constraint that g is interpretable
 - g: decision tree, logistic regression, linear regression, rules

Global surrogate model – Steps

- **Training data** X. The dataset can be the same as the one used to train the black-box model f or a new dataset reflecting its distribution
- Labeling. For dataset X, get the predictions of the black box model F
- Interpretable model g. Choose an interpretable model type that best suits the problem domain and requirements.
- Surrogate training. Train the interpretable model using the dataset X and the predictions of f
 - The interpretable model learns to approximate the behavior of the f
- **Evaluation.** Measure how well the surrogate model replicates the predictions of the blackbox model using appropriate evaluation metrics.
 - Mean squared error (MSE), accuracy, or AUC-ROC
- Interpretation. Interpret the surrogate model to gain insights into its decision-making

https://christophm.github.io/interpretable-ml-book/global.html

Global surrogate model

- Multiple variations and optimization proposed, e.g.,:
- TREPAN
 - Use tree as interpretable model
 - Consider fidelity to the original model in the tree construction process
 - Best first expansion
 - Prioritize the nodes with the greatest potential to increase the fidelity of the extracted tree to the model
 - Evaluation of node n = reach(n) x (1 fidelity(n))
 - reach(n) is the estimated fraction of instances that reach n when passed through the tree
 - fidelity(n) is the estimated fidelity of the tree to the network for those instances

Advantages of Global surrogate models

- Provide a simplified representation of complex models
- Different forms of explanations, depending on the interpretable model adopted
 - Can enable both global and local explainability
- Easy to build
- Model agnostic, in terms of both
 - Model to explain
 - Surrogate model adopted
 - Flexibility on the choice of interpretable model g

Limitations of Global surrogate models

- **Approximation**. The surrogate model is an approximation of the complex model, and there might be cases where it fails to capture its complexity
- **Oversimplification**. Simplifying a complex model inherently involves some level of abstraction, and there's a risk of oversimplifying the decision boundaries,
- Global behavior. Global surrogate models provide an overall view of the model's behavior, but they may not capture local nuances or specific decision boundaries of the complex model
- **Data dependence.** The quality of the surrogate model heavily relies on the quality and representativeness of the training data used
- Interpretability. The surrogate model can be still difficult to interpret

Permutation feature importance

Estimate the importance of features for a model.

- It evaluate the impact of permuting (randomly shuffling) the values of individual features on the model's performance.
- By measuring how much the model's performance decreases after permuting a specific feature, one can infer the importance of that feature in making accurate predictions.
- The higher the change, the more the feature is importance

Permutation feature importance

- Compute the reference score, e.g., accuracy of the model on dataset D
- For each feature
 - Permute the feature. Randomly shuffle the values of the feature across D
 - **Evaluate model performance**. Apply the model on the dataset with the permuted feature and record the performance metric.
 - **Compute the importance Score**. The importance score for the feature is the difference (or the ratio) between the original performance metric (the reference) and the performance metric after permuting the feature.
- **Rank features**. Rank the features based on their importance scores. The higher the drop in performance when a feature is permuted, the more the feature is important
- Typically, the permutations and the scores are computed N times, to account for the randomness of the process, improving stability of the results

Permutation feature importance

Bar plot (mean)

Box plot

Advantages of Permutation feature importance

- Model-Agnostic
- Intuitive interpretation of feature importance
- Provide compressed, global insight into the model behavior
- Simple Implementation
- No Assumption of Linearity in the relationship between features and the target. It can capture complex, non-linear relationships in the data.
- Performance ratio (compared to the performance difference) enable to compare importance across different models and problems.
- Does not require retraining the model

Limitations of Permutation feature importance

- Feature Independence Assumption. If features are correlated,
 - it can be biased by unrealistic data instances.
 - e.g., person of 1.8m and 20kg
 - The importance of correlated features decrease (shared), as when permuting one, the model still has access to the other
 - Risk in the interpretation and if used for feature selections
- Linked to the model performance. Other measures (e.g., model variance explained by the features) can be of interest
- Require the ground truth
- Randomicity. Depends on feature shuffling, randomness to the measurement
 - Repeating the process stabilizes the measure, but increases the computational time

Partial dependence plots

- Partial Dependence Plots (PDPs) are a visualization tool used to understand the relationship between a model predictions and specific input variables.
 - It show the dependence between the target outcome and a set of input features of interest, marginalizing over the values of all other input features
- PDPs reveal how changes in individual features influence the target response as a function of the input features of interest.
- Typically, we analyze one (or two) feature at a time, due to the limits of human perception

Partial dependence plots - Definition

- X_S = features of interest
- X_C = other features (X_S complement)

Partial dependence is computed by marginalizing the output over the other features C, so that the function shows the relationship between the features in set S and the outcome.

The partial dependence of model f at a point x_S is:

$$pd_{x_S}(x_S) = \mathbb{E}_{X_C}[f(x_S, X_C)] = \int f(x_S, x_C)dP(x_C)$$

where $f(x_S, x_C)$ is the model outcome (e.g., prediction probability) for a sample whose values are defined by x_S for the features in X_S , and by x_C for the features in X_C . $dP(x_C)$ marginal distribution. By marginalizing over the other features, we get a function that depends only on features in S.

We compute $pd_{x_s}(x_s)$ for different x_s and we plot it

Partial dependence plots - Computation

 x_S = feature value(s) for X_S, features for which the partial dependence function is plotted, typically 1 or 2

The partial dependence of x_S is computed as an average over the data X:

$$pd_{x_{S}}(x_{S}) \approx \frac{1}{n} \sum_{i=1}^{n} f(x_{S}, x_{C}^{(i)})$$

- $x_C^{(i)}$ is the value of the i-th sample for the features in X_C .
- *n* is the number of instances in the dataset
- x_S , x_C represents total feature space

The partial function tells us for given value(s) of features S what the average marginal effect on the prediction is.

20

Partial dependence plots - Computation

Partial dependence plots - Computation

Partial dependence plots

Titanic dataset – class 1

Advantages of Partial dependence plots

- The computation of partial dependence plots is intuitive
 - The PDP at a feature value x_S is the average prediction if we force all data points to assume that feature value
- Explanation in visualization form, easy to inspect
 - The PDP shows how the average prediction in your dataset changes when the feature S is changed.
- Easy to implement

Limitations of Partial dependence plots

• Independence Assumption

- PDPs assume independence between the inspect feature and others, not correlated features
- If correlated features, we may create of unrealistic data
- Typically analyze one feature at a time
- PDP typically do not show the feature distribution. The risk is to overinterpret regions with almost no data
- The average marginal effect may hide heterogeneous effects
 - E.g., counterbalances of positive and negative effect

References

- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Model-agnostic interpretability of machine learning." arXiv preprint (2016).
- Molnar, Christoph. *Interpretable machine learning* <u>https://christophm.github.io/interpretable-ml-book/</u>
- Craven, Mark, and Jude Shavlik. "Extracting tree-structured representations of trained networks." Advances in neural information processing systems 8 (1995)
- <u>https://scikit-learn.org/stable/modules/partial_dependence.html#partial-dependence</u>
- T. Hastie, R. Tibshirani and J. Friedman, <u>The Elements of Statistical Learning</u>, Second Edition, Section 10.13.2, Springer, 2009.
- Breiman, Leo."Random Forests." Machine Learning 45 (1). Springer: 5-32 (2001).
- Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. "All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously." <u>http://arxiv.org/abs/1801.01489</u> (2018).