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1. Motivation

Standard Explainable Al does not always work well
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Which method is better? [1]
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[1] Adebayo, Julius, et al. "Sanity checks for saliency maps." Neurips 2018.




* It is not easy to assess which explanation method is better by only
looking at the saliency maps

* Edge detectors produce similar explanations to some saliency maps
(particularly those considering the input values, e.g., Gradient x Input)
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Towards where are we randomizing? [1]

W 2“” :ﬂw ﬁwwx@g} a%““?%‘? ",:.S‘s‘ i :A ; = ; S ; % 3 n

Gradient | f SRl

Gradieni® Input
Guided "‘t i# /@T/ﬁ /‘ /ﬁ
Back-propagation - B E“"’ L

Gradcam W% . -.- '.-.-. ".
Guided GradCAM €7 &% & &% &0 € € € @ € @ ‘% @ @ @ ‘;@
LT R IS SR 8192383 2905 640

Integrated Gradients =

[1] Adebayo, Julius, et al. "Sanity checks for saliency maps." Neurips 2018.



Towards where are we randomizing? [1]

Cascading randomization
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* Randomizing a few layers does not have almost any effect on
the explanation

* The explanation of a completely randomized network is still
similar to the original one

* It is difficult to understand which layer is being randomized

x Some explanation methods are more input-dependent
than model dependent
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Which class are we explaining? [3]

“Siberian Husky” “Transverse Flute”

[3] Rudin, Cynthia. "Stop explaining black box machine learning models ...” Nature machine intelligence
(2019)



* It is difficult to determine the explained class only looking at the
saliency maps

* Saliency maps of very different classes can be still similar




Why XAl explanations are difficult to understand?

“Showing where a network is looking
does not tell us what the network is seeing
in a given input” [3, 4]

[3] Rudin, Cynthia. "Stop explaining black box machine learning models ...” Nature machine
intelligence (2019)

[4] Achtibat, Reduan, et al. "From attribution maps to human-understandable explanations”
Nature machine intelligence (2023)
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2. Concept-based Explainable Al
(C-XAl)
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What is a Concept?

“A concept can be any
abstraction, such as a
colour, an object, or even
an idea”[9]

[9] Molnar, Christoph. “Interpretable machine learning”. (2020)

Let’s try to be
more concrete...




Different types of concepts

1. Symbolic Concepts “BEAK”

Human-defined attributes

2. Unsupervised Concept Basis

N
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Cluster of similar samples

3. Prototypes !

(Part-of) a training sample

4. Textual Concepts

Textual representation of a main class




Symbolic Concepts

« Human-defined attributes or abstractions BEAK
e Of the final classes
* E.g., bird --> the beak of the bird, the color of the bird

* Require auxiliary data & annotations

* Image-level annotation
* Annotate the presence for each image of a concept
* More expensive
* Class-level annotation
* All samples belonging to a class are annotated as having a certain attribute
* Less expensive but less precise (e.g., attribute could not be visible)




Unsupervised Concept Basis

* Cluster of similar samples
» Extracted from the network representation (a.k.a, the latent space)

* Not built to resemble human-defined concepts é ‘t?;h
* Still capture abstractions more understandable to humans —
than individual features or pixels
* E.g., a cluster of green birds.

* Clustering algorithms must employed to extract unsupervised concepts




Prototypes

Explanation by Example
* It will be better explained in the remaining of the course

Representative examples of peculiar traits of the training samples
* Entire samples
* Parts of a training sample (e.g., a particular type of beak)

The set of prototypes should be D

representative of the whole data set

Different from unsupervised concept bases
* Represent a single example instead of a group of examples




Textual Concepts

» Textual descriptions of main classes
* From an individual description, distinctive pieces are extracted
* Each piece embodies a characteristic of the corresponding class
* |t can be shared among different classes (e.g., a bird with bright feathers)

* Provided at training time by means of an external generative model
* |t requires a Large-Language Models LLMs
with knowledge of the given task

* Employed in the form of a numerical embedding
» of the corresponding text




Concept-based Explanations

1. Class-Concept Relations
Relation among a concept and an output class
of a model

2. Node-Concept Association

Explicit association of a concept with a hidden
node of the network

3. Concept-Visualization

Visualization of a learnt concept in terms of the
input features

Beak — Parrot

.<— Beak
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Class-Concept Relations

* Relationship between a specific concept Beak — Parrot

and an output class of the model
* Concept importance
* Logic rule involving multiple concepts and their connection to an output class

* Can be applied to all type of concepts:
* E.g., with prototypes, we have parrot := 0.8 prototype, + 0.2 prototype,
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Node-Concept Association

Assign a concept to an internal unit (or a filter) of a network

It enhances the transparency of deep learning models

* highlighting what internal units see in a given sample. .4— Beak

It can be defined post-hoc

* by considering the hidden units maximally activating on input samples
representing a concept.

It can also be forced during training
* by requiring a unit to predict a concept.




Concept Visualization

* Highlight the input features that best represent a specific concept.
 Similar to saliency map but for concepts

* Crucial when non-symbolic concepts are employed
* Need to understand which unsupervised attributes or prototypes the

network has learned.
@ —»°

e Often combined with one of the previous explanations
* Enable understanding the
concepts associated with a specific class or node.
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Post-hoc or Explainable-by-design?




Post-hoc Concept-based Explanations

(a) Multi-resolution segmentation of images (b) Clustering similar segments and removing outliers (c) Computing saliency of concepts
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Ghorbani, A., Wexler, J., Zou, J. Y., & Kim, B. Towards automatic concept-based explanations.
NeurlPS 2019




Post-hoc Concept-based Explanation methods

 Standard pipeline:
* Project samples representing the concepts in the model latent space
* Analyze their relationship to the prediction (or the hidden node activations)

* Concepts employed can be supervised or unsupervised
* Prototypes and generative concept have not been employed so far

* Pros:
* They don’t compromise the learning capacity of a model
* They provide more interpretable explanations than standard post-hoc methods

* Cons:
* Cannot ensure the network really knows the concepts (it has not been trained for that)




Explainable-by-design Concept-based Models
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Koh, Pang W, et al. "Concept bottleneck models." ICML 2020.




Explainable-by-design Concept-based Models

Neural models with an explicit concept representation as an intermediate layer

Predicted concepts influence the task predictions

All types of concepts and explanation can be employed

* Pros:
* They can be regarded as inherently transparent models as they provide node-concept association
by-design
* Cons:

* They need ad-hoc training
* Predicting concepts might reduce network task performance
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Post-hoc supervised method providing
class-concept relations

* Take a pre-trained model
* Require a set of data annotated with concepts
* Analyze the projection of these data into the model latent space

* They correlate the projection with those of the output classes
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Post-hoc supervised method providing
node-concept association

 Similarly to methods providing class-concept relations
* Take a pre-trained model
* Require a set of data annotated with concepts

* Analyze the activations of the hidden nodes when fed with these
data

* They associate to each node the concept for which they activate the
most (on average)
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Post-hoc unsupervised method providing
class-concept relation association

* Similarly to supervised methods take a pre-trained model

* BUT: They don’t require a set of data annotated with concepts
* They split input data into smaller crops
* Analyze the projections of the crops in the latent space of the model
* They clusterize projections --> clusters are unsupervised concepts

* They analyze the correlation of unsupervised concepts with output
classes/predictions




Concept-based

Explainability

Post-hoc

Explanation Method

Supervised
(Section 4.1)

Class-Concept
Relations
(Section 4.1.1)

(Section 4)

annotated concepts?

Unsupervised

(Section 4.2)

To provide which
explanation?

Node-Concept
Association
(Section 4.1.2)

Can I modify the model?

Explainable-by-
design Model

Do I have (Section 5) Do I have
annotated concepts?

Create them!

Supervised Unsupervised Sup. + Unsup. Generative
(Section 5.1) (Section 5.2) (Section 5.3) (Section 5.4)

On the same
task dataset?

Which kind of

HHSUPEWiSEd CDHCEPIS?

Joint Concept Prototypes- Concept
Training Instillation based Basis

(Section 5.1.1) (Section 5.1.2) (Section 5.2.1) (Section 5.2.2)




Supervised Concept- Jointly Training Output
based Models Classes and Concepts
Parrot
Symbolic Model Prediction
Concepts I FPRINNS » Beak

Concept
Annotation

A/ ‘ Parrot Cla;s}Concept
™ elation
- L %?O ;
- - arrot:
- 4./ / O 0.9 Beak,
= [ 04 O 0.8 Feather,
Class: Parrot = , 0.7 Foot,
Concepts: Feather, - Foot &> Muzzle -0.4 Muzzle
Beak, Foot, Muzzle Data Projection
Concept Representation Explanations
INPUT with EXPLAINABLE-BY-DESIGN MODEL OUTPUT
ADDITIONAL
KNOWLEDGE

E.g., Koh, Pang Wei, et al. "Concept bottleneck models." ICML (2020)




Supervised Concept-based models jointly training

* They train a model from scratch with a hidden layer predicting these
concepts

* Node-concept association by-design

* The predicted concepts are used to make the final prediction

e |If ’fhe «task predictor» is a white box model you can also extract class-concept
relations

* Pros:
* Very intuitive explanation («| see a beak, feathers and not a muzzle, it is a bird»)
* They allow concept interventions and interacting with the model

* Cons:
e They require a set of data annotated with both classes and concepts
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Supervised Concept-based models instilling
concepts

* Differently from joint-training models:
* Take a pre-trained model

* The set of data annotated with the concepts may not be the same of the
training data

* They turn a black-box model into an explainable-by-design one:
* They fine-tune a certain layer to predict for the given concepts
* They keep training the top of the network to predict the original classes
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Unsupervised Concept-based models employing
prototype concepts

* They don’t require annotated concepts

* They train the network to both:
* Learn to predict the output class
* Encode in the hidden layers the most representative training examples

* Again, explainable-by-design:
* Node-concept association
» Class-concept relations in case of a white-box task predictor

* To visualize the prototypes:
* Check the (part of the) sample for which the protype activate the most
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Unsupervised Concept-based models employing
unsupervised concept basis

* They train the network to both:
* Learn to predict the output class
 Create cluster of samples in the latent representation

* Again, explainable-by-design:
* Node-concept association
* Class-concept relations in case of a white-box task predictor

* To characterize the unsupervised concepts:
* Visualize the samples closest to the centroids
* Decode the centroids if employing an auto-encoder
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Hybrid Concept based Models

* They train the network to both:
* Learn to predict a given set of concept with a subset of neurons
* Create a clusterized representation in the remaining neurons

* Pros:
* Overcome the accuracy trade-off of fully supervised models
* Decrease annotation cost
* Avoid «concept leakage»

* Cons:

* Most of the information required to classify the classes is encoded in the
unsupervised neurons

* Concept interventions are less effective
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Generative concept-based models

* They employ a generative model to create the concept labels
* For each class they ask a description to an LLM
* They decompose this description into small pieces

* Concept-based model over textual concepts

* The corresponding embeddings are aligned to the latent input representation to
produce concept scores

e The scores are used to provide the final classification (possibly interpretable)

* Pros:
* No concept labelling required

* Cons:
* Per-class labelling
* Require an external generative model with knowledge of the problem




C-XAl (Part Il)

* We will see some real examples

* Post-hoc supervised method:
» Testing with Concept Activation Vector (T-CAV)

* Explainable-by-design supervised models:
* Concept Bottleneck Model (CBM)
e Concept Embedding Model (CEM)
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