
Gradient-based explainability methods
Explainable and Trustworthy AI

Eliana Pastor

Stages of Explainability

• Explainability involves the entire AI development pipeline

2

Post-modelling
explainability

Explainable
modeling

Pre-modelling
explainability

Before building the model
• Data exploration
• Data selection
• Feature engineering

Build inherently
interpretable models
• Manage the accuracy and

interpretability trade-off

After model development
• Explaining predictions

and behavior of trained
models

Scope of Explainability

• What do we explain?

33

Individual/localSubgroupGlobal

How the model
globally works

How the model
behaves in data

subgroups

Explaining the
reasons behind

individual predictions

Gradient-based explainability methods

• Techniques that leverage the gradient information of the model with respect to the
input features to identify which features are most influential in the model's decision-
making process.

• Gradient-based methods differ in how the gradient is computed

• Generally, the explanation has the same size as the input
• They assign each part of the input a value that is interpreted as the relevance

• e.g., for images, importance for each pixel of the image
• e.g., for text, importance of each token

4

Saliency map

5
Image from: https://dlhr.de/8

Saliency map

• Saliency is a visualization technique to highlight the important regions or features in an
input data sample
• It is a way to visualize feature attributions, i.e., to represent the attribution scores

assigned to each input feature
• Brighter regions in the saliency map indicate higher saliency or importance, highlighting

the regions of interest in the input data

6

I am really happy

Vanilla Gradient

Compute the gradient of the loss function with respect to the input
• Proposed for image data à respect the input pixel

7

Gradients: from backprogation to saliency

Gradient in the training process.
• During the training process, gradients are computed with respect to the model

parameters to update them.
• Goal is to adjust model parameters in a direction that minimizes the loss function.

This is typically done using techniques like backpropagation.

Gradients in explainability.
• In gradient-based explainability methods, instead of computing gradients with respect to

the parameters, we compute gradients with respect to the input features themselves.
• We analyze how changes in the input features affect the output directly.

8

Gradients – at training time

Backpropagation

9neuron weighted connection
(wij)

input vector (xi) output vector

𝜕𝐿
𝜕𝑤

Gradients for explainability

Given.
• A network trained for 𝐶 classes. Output of the network for input 𝐼 is a prediction vector
F 𝐼 = [𝐹!(𝐼), … , 𝐹"(𝐼)]

• For a class 𝑐, 𝐹# 𝐼 is the score of the class 𝑐

Goal.
• Given an input I$with p features and a class 𝑐, we want to compute a relevance score for

each features for class 𝑐

𝑅# = 𝑅!# , . . , 𝑅%#

for the score 𝐹#

For image data, the features can be the pixels of the image with width 𝑤 and height ℎ, with p = 𝑤×ℎ 10

Gradients for explainability

𝐹# 𝐼 is the score of the class 𝑐 and 𝑅# relevance score for each features for class 𝑐

How.
We derive 𝑅# by computing the gradient of class score of interest with respect to the input
pixels:

i.e., the derivative of 𝐹# with respect to the input for the given image I$

11

$
𝜕𝐹!
𝜕𝐼 "!

Gradients for explainability

The idea is to model the score model 𝐹# as a linear function. Since 𝐹# is non-linear, we
approximate with the first-order Taylor expansion

𝐹# 𝐼 ≈ 𝑤& ⋅ 𝐼 + 𝑏 = 𝑅#& ⋅ 𝐼 + 𝑏

Where the weight vector 𝑤 = 𝑅# is t derivate of the score and b is the bias of the model.
The weights 𝑅# define the importance of the feature of I for the class c.

12

Gradients for explainability

• Let 𝐹 be the model function and 𝐹# 𝑥 the score function for the input x for the class c

• We compute the input gradient importance

∇! 𝐹" 𝑥 = [
𝜕𝐹"
𝜕𝑥#

, … ,
𝜕𝐹"
𝜕𝑥$

]

where ∇! 𝐹" 𝑥 denotes the gradient of 𝐹#(𝑥) for input 𝑥 and %&!
%!"

is the partial derivative of
𝐹! 𝑥 with respect to the i-th input feature.
We typically compute it via backpropagaQon.

13

Gradients for explainability

Interpretation of the image-specific class saliency
• Features with larger gradients indicate that small changes in those features will result in

more significant changes in the model's output
• Magnitude of the derivative indicates which features need to be changed the least to

affect the class score the most
• Gradients tell us which features (e.g., pixels) have the steepest local relative to your

model's prediction at a given point along your model's prediction function

14

From gradient to saliency map

• 𝐹#(𝐼) = score for class c, e.g., logits

• 𝑤 has size as the input
• For images, 𝐼' ∈ ℝ(×*×+ (e.g., K=3 for RGB) -à 𝑤 ∈ ℝ(×*×+

• If we want to plot a saliency map over the image, we need to aggregate the scores 𝑤 to
have a saliency map of size 𝐻 ×𝑊

• We can derive the saliency map M ∈ ℝ(×* as follows

𝑀,- = max
.
|𝑤,-.|

i.e., we collapse the challenge dimensions 15

Vanilla gradient – Limitation

• Noisy!
• Derivative can fluctuate great at small scales
• Slight variations to the input data can result in significant changes in the model

output (thus in the gradients), resulting in noisy gradients and instability

16

SmoothGrad

• Vanilla Gradient can produce noisy saliency maps, hence difficult to interpret

• SmothGrad averages the gradients for ‘noisy inputs’

1
𝑁D

!

/

∇"𝐹!(𝑥 + 𝜖)

Where 𝜖 is Gaussian Noise.
We create a smoothing effect. The intuition is that by averaging the gradients over
modifications of the input, smooths out fluctuations & average out noise

17

SmoothGrad

Process.
• Generate N versions of the input by adding noise to it.
• Compute the gradients for the N input, thus generating N relevance scores 𝑅#
• Average the pixel attribution maps

• Parameters
• Noise level
• Number of samples

• Note that we can generally apply a generic gradient-based explainability approach

18

Smooth-Grad + Vanilla Gradient - Example

19

Gradient x Input

• Small variation of Vanilla Gradient
• The gradients w.r.t. the input are multiplied for the input (element wise product)

• It generally provides better results

20

∇! 𝐹" 𝑥 ⊙𝑥

Gradient x Input - Example

21

Gradient x Input Gradient x Input + SmoothGrad

GradCAM

• Gradient-weighted Class Activation Mapping
• Suitable for CNN-based architectures

22

GradCAM

Intuition.
• Deeper representations in a CNN capture higher-level visual constructs

23Lee et al, “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical
Representations”, ICML 2009.

GradCAM

Intuition.
• Deeper representations in a CNN capture higher-level visual constructs
• Convolutional layers naturally retain spatial information which is lost in fully-connected

layers, so we can expect the last convolutional layers to have the best compromise
between high-level semantics and detailed spatial information.

• Grad-CAM uses the gradient information flowing into the last convolutional layer of the
CNN to assign importance values to each neuron for a decision.
• Explain activations in the output layer decisions

24

GradCAM

• Differenceà the gradient is not backpropagated back to the image
• Grad-CAM à Propagated (usually) to the last convolutional layer

• Let 𝐴. ∈ ℝ0×1 be feature map activations of a convolutional layer (typically the last).
The layer produces K feature maps
• Each element is by 𝑖, 𝑗. Hence, 𝐴#,%& refers to the activation at location (i, j) of the

feature map 𝐴.
• Grad-CAM produces a coarse localization map that highlights important regions of the

image, i.e., Layer-wise importance, 𝐿𝑎𝑦𝑒𝑟 -𝑅# ∈ ℝ0×1 for a class 𝑐, where 𝑈, 𝑉 is the
shape of 𝐴.

𝜕𝐹!
𝜕𝐴#,%&

25

0
𝜕𝐹"
𝜕𝐼 '#

GradCAM - Process

a. Compute the gradient of the score for class c, 𝐹", with respect to feature map activations 𝐴(of
that convolutional layer of interest (usually the last) -- via backpropagation

𝜕𝐹#
𝜕𝐴.

b. Compute the average for each output channel – global average pooling

𝛼!
" =

1
Z
&
#

&
$

𝜕𝐹%
𝜕𝐴#,$'

𝛼2
3 captures the importance of feature map 𝑘 for a class 𝑐

c. Multiply the average gradient for each channel by the layer activations and apply a ReLU

𝐿𝑎𝑦𝑒𝑟 −𝑅" = 𝑅𝑒𝐿𝑈(=
(

𝛼(𝐴()

ReLU since only interested in the features that have a positive influence on the class, i.e. pixels
whose intensity should be increased to increase class 𝑐

26

GradCAM - Relevance - Example

• 𝐿𝑎𝑦𝑒𝑟 −𝑅# in a coarse heatmap of the same size as the convolutional feature maps
• Often we upsample it and view as mask to the input

27

Guided GradCAM

• Grad-CAM produces coarse importance as the last convolutional feature maps have a
coarser resolution compared to the input image

• We may want to have a per-pixel importance

• Idea
Combine Grad-CAM explanation and the explanation from another attribution method,
such as Vanilla Gradient, by multiplying element-wise

Guided Grad-CAM = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 𝐿𝑎𝑦𝑒𝑟 −𝑅4567"68# ⨀𝑅9:;<= ><:;9?#

28

Guided GradCAM - Example

29

Integrated Gradients

Propose two axioms: sensitivity and implementation variance

Sensitivity.
If two inputs 𝑥 and 𝑥’ differ only in one feature 𝐴, but have different predictions, then the
feature 𝐴, should be given a non-zero attribution

Example

𝑥 = [1, 0, 1] à f(x) = class 0
𝑥’ = [1, 1, 1] à f(x) = class 1

30

Integrated Gradients

Axioms.

Implemetation invariance

If two models f anf f’ have identical input/output behvior, then the attributions for M and
M’ should be identical.

31

Gradients X Input fails sensitivity

• f(x) = 1-ReLU (x) = 1-max(0, 1-x)

• Example
• f(0) = 1-max(0, 1-0) = 0
• f(2) = 1-max(0, 1-2) = 1

Since we have different outputs, for the sensitivity axiom, we should have different attributions

InputXGradient 𝑓, 𝑥 = ∇𝑓 𝑥 ⋅ 𝑥
InputXGradient 𝑓, 0 = 1 ⋅ 0 = 0
InputXGradient 𝑓, 2 = 0 ⋅ 2 = 0

32

∇𝑅𝐸𝐿𝑈′ 𝑥 = /1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

∇𝑓 𝑥 = 61 𝑖𝑓 𝑥 < 1
0 𝑖𝑓 𝑥 > 1 = max(0, 𝑠𝑖𝑔𝑛 1 − 𝑥) 𝑠𝑖𝑔𝑛 𝑥 = A

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

= à Failed test!

Integrated Gradients
• Compare x with a baseline

• No information, e.g., zero vector
• Interporlate between the point of this baseline

and the input x
• Take the gradient with respect to each

interpolated input
• Compute the average of these gradients

• Give us the feature importance

33
Animation from ‘Feature Attribution’ | Stanford CS224U Natural Language Understanding | Spring 2021

𝑥!

𝑥"

x

Baseline

Integrated Gradients

• Let 𝑥 be the instance to explain and 𝑥’ a baseline input.
• Let 𝛼 be interpolation constant to perturb features by

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠$ 𝑥 = 𝑥$ − 𝑥$% ×M
&'(

) 𝜕𝑓 𝑥% + 𝛼× 𝑥 − 𝑥%

𝜕𝑥$
𝑑𝑎

We actually compute the numerical approximation instead of the integral

Let 𝑘 be a scaled feature perturbation constant and 𝑚 the number of steps

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠,
R%%=9S(𝑥) = 𝑥, − 𝑥,T ×

1
𝑚×∑.U!>

𝜕𝑓(𝑥T + 𝑘
𝑚× 𝑥 − 𝑥T)
𝜕𝑥,

34

Integrated Gradients - steps

1. Consider multiple perturbations
2. Interpolate inputs between baseline 𝑥’ and the input 𝑥
3. Compute the gradients for each interpolated input
4. Compute the average – approximation of the integral
5. Scale to remain in the original space

35

‘Feature Attribution’ | Stanford CS224U Natural Language Understanding | Spring 2021

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠)
*$$+,!(𝑥) = 𝑥) − 𝑥)- ×

1
𝑚
×∑(.#/

𝜕𝑓(𝑥- + 𝑘
𝑚× 𝑥 − 𝑥-)
𝜕𝑥)

5 4
1

3
2

Integrated gradients and sensitivity

• Example
• f(x) = 1-ReLU (x) = 1-max(0, 1-x)
• f(0) = 1-max(0, 1-0) = 0
• f(2) = 1-max(0, 1-2) = 1

Since we have different outputs, for the sensitivity axiom, we should have different attributions

IntegratedGradient 𝑓, 𝑥, 𝑥′ = 𝑥, − 𝑥,T ×∑.U!> VW(S#Y$
%× SZS#)

VS&
× !

>

IntegratedGradient 𝑓, 2, 0 = 2 − 0 !
>
∑(max(0, 𝑠𝑖𝑔𝑛 1 − 0.00 + max(0, 𝑠𝑖𝑔𝑛(

)
1 −

0.02) + . . +max 0, 𝑠𝑖𝑔𝑛 1 − 2 ≈ 1
IntegratedGradient 𝑓, 0,0 ≈ 0

36

∇𝑅𝐸𝐿𝑈′ 𝑥 = /1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

∇𝑓 𝑥 = 61 𝑖𝑓 𝑥 < 1
0 𝑖𝑓 𝑥 > 1 = max(0, 𝑠𝑖𝑔𝑛 1 − 𝑥)

Integrated Gradients - Example

37

Integrated Gradients + SmoothGrad - Example

38It is more computational expensive! Locally only on 5 samples..

Advantages

• Efficiency
• Many gradient-based methods are computationally efficient

• Multiple approaches

• Effective visualization via saliency maps

39

Limitations

• Some methods do not satisfy the sensitivity axiom
• Methods insensitive to model and data.
• Explainers or edge detectors simply highlight color changes in images?

• Sensitivity to Perturbations
• Methods may be sensitive to small changes in input data, leading to unstable

explanations

• Gradient Vanishing/Saturating

• Different approach, different explanations..
• Which one to trust?
• Need for evaluation approaches..!

40

