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Stages of Explainability

• Explainability involves the entire AI development pipeline 
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Post-modelling 
explainability

Explainable 
modeling

Pre-modelling 
explainability

Before building the model
• Data exploration
• Data selection
• Feature engineering

Build inherently 
interpretable models
• Manage the accuracy and 

interpretability trade-off

After model development
• Explaining predictions 

and behavior of trained 
models



Scope of Explainability

• What do we explain?
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Individual/localSubgroupGlobal

How the model 
globally works

How the model 
behaves in data 

subgroups

Explaining the 
reasons behind 

individual predictions



gender=female

age=30

...

nation=Italy
f(y=c|x\gender=female, nation=Italy) 

f(y=c|x) 

≠?

Explaining by removing

Also known as occlusion-based or perturbation-based since often the occlusion is 
performed via perturbations
The idea is to remove one or more input feature (or simulate the removal) to quantify the 
feature influence



Explaining by removing - Approaches

• PredDiff – base approach
• IME – Explaining with Shapley Values
• SHAP
• LIME*
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*LIME indeed use perturbations! 



PredDiff – Prediction Difference

Let 𝑓 the model and le be 𝑥 the instance to explain.

The importance of attribute A! is:

Where 𝒙\𝑨𝒊 is the instance x without the information of 𝑨𝒊.
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Robnik-Šikonja, Marko, and Igor Kononenko. "Explaining classifications for individual instances." TKDE (2008)

𝑝𝑟𝑒𝑑𝐷𝑖𝑓𝑓! 𝑥 = 𝑓 𝑥 − 𝑓(𝑥\A!)



PredDiff – Prediction Difference

Evalualuation of the difference à Solution a) Difference in probability

A possibility is to directly evaluate the difference between probabilities for class 𝑐

𝑝𝑟𝑒𝑑𝐷𝑖𝑓𝑓! 𝑥 = 𝑝 𝑦 = 𝑐|𝑥 − 𝑝(𝑦 = 𝑐|𝑥\A!)

Where 𝑐 is typically the predicted class, as we want to explain why the model made a 
particular decision
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Robnik-Šikonja, Marko, and Igor Kononenko. "Explaining classifications for individual instances." TKDE (2008)



PredDiff – Prediction Difference

Evalualuation of the difference à Solution b) Information difference

Another possibility is to compute the information difference

info𝐷𝑖𝑓𝑓! 𝑥 = log# 𝑝 𝑦 = 𝑐|𝑥 − log#𝑝(𝑦 = 𝑐|𝑥\A!)

Where 𝑐 is typically the predicted class, as we want to explain why the model made a 
particular decision

8
Robnik-Šikonja, Marko, and Igor Kononenko. "Explaining classifications for individual instances." TKDE (2008)



PredDiff

How to model the removal of information 𝒇(𝒙\𝑨𝒊)? 

The approach was proposed for tabular data.
Simulate it with an ‘average value’
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p(𝑦|x\A!) = *
"#!

"#$!

𝑝 𝐴! = 𝑎" 𝑝(𝑦|𝑥 ← 𝐴! = 𝑎")

Categorical attributes.
Replace the value 𝐴! = 𝑎$ in 𝑥 with all possible values of 𝐴! (𝑚0 is the number of values 
of the attribute 𝐴0) and weight each prediction by the prior probability of the value. 

The 𝑝(𝑦|𝑥 ← 𝐴! = 𝑎%) represents the probability for 𝑦 when in 𝑥 we replace the value of 
𝐴! with 𝑎%



PredDiff

How to model the removal of information 𝒇(𝒙\𝑨𝒊)? 

The approach was proposed for tabular data.
Simulate it with an ‘average value’
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p(𝑦|x\A!) = *
"#!

"#$!

𝑝 𝐴! = 𝑎" 𝑝(𝑦|𝑥 ← 𝐴! = 𝑎")

Numerical attributes.
First discretize and split the values of Ai into sub-intervals. The middle points of these sub-
intervals are the representative values for 𝑎%
Use probabilities of the sub-intervals for weighting the predictions



PredDiff

We obtain a feature importance for each feature

The higher the magnitude à the more the attribute values impact the prediction
Positive contribution à the attribute values pushes toward the prediction for class c
Negative contribution à the attribute values pushes agaist the prediction for class c
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Advantages of PredDiff

• Model agnostic
• Local explanations

• Provides feature attributions

• Direct interpretation of the result
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Limitations of PredDiff

• Defined for structured data

• Perturbations/info removals may create unrealistic data

• Need access data to compute x\A!
• Replace the attribute with values from (training) instances 𝑝(𝑦|𝑥 ← 𝐴! = 𝑎%)

• Does not consider interaction between features for the removal

13



Explaining by removing – consider interactions

Consider the contribution of multiple features at the time,

i.e., removing feature A& and removing features A& and A'

Research question.
How can we aggregate such importance scores into a single attributions? 
• i.e., the contribution of A& , considering the interactions with other attributes

A possibility à Shapley values

14



Shapley value

Concept for game theory to assign a relevance score to each player of a team, assuming 
that they collaborate
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Total score of Team

Team 

Player 1 Player 2 Player 3 Player 4

𝝓 ?

Goal. Compute the contribution of each player 𝝓𝒊?



Shapley value
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• 𝑁 players 
• v is a function maps subsets of players to the real numbers:  𝑣: 2( → ℝ, with 𝑣 ∅ = 0
• 𝑆 = coalition of players
• 𝑣 𝑆 is the total expected sum of payoffs the player in S can obtain by cooperating

Contibution of player i𝝓𝒊 𝒗

𝜙! 𝑣 = $
"⊆$

𝑁 − 𝑆 ! ( 𝑆 − 1)!
𝑁 !

(𝑣 𝑆 − 𝑣 𝑆 \{𝑖} )

Marginal contribution



Shapley value
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• Players A, B, C
• 𝜙3 𝑣 ?

Terms to sum:

• !
"
(𝑣 𝐴 − 𝑣 ∅ )

• #
"
((𝑣 𝐴, 𝐵 − 𝑣 𝐵 )

• #
"
(𝑣 𝐴, 𝐶 − 𝑣 𝐶 )

• !
"
(𝑣 {𝐴, 𝐵, 𝐶} − 𝑣({𝐵, 𝐶}))

• Coalition considered: 24

𝜙! 𝑣 = $
"⊆$

𝑁 − 𝑆 ! ( 𝑆 − 1)!
𝑁 ! (𝑣 𝑆 − 𝑣 𝑆 \{𝑖} )



Properties of Shapley Value (1/2)

• Efficiency
The sum of the Shapley values of all players is equal to the value of the entire team

I
!∈(

𝜙! 𝑣 = 𝑣(𝑁)

• Simmetry
Players with the same marginal contributions have the same contribution 𝜙
If 𝑣 𝑆 ∪ {𝑖} = 𝑣 𝑆 ∪ {𝑗} for all 𝑆 ⊆ 𝑁{𝑖, 𝑗}, then 𝜙! 𝑣 = 𝜙' 𝑣
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Properties of Shapley Value (2/2)

• Linearity
If two games described by functions v and 𝑤 are combined, then the distributed 
contribution correspond to sum of the contribution from v and the contribution from 𝑤
• 𝜙! 𝑣 + 𝑤 = 𝜙! 𝑣 + 𝜙! 𝑤
• 𝜙! 𝛼 ⋅ 𝑣 = 𝛼 ⋅ 𝜙! 𝑣

• Null player
A player with marginal contribution equal to 0 will have 0 as contribution 𝜙

𝑣 𝑆 ∪ 𝑖 = 𝑣 𝑆 ∀𝑆 → 𝜙! 𝑣 = 0

Shapley value is the only assignment that satisfy the Efficiency, Symmetry, Linearity and 
Null player properties

19



Use Shapley value for XAI

Players à feature values
Total score 𝑣(𝑁)à difference in probability with the average prediction (prior) 
𝑆à instance when feature values N\S are omitted
𝑣(𝑆)à (a) prediction probability for instance S with only feature values S are available 
compared to average prediction / (b) prediction 
𝜙à feature attributions
• How much has each feature value contributed to the prediction compared to the average 

prediction?
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𝜙! 𝑣 = $
"⊆$

𝑁 − 𝑆 ! ( 𝑆 − 1)!
𝑁 !

(𝑣 𝑆 − 𝑣 𝑆 \{𝑖} )



Function v

• How much has each feature value contributed to the prediction compared to the 
average prediction?

𝑣 𝑆 = 𝑓 𝑆 − 𝐸 𝑓 𝑋
where 𝑓 𝑆 is the model prediction marginalizing over the feature not in 𝑆

This interpretation is in line with the interpretation of some interpretable model such as 
linear regression

• Contribution of the feature value respect to the average/prior behavior

Following this line, 𝑣 𝑁 (i.e., for the instance to explain 𝑥, all players) is the prediction 
probability for an instance minus the average prediction for all instances , 
𝑣 𝑁 = 𝑣 𝑥 = 𝑓 𝑥 − 𝐸 𝑓 𝑋 21



Computation of v 𝑆 and v(𝑆 \{𝑖})
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How to model the removal of information?

• As for PredDiff: simulate it with an ‘average value’ substituiting with possible values
• Less adopted

• Random
• Replace the feature values of features that are not in a coalition with random feature 

values from the dataset
• Consider multiple replacement and provide the average value v



Example of coalitions to evaluate

Example. Gender=F, age=30, nationality=IT, income=20k

• To compute the contribution of gender=F, we need to evaluate the following coalitions (2^4)
• {} | gender=F
• age=30 | gender=F
• nationality=IT | gender=F
• income=20k | gender=F
• age=30, nationality=IT | gender=F
• age=30, income=20k | gender=F
• nationality=IT, income=20k | gender=F
• age=30, nationality=IT, income=20k | gender=F

23



Shapley value

• Contibution of player i𝝓𝒊 𝒗

• Alternative form
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𝜙! 𝑣 = $
"⊆$

𝑁 − 𝑆 ! ( 𝑆 − 1)!
𝑁 !

(𝑣 𝑆 − 𝑣 𝑆 \{𝑖} )

𝜙! 𝑣 = $
"⊆$\{!}

𝑁 − 𝑆 − 1 ! ( 𝑆 )!
𝑁 !

(𝑣 𝑆 ∪ {𝑖} − 𝑣 𝑆 )



Advantages of using the Shapley Values for XAI

• Model agnostic & Local explanations & Provides feature attributions & Direct 
interpretation of the result

• Consider interaction among features

• Efficiency Property of Shapley Values
• The difference between prediction for instance 𝑥 and average prediction is 

distributed among feature values.
• ∑!*+

, 𝜙! 𝑓 = 𝑓 𝑥 − 𝐸 𝑓 𝑋
Where 𝑝 is the number of attributes and 𝑓is the model to explain

• Solid Theoretical Foundation
• Axioms: efficiency, symmetry, linearity, null player

25



Limitations of using the Shapley Values for XAI

• Computation time is exponential in the number of players/feature values 
• Exact computation is computationally expensive.
• For N players,  2^K coalitions of the feature values 

• Need access data to compute 𝑣(𝑆) and 𝑣(𝑆\{𝑖})

• Perturbations/info removals may create unrealistic data

• The  absence of a feature to compute 𝑣(𝑆) and 𝑣(𝑆\{𝑖}) is simulated by drawing random 
instances à variance for the estimate of the Shapley value

26



Problem of exact computation

Exact computation à exponential in the number of players/feature and feature values

• To compute 𝜙0 𝑣 we have to evaluate all possible coalitions of feature values with and 
without the feature A(

The exact solution to this problem becomes problematic as the number of possible 
coalitions exponentially increases as more features are considered

Proposed solution: approximation with Monte-Carlo sampling

27
Štrumbelj, Erik, and Igor Kononenko. “Explaining prediction models and individual predictions with feature contributions.” 
Knowledge and information systems, 2014



Shapley Approximation - Random coalition

• Take a random instance z from the dataset

• 𝑥-' is an instance where a random number of feature values are replaced by feature 
values from the random data point 𝐳. The value for feature 𝑗 is as in the original feature 𝑥
• The random features that are replaced are the features not in the coalition

• 𝑥.' is as 𝑥-' where also the value of 𝒋 is replaced by the value of the sampled 𝑧. 

28



Example of random coalition

• Input instance x: Gender=F, age=30, nationality=IT, income=20k

• Random instance 𝑧 : Gender=M, age=35, nationality=IT, income=40k

• Random features values: age=30, income=20k

To compute 𝜙789:;<:=8>:?@A: 𝑣 we consider 

• 𝑥-' - Gender=F, age=35, nationality=IT, income=40k

• 𝑥.' - Gender=M, age=35, nationality=IT, income=40k

Note that the considered coalition 𝑆 in this case is nationality=IT 29



Approximated Shapley estimation

30

M = number of iterations

• For m in 1,…, M:
• Sample a random instance 𝑧 from the dataset
• Randomly select a permutation of the feature values O
• Compute 𝑥-' and 𝑥.'

• 𝑥-' = take values from 𝑥 preceding j-th in O + j +  take values from 𝑧 succeeding j-
th in O

• 𝑥.' = take values from 𝑥 preceding j-th in O +  take values from 𝑧 succeeding j-th-
1 in O  (i.e., j-th included)

• Compute the marginal contribution 𝜙)* = f(𝑥-') - 𝑓(𝑥.')

• Compute the Shapley values as the average over the M iterations 𝜙7 𝑥 = B
C
∑/*+0 𝜙7?



Example of random coalition (2) – use 
permutations
• Input instance x: Gender=F, age=30, nationality=IT, income=20k

• Random instance 𝑧 : Gender=M, age=35, nationality=IT, income=40k

• Random permutation at iteration m: nationality, gender, age, income

To compute 𝜙789:;<:=8>:?@A:? 𝑣 we consider 

• 𝑥-' - nationality=IT, Gender=F, age=35, income=40k

• 𝑥.' - nationality=IT, Gender=M, age=35, income=40k

Note that the considered coalition 𝑆 in this case is nationality=IT 31



Advantages and limitations of the 
approximation
Advantages
• Same as exact Shapley
+
• Reduced computational complexity

Limitations
• Same as exact Shapley except for exponential computation
+
• It is an approximation
• Variance for the estimate of the Shapley value depends on the number of iterations M

• Decreasing M reduces computation time but increases the variance of the Shapley value
32



SHAP

• SHAP  = SHapley Additive exPlanations

• Local, model agnostic explanation method based on Shapley values

• SHAP proposes two approaches for estimating the Shapley values
• KernelSHAP - kernel-based estimation approach

• Model agnostic
• TreeSHAP - efficient estimation approach for tree-based models

• Not model agnostic

• It also propose to aggregate local explanation to provide global insights

33
Lundberg, Scott M., and Su-In Lee. “A unified approach to interpreting model predictions.” Neurips 2017



SHAP

• Idea of SHAP brings is to represent the Shapley value explanation as an additive feature 
attribution method, a linear model

• Use the notion of surrogate model

𝑔 𝑥′ = I
!*+

,

𝜙!

34



SHAP
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• 𝑓: the original model to explain
• 𝑔: simpler explanation model, interpretable approximation of the original model
• 𝑥: instance to explain. We want to explain 𝑓 𝑥

• 𝑥′: simplified input of 𝑥, such that 𝑥 = ℎ1(𝑥2) where h3 is a mapping function
• As the interpretable representation of LIME 

SHAP target defyining a 𝑔 such that: 𝑔 𝑧2 ≈ 𝑓 ℎ1 𝑧2 for z2 ≈ 𝑥′



SHAP - SHapley Additive exPlanations
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• 𝑀: number of simplified features
• 𝑧2 ∈ 0,1 0 : defined as binary feature

• As the interpretable representation of LIME

• Definition of additive feature attribution method

𝑔 𝑧′ = 𝜙+ + $
!,-

.

𝜙! 𝑧!/



SHAP - SHapley Additive exPlanations
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• Recall the interpretable representation of LIME for tabular data

• We use 𝑧2 ∈ 0,1 0 to model the coalitions of players!
• An entry of 1 means that the corresponding feature value is “present” and 0 that it is 

“absent”
• In the example, the player are the tokens/words ‘Welcome’, ‘to’, ‘and’ and 

‘Course’. The other words are omitted/removed
• Recall that too compute Shapley values, we simulate that only some feature values 

are playing (“present”) and some are not (“absent”).

Welcome to the Explainable and Trustworthy AI Course
1 1 0 0 1 0 0 1



Properties of additive feature attributions 

• Local accuracy
• The explanation model 𝑔 𝑥D matches the original model 𝑓 𝑥 when 𝑥 = ℎE 𝑥D

If we define 𝜙F = 𝐸 𝑓 𝑋

38

𝑓 𝑥 = 𝑔 𝑥/ = 𝜙+ + $
!,-

.

𝜙! 𝑥!/

𝑓 𝑥 = 𝜙+ + $
!,-

.

𝜙! 𝑥!/ = 𝐸 𝑓 𝑋 +$
!,-

.

𝜙! 𝑥!/



Properties of additive feature attributions 

• Missingness
• Simplified input x model the presence and absence of feature

• Missingness requires that features missing have no impact, i.e., get an attribution 0

• 𝑥!/ = 0 ⟹ 𝜙! = 0

39



Properties of additive feature attributions 
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• Consistency
• If a model changes so that the marginal contribution of a simplified input increases or 

stays the same regardless of the other feature, the attribution of that feature should not 
decrease (hence, it should increas increase or stay the same as well

Let 𝑓1 𝑧2 = 𝑓 ℎ1 𝑧2 and 𝑧2\i indicate that 𝑧'2 = 0 (i.e., feature 𝑗 is absent/removed).

For any two models 𝑓 and 𝑓2, if

𝑓12 𝑧2 − 𝑓12 𝑧2 \ 𝑖 ≥ 𝑓1 𝑧2 − 𝑓1 𝑧2 \ 𝑖
For all 𝑧2 ∈ 0,1 0, then 𝜙! 𝑓2, 𝑥 ≥ 𝜙!(𝑓, 𝑥)



SHAP
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• The Shapley value is the only one possibile explanation model g that follows the 
definition of ‘Additive feature attribution methods’ and the three Properties

Where 𝑧2 is the number of non-zero values in 𝑧2 and 𝑧′ ⊆ 𝑥′ indicates all 𝑧2 where non-
zero entries are a subset of the non-zero entries in 𝑥2

𝜙! 𝑓, 𝑥 = $
0/⊆1/

𝑀 − 𝑧′ − 1 |𝑧′|!
𝑀 !

(𝑓1 𝑧/ − 𝑓1 𝑧′ \{𝑖} )



SHAP - 𝑓! 𝑧"

• 𝑓E 𝑧D = 𝑓 ℎE 𝑧D = 𝐸 𝑓 𝑧 𝑧G

where
• 𝑆: set of non-zero values in 𝑧D

• 𝑧G: instance that has missing values for features not in 𝑺
• i.e., non-zero just the ones in 𝑆

• We approximate 𝑓 𝑧G with 𝐸 𝑓 𝑧 𝑧G by marginalizing the features not in 𝑆

42



SHAP - 𝑓! 𝑧" - Estimation
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𝑓1 𝑧/ = 𝑓 ℎ1 𝑧/ = 𝐸 𝑓 𝑧 𝑧2 = 

= 𝐸0!"|0" 𝑓 𝑧 expectation over 𝑧"̅|𝑧"
where ̅𝑆 is the complement of 𝑆 (i.e., features not in S)  

≈ 𝐸0!" 𝑓 𝑧 assume feature independence

≈ 𝑓([𝑧", 𝐸 𝑧"̅ ])



SHAP - 𝜙# interpretation 

• 𝐸[𝑓(𝑧)] is the base value, when we did not know any features

44

0 𝐸 𝑓 𝑧 𝑧% = 𝑥%

𝜙%

𝐸 𝑓 𝑧 𝑧%,' = 𝑥%,'

𝜙'

𝐸 𝑓 𝑧 𝑧%,',( = 𝑥%,',(

𝜙(

𝒇(𝒙)

𝜙)

𝜙*

𝐸[𝑓(𝑧)]

• The diagram shows a single orderling (1 then 2 then 3)
• The weights takes into account the multiple ordering --> weighted average t



Kernel SHAP

• The exact computation of the Shapley values is expensive
• Exponential in the number of players

KernelSHAP is a technique to estimate for an instance x the contributions of each feature 
value to the prediction as an approximation of the Shapley value - 𝜙0

It uses the intuition of local interpretable models

45



From LIME to Kernel SHAP

Recall the objective of LIME

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 𝑥 = argmi𝑛
4∈5

𝐿 𝑓, 𝑔, 𝜋1 + Ω(𝑔)

The explanation for instance 𝑥 is the model 𝑔 that minimizes loss 𝐿:
• 𝐿 𝑓, 𝑔, 𝜋1 – how unfaithful 𝑔 is to 𝑓 in the locality given by 𝜋1 - Local

𝐿 𝑓, 𝑔, 𝜋1 = I
6,6+∈𝒵

𝜋1 𝑧 𝑓 𝑧 − 𝑔 𝑧2 #

Ridge regression - Linear least squares with l2 regularization in the code
• Ω(𝑔) – i.e., the complexity of 𝑔 - how the model is interpretable is kept low – Interpretable

46



Shapley Kernel
• Interpretability term

Ω 𝑔 = 0
• Locality term

𝐿 𝑓, 𝑔, 𝜋! = ,
"#∈𝒵

𝜋!# 𝑧′ 𝑓 ℎ!(𝑧′ ) − 𝑔 𝑧#
&

• Where 𝝅𝒙# 𝒛′ is computed as follows
𝜋!" 𝑧# =

𝑀 − 1
(
|"#| |𝑧′|(𝑀 − |𝑧′|)

|𝑧′| is the number of non-zero elements in 𝑧 and 𝑀 is the maximum coalition size (i.e., the number of 
interpretable features)

• 𝒉𝒙(𝒛#) is the function to go from the interpretable feature space of 𝑧# to the original feature space to 
compute 𝑓 ℎ!(𝑧′ ) as model 𝑓 operates on the original space

47



Kernel SHAP - Pseudocode

• Sample K coalitions 𝑧5/ ∈ 0,1 ., k ∈ 1,… , 𝐾
• 𝑧5,)/ has value 1 if the feature 𝑗 is present in the coalition, 0 if it is absent

• Compute 𝑓 ℎ1(𝑧5/ ) , i.e., the prediction of model f first converting the instance 𝑧5/ to the original 
feature space with function ℎ1

• Compute the weight for each coalition 𝑧5/ with SHAP kernel

𝜋1# 𝑧5/ =
𝑀 − 1

.
|0$/|

|𝑧5′|(𝑀 − |𝑧5′|)

• Fit weighted linear model

𝐿 𝑓, 𝑔, 𝜋1 = $
0/∈𝒵

𝜋1/ 𝑧′ 𝑓 ℎ1(𝑧′ ) − 𝑔 𝑧/ 9

• The coefficient of the linear model 𝜙! are the (approximated) Shapley values  
48



Example of coalition sampling – image data

49

𝑧,- = [0, 0, 0, 1, 0, ….., 0, 1, ..]

1
1 1

1

1
1

1
1

1
1

0 0 1

ℎ.(𝑧′ )



Example of coalition sampling - tabular

• 𝑥 : Gender=F, age=30, nationality=IT, income=20k

• 𝑧$2 = [1, 0, 1, 0]

• ℎ1(𝑧′ ) = Gender=F, age=55, nationality=IT, income=20k

• 𝑓([𝑧S, 𝐸 𝑧S̅ ])
• marginalizing, substituting the feature not in 𝑆 ( ̅𝑆) with values for a random instance 

(actually done by marginalizing over multiple random instances, less variance) 
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Example of coalition sampling – text data

• 𝑥 : Welcome to the Explainable and Trustworthy AI Course

• 𝑧$2 = [1, 1, 0, 0, 1, 0, 0, 1]

• ℎ1(𝑧′ ) = Welcome to [UNK] [UNK] and [UNK] [UNK] Course
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Welcome to the Explainable and Trustworthy AI Course
1 1 0 0 1 0 0 1



Global insights – SHAP Feature importance

• Global feature importance as the average of absolute                                                      
Shapley values  per feature across the data

52

Steps
• Compute SHAP for each instance of the datasets

• For each attribute, we have the importance of its value for explaining a specific instance

• Compute the average the absolute Shapley values per feature across the data:

𝐼' =
1
𝑛I
!*+

9

|𝜙'
(!)|

whew 𝜙'
(!) is the 𝜙 of the attribute j for the 𝑖-th instance and 𝑛 is the number of instances

The higher the value of a feature, the more the features is important for model f



Global insights – SHAP Summary plot

• Density scatter plot

• Each point is a Shapley value for a feature and an 
instance
• We compute SHAP for all instances first

• x-axis - the Shapley value
• y-axis - the feature 

• Features are sorted by the sum of the SHAP value 
magnitudes across all samples. 
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Global insights – SHAP Dependence Plot

Dependence Plot

• Given a feature 𝑗, for each data instance 𝑖
we plot a {𝑥'

(!), 𝜙'
(!)} with 

• the feature value on the x-axis 
• the corresponding Shapley value on 

the y-axis

• We can also color the point based on 
another feature k to highlight possible 
interactions with other features
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Advantages of SHAP

• Same as exact Shapley
• Model agnostic &  Local explanations & Provides feature attributions & Direct interpretation 

• Consider interaction among features

• Efficiency Property of Shapley Values 
• The difference between prediction for instance 𝑥 and average prediction is distributed among 

feature values

• Solid Theoretical Foundation
• Axioms: efficiency, symmetry, linearity, null player

+
• Reduced computational complexity
• Global model interpretations
• Nice and well documented library
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Limitations of SHAP

• Need access data to compute 𝑓 ℎ1(𝑧′ )

• Perturbations/info removals may create unrealistic data
• Assumption feature independence

• The absence of a feature to compute 𝑓 ℎ.(𝑧′ ) is simulated by drawing random instances 
à variance on the estimation

• It is an approximation of Shapley values

• KernelSHAP is slow
• But other faster approximation have been proposed and are available in the library
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Unification of removal-based explanations

• Removal-based explanations  are based on the principle of simulating feature removal to quantify 
the influence of each feature to the prediction

• We can characterize them according three dimensions
1) Feature removal

How the method removes features (e.g. by setting them to default values, or by  
marginalizing over a distribution of values)

2)   Model behavior
What model behavior the method explains (e.g., the probability of the true class, 
or the model loss)

3) Summary technique
How the method summarizes each feature’s influence (e.g., by removing a feature 
individually, or by calculating Shapley values)

57Covert, Ian, Scott Lundberg, and Su-In Lee. "Explaining by removing: A unified framework for model 
explanation." Journal of Machine Learning Research, 2021



Unification of removal-based explanations

58Covert, Ian, Scott Lundberg, and Su-In Lee. "Explaining by removing: A unified framework for model 
explanation." Journal of Machine Learning Research, 2021



1) Feature removal 𝑓 𝑥\ ̅𝑆 - examples

• Zeroing  
• Remove features simply by setting them to zero: 
𝑓 𝑥\ ̅𝑆 = f(𝑥", 0)

• Default values  
• Remove features by setting them to user-defined default values such  gray pixels for images 

or a mean value (e.g., in LIME for image). Given default values 𝑟 ∈ 𝑋 , calculate:    
𝑓 𝑥\ ̅𝑆 = 𝑓(𝑥", 𝑟"̅)
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1) Feature removal 𝑓 𝑥\ ̅𝑆 - examples

• Blurring
• Remove features from images by blurring them with a Gaussian kernel

• Marginalize with marginal
• Removes features by marginalizing them out using their joint marginal distribution (e.g., 

KernelSHAP):
𝑓([𝑧", 𝐸 𝑧"̅ ])
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2) Model behavior - examples

• Prediction probability
f x = 𝑝 𝑦 = 𝑐|𝑥

• Prediction loss
Consider the true label y for an input x and calculate the prediction loss using a loss function 

• Dataset loss
Consider the expected loss across the entire dataset, i.e., quantify how much the model’s 
performance degrades when different features are removed
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3) Summarizing feature influence - examples

• Remove individual
Calculate the impact of removing a single feature from the model (e.g., PredDiff)
Note that this can be applied for interpretable representationg (e.g., super-pixels)

• Additive model
Fit a regularized additive linear model to a dataset of perturbed examples (e.g., LIME). The learned 
coefficients represent the incremental value associated with including each feature.

• Shapley value
Calculate feature attributions using the Shapley value
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Recap of the limitations of removal-based 
techniques
• Perturbations/info removals may create unrealistic data

• The absence of a feature is often simulated by drawing random instances à variance on 
the estimation

• The removal is often based on marginalization/mean values, thus requiring accessing to 
the data
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