Gradient-based explainability methods

Explainable and Trustworthy Al

Eliana Pastor

Stages of Explainability

e Explainability involves the entire Al development pipeline

Before building the model

=

Pre-modelling
explainability

Ng

Data exploration
Data selection
Feature engineering

Explainable Post-modelling
modeling explainability
Build inherently After model development
interpretable models * Explaining predictions
* Manage the accuracy and and behavior of trained
interpretability trade-off models

 What do we explain?

Global

o0 ©
ee® | ©
—> —>
o°]
© 5

Scope of Explainability

Subgroup

+ @ 0

Individual/local

How the model
globally works

How the model
behaves in data
subgroups

Explaining the
reasons behind
individual predictions

Gradient-based explainability methods

Techniques that leverage the gradient information of the model with respect to the
input features to identify which features are most influential in the model's decision-
making process.

Gradient-based methods differ in how the gradient is computed

Generally, the explanation has the same size as the input

They assign each part of the input a value that is interpreted as the relevance
e e.g., forimages, importance for each pixel of the image
e e.g., for text, importance of each token

Image from: https://dlhr.de/8

Saliency map

e Saliency is a visualization technique to highlight the important regions or features in an
input data sample

|t is a way to visualize feature attributions, i.e., to represent the attribution scores
assigned to each input feature

* Brighter regions in the saliency map indicate higher saliency or importance, highlighting
the regions of interest in the input data

| am really -

Vanilla Gradient

Compute the gradient of the loss function with respect to the input

* Proposed for image data = respect the input pixel

convolutional layers
feed forward NN

Dog=0.9

Gradients: from backprogation to saliency

Gradient in the training process.

e During the training process, gradients are computed with respect to the model
parameters to update them.

e Goal is to adjust model parameters in a direction that minimizes the loss function.
This is typically done using techniques like backpropagation.

Gradients in explainability.

* In gradient-based explainability methods, instead of computing gradients with respect to
the parameters, we compute gradients with respect to the input features themselves.

 We analyze how changes in the input features affect the output directly.

8
A

Gradients — at training time
oL

Backpropagation
ow
Input layer Hidden layer Output layer
—p
— —_—
input vector (x;) output vector
— —_—
A
——

|

neuron weighted connection

(wj)

Gradients for explainability

Given.

e A network trained for C classes. Output of the network for input I is a prediction vector
F() = [F1 (D), ..., Fe(D)]
* Foraclassc, F.(I) is the score of the class ¢

Goal.

* Given an input I with p features and a class ¢, we want to compute a relevance score for
each features for class ¢

R¢ = [RS,..,R§]

for the score F.

For image data, the features can be the pixels of the image with width w and height h, with p = wXxh 1%

P b
i

Gradients for explainability

E.(I) is the score of the class ¢ and R€ relevance score for each features for class ¢

How.

We derive R¢ by computing the gradient of class score of interest with respect to the input
pixels:

JF,
ol

Ig

i.e., the derivative of F. with respect to the input for the given image I,

Gradients for explainability

The idea is to model the score model F. as a linear function. Since F. is non-linear, we
approximate with the first-order Taylor expansion

FE(D)~=wl- I +b=RI-T+0b

Where the weight vector w = R, is t derivate of the score and b is the bias of the model.

The weights R define the importance of the feature of | for the class c.

Gradients for explainability

* Let F be the model function and F.(x) the score function for the input x for the class c

* We compute the input gradient importance

dF, dF,
V., F.(x) = [a—xi, ...,axc
p

where V,. F.(x) denotes the gradient of F.(x) for input x and % is the partial derivative of

l

F.(x) with respect to the i-th input feature.
We typically compute it via backpropagation.

Gradients for explainability

Interpretation of the image-specific class saliency

e Features with larger gradients indicate that small changes in those features will result in
more significant changes in the model's output
* Magnitude of the derivative indicates which features need to be changed the least to
affect the class score the most
* Gradients tell us which features (e.g., pixels) have the steepest local relative to your
model's prediction at a given point along your model's prediction function

From gradient to saliency map

E.(I) = score for class c, e.g., logits

w has size as the input
For images, [, € RF *W*K (e g K=3 for RGB) -> w € RF *WxK

If we want to plot a saliency map over the image, we need to aggregate the scores w to
have a saliency map of size H xW

We can derive the saliency map M € R? *W 3s follows

M;; = m,flx|Wijk|

i.e., we collapse the challenge dimensions

Vanilla gradient — Limitation

* Noisy!
* Derivative can fluctuate great at small scales

* Slight variations to the input data can result in significant changes in the model
output (thus in the gradients), resulting in noisy gradients and instability

SmoothGrad

* Vanilla Gradient can produce noisy saliency maps, hence difficult to interpret

 SmothGrad averages the gradients for ‘noisy inputs’
N
1
NZ ViF:.(x + €)

Where € is Gaussian Noise.

We create a smoothing effect. The intuition is that by averaging the gradients over
modifications of the input, smooths out fluctuations & average out noise

SmoothGrad

Process.

Generate N versions of the input by adding noise to it.
Compute the gradients for the N input, thus generating N relevance scores R,

Average the pixel attribution maps

Parameters
* Noise level
e Number of samples

Note that we can generally apply a generic gradient-based explainability approach

Smooth-Grad + Vanilla Gradient - Example

Gradient x Input

 Small variation of Vanilla Gradient

* The gradients w.r.t. the input are multiplied for the input (element wise product)

Ve F,(x)Ox

* |t generally provides better results

Gradient x Input - Example

Gradient x Input Gradient x Input + SmoothGrad

: o0
,f {d Nt 4
ek, S .
\". ’ ‘\r: -~ . &
" ' -
i s ‘. .x _.‘f"
L ¥
- 1 J - - W ;A ’
‘,'?’; - ™ % 72 ‘.I:' y
~ e -, s @) . 3
o 4 ol 2 -
1‘,'.. :"?s‘

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

GradCAM

* Gradient-weighted Class Activation Mapping

e Suitable for CNN-based architectures

convolutional layers

Ad II L

feed forward NN

Dog=0.9

GradCAM

Intuition.

e Deeper representations in a CNN capture higher-level visual constructs

Lee et al, “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical
Representations”, ICML 2009.

GradCAM

Intuition.
e Deeper representations in a CNN capture higher-level visual constructs

e Convolutional layers naturally retain spatial information which is lost in fully-connected
layers, so we can expect the last convolutional layers to have the best compromise
between high-level semantics and detailed spatial information.

* Grad-CAM uses the gradient information flowing into the last convolutional layer of the
CNN to assign importance values to each neuron for a decision.

e Explain activations in the output layer decisions

GradCAM

o

IIO

Difference—> the gradient is not backpropagated back to the image

Grad-CAM —> Propagated (usually) to the last convolutional layer

Let 4, € RY*Y be feature map activations of a convolutional layer (typically the last).
The layer produces K feature maps

* Each elementis by i,j. Hence, Ai'(,j refers to the activation at location (i, j) of the
feature map A4y

Grad-CAM produces a coarse localization map that highlights important regions of the
image, i.e., Layer-wise importance, Layer -R¢ € RY*V for aclass ¢, where U,V is the
shape of 4

OF,

K
aAi’j

GradCAM - Process

a. Compute the gradient of the score for class c, F., with respect to feature map activations 4;, of

that convolutional layer of interest (usually the last) -- via backpropagation
OF.

0Ak
b. Compute the average for each output channel — global average pooling

ZZZGA"

aﬁ captures the importance of feature map k for aclassc

c. Multiply the average gradient for each channel by the layer activations and apply a RelLU
Layer -R¢ = ReLU(z a, A%)

ReLU since only interested in the features that have a positive influence on the class, i.e. pixels
whose intensity should be increased to increase class ¢

Y

GradCAM - Relevance - Example

* Layer —-R¢ in a coarse heatmap of the same size as the convolutional feature maps

e Often we upsample it and view as mask to the input

Original

Positive Attribution

Heatmap

k
0.0

T
0.2

27

0.4 0.6 0.8 1.0 ‘

Guided GradCAM

* Grad-CAM produces coarse importance as the last convolutional feature maps have a
coarser resolution compared to the input image

* We may want to have a per-pixel importance

* Idea

Combine Grad-CAM explanation and the explanation from another attribution method,
such as Vanilla Gradient, by multiplying element-wise

Guided Grad-CAM = upsample(Layer —-R¢rapcam) © Roeher method

Guided GradCAM - Example

iy

Integrated Gradients

Propose two axioms: sensitivity and implementation variance

Sensitivity.

If two inputs x and x’ differ only in one feature A; but have different predictions, then the
feature A; should be given a non-zero attribution

Example

x=1[1,0,1] 2 f(x) =class 0
x'=[1,1,1] =2 f(x) =class 1

Integrated Gradients

Axioms.
Implemetation invariance

If two models f anf f’ have identical input/output behvior, then the attributions for M and
M’ should be identical.

Gradients X Input fails sensitivity

* f(x) = 1-ReLU (x) = 1-max(0, 1-x)

 Example 2
e f(0) = 1-max(0, 1-0) =0 xS0
e f(2) =1-max(0, 1-2)=1 VRELU'(x) = {0 i;i <0

Since we have different outputs, for the sensitivity axiom, we should have different attributions

InputXGradient(f,x) = Vf(x) - x

InputXGradient(f,0) =1-0=0 = -> Failed test!
InputXGradient(f,2) =0-2=0
. —1ifx<0
Vi(x) = {(1) i;i ; 1 = max(0, sign(1 — x)) sign(x) =< 0if x=0

lifx>0

Integrated Gradients

Compare x with a baseline
® * No information, e.g., zero vector

Interporlate between the point of this baseline
O and the input x

® Take the gradient with respect to each
interpolated input

o

Compute the average of these gradients
* Give us the feature importance

O

Q Baseline

v

X1
33
Animation from ‘Feature Attribution’ | Stanford CS224U Natural Language Understanding | Spring 2021

iy

Integrated Gradients

* Let x be the instance to explain and x “a baseline input.
* Let a be interpolation constant to perturb features by

af(x'+ ax(x — x’))

o, da

1
IntegratedGrads;(x) = (x; — x{)X j
a=0

We actually compute the numerical approximation instead of the integral

Let k be a scaled feature perturbation constant and m the number of steps

af (x' +%x(x —x'))

IntegratedGrads; """ (x) = (x; — x{)X — %Y,
m 0x;

Integrated Gradients - steps

3
2
4
1 Of (x" + - x(x —x'))
IntegratedGrads; """ (x) = X — Xyt
m E)xi

Consider multiple perturbations
Interpolate inputs between baseline x’ and the input x
Compute the gradients for each interpolated input

Compute the average — approximation of the integral

A N

Scale to remain in the original space

‘Feature Attribution’ | Stanford CS224U Natural Language Understanding | Spring 2021

Integrated gradients and sensitivity

- Example VRELU'(x) = {(1, ifﬁ 20
* f(x) = 1-ReLU (x) = 1-max(0, 1-x) lifx <1 _
* f(0) = 1-max(0, 1-0) =0 Vix) = {O ifx>1_ max(0, sign(1 — x))

e f(2) =1-max(0, 1-2) =
Since we have different outputs, for the sensitivity axiom, we should have different attributions
1k /
, Of (x"+—X(x—x
IntegratedGradient(f, x, x") = (x; — x;) XX =, SlrralG) X

1
0xi m

IntegratedGradient(f,2,0) = (2 —-0) = Z(max(O sign(1 — 0.00) + max(0, sign(1 —
0.02))+ ..+ max(0, sign(1 — 2)) ~ 1"

IntegratedGradient (f,0,0) = 0

Integrated Gradients - Example

S
—

0.8

0.6

0.4

0.2

0.0

Integrated Gradients + SmoothGrad - Example

0.0 0.2 0.4 0.6 0.8 1.0

It is more computational expensive! Locally only on 5 samples..

Advantages

 Efficiency
* Many gradient-based methods are computationally efficient

* Multiple approaches

 Effective visualization via saliency maps

Limitations

Some methods do not satisfy the sensitivity axiom
* Methods insensitive to model and data.
* Explainers or edge detectors simply highlight color changes in images?

Sensitivity to Perturbations

 Methods may be sensitive to small changes in input data, leading to unstable
explanations

Gradient Vanishing/Saturating

Different approach, different explanations..
* Which one to trust?
* Need for evaluation approaches..!

