
Lab 8: Regression with Scikit-Learn

The objective of this notebook is to learn about the Scikit-Learn library (official documentation) and regression.

In this lab, we will train a regression model that predicts the price of the house given some input features such as 'price', 'area', 'bedrooms',

'bathrooms', 'stories', 'parking'.

Outline

1. Load Dataset

2. Data Exploration

3. Linear Regression with 1D input features

4. Regression with all input features

First, run the following cell to import some useful libraries to complete this Lab. If not already done, you must install them in your virtual

environment

1. Load dataset

Firstly, you will load the first dataset for this lab into a DataFrame df . The dataset is stored in the csv file from the following path

"data_lab8/Housing.csv" .

price area bedrooms bathrooms stories mainroad guestroom basement hotwaterheating airconditioning parking prefarea furni

0 13300000 7420 4 2 3 yes no no no yes 2 yes

1 12250000 8960 4 4 4 yes no no no yes 3 no

2 12250000 9960 3 2 2 yes no yes no no 2 yes sem

3 12215000 7500 4 2 2 yes no yes no yes 3 yes

4 11410000 7420 4 1 2 yes yes yes no yes 2 no

There are 545 samples in the dataset.

Index(['price', 'area', 'bedrooms', 'bathrooms', 'stories', 'mainroad',
 'guestroom', 'basement', 'hotwaterheating', 'airconditioning',
 'parking', 'prefarea', 'furnishingstatus'],
 dtype='object')

As you can see, the dataset is composed of many columns. Some are numerical attributes (i.e., price , area , bedrooms ,
bathrooms , stories , and parking). In contrast, other columns are categorical attributes (i.e., mainroad , guestroom ,
basement , hotwaterheating , airconditioning , prefarea , and furnishingstatus). Remember that Machine Learning
algorithms works only with numerical features. Therefore, categorical feature must be encoded to numbers as a pre-prcessing step. We will

learn more about pre-processing in the next lectures. For now, let's focus on numerical features.

Exercise 1.1

Select the list of columns in numerical_columns from the DataFrame df and assign the selected subset DataFrame to the same

variable df .

In [31]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split
from sklearn import svm

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

In [3]: data_path = "data_lab8/Housing.csv"
df = pd.read_csv(data_path)

In [4]: df.head()

Out[4]:

In [5]: print(f"There are {len(df)} samples in the dataset.")

In [6]: df.columns

Out[6]:

In [7]: numerical_columns = ['price', 'area', 'bedrooms', 'bathrooms', 'stories', 'parking']

START CODE HERE (~1 line)

df = df[numerical_columns]

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 1/8

https://scikit-learn.org/stable/

price area bedrooms bathrooms stories parking

0 13300000 7420 4 2 3 2

1 12250000 8960 4 4 4 3

2 12250000 9960 3 2 2 2

3 12215000 7500 4 2 2 3

4 11410000 7420 4 1 2 2

Expected output

price area bedrooms bathrooms stories parking
0 13300000 7420 4 2 3 2
1 12250000 8960 4 4 4 3
2 12250000 9960 3 2 2 2
3 12215000 7500 4 2 2 3
4 11410000 7420 4 1 2 2

2. Data Exploration

Exercise 2.1

Let's start by exploring the target column price . Compute the mean, the standard deviation, and the variance of the price column.

Store the mean, the standard deviation, and the variance in the variables price_mean , price_std , and price_var respectively.

Price mean: 4766729.25
Price standard deviation: 1870439.62
Price variance: 3498544355820.57

Expected output

Price mean: 4766729.25
Price standard deviation: 1870439.62
Price variance: 3498544355820.57

The next cell plots the distributions of the prices. Please run the following cell to show the plot.

END CODE HERE

In [8]: df.head()

Out[8]:

In [13]: #### START CODE HERE (~2 lines) ####

price_mean = df["price"].mean()
price_std = df["price"].std()
price_var = df["price"].var()

END CODE HERE

In [14]: print(f"Price mean: {price_mean:.2f}")
print(f"Price standard deviation: {price_std:.2f}")
print(f"Price variance: {price_var:.2f}")

In [11]: ax = df["price"].plot.hist(bins=20, alpha=0.8)
ax.set_xlabel("Price")
ax.set_title("Prices distribution")
ax.grid(True)
plt.show()

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 2/8

3. Linear Regression with 1D input features

Now you will implement a Linear Regression using a one-dimensional input feature (i.e., the area of the houses). Therefore, the task is to

predict the Price of the houses given the Area.

Firstly, run the next cell to plot the points in the space.

You can see that some noisy points are present. Noisy points can affect the performance of your learning algorithms. Indeed, some points

have a really big area far from the distribution of the other points. We will perform a simple pre-processing step to remove the points with

area >= 12000.

Run the next cell to perform the pre-processing.

538

Now, we will select only the Area as input feature df_X_1d and the Price as target variable df_Y_1d .

In [15]: df.plot(x='area', y='price', kind='scatter', c='black')
plt.title("Overall distribution")
plt.xlabel("Area")
plt.ylabel("Price")
plt.grid(True, alpha=0.5)
plt.show()

In [16]: df_1d = df.loc[df.area < 12000]

In [17]: print(len(df_1d))

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 3/8

As usual, we will split our data into training and test set.

The following cell plots the distribution of the training points in the plane. Run the next cell to visualize the training points.

The following cell plots the distribution of the test points in the plane. Run the next cell to visualize the test points.

Exercise 3.1

In [18]: df_X_1d = df_1d[["area"]]
df_Y_1d = df_1d[["price"]]

In [22]: X_train_1d, X_test_1d, y_train_1d, y_test_1d = train_test_split(df_X_1d, df_Y_1d, test_size=0.2, shuffle=True, random_

In [23]: fig, ax = plt.subplots()
ax.scatter(x=X_train_1d, y=y_train_1d, c='black')

ax.set_title("Training distribution")
ax.set_xlabel("Area")
ax.set_ylabel("Price")
plt.grid(True, alpha=0.5)
plt.show()

In [24]: fig, ax = plt.subplots()
ax.scatter(x=X_test_1d, y=y_test_1d ,c='black')

ax.set_title("Test distribution")
ax.set_xlabel("Area")
ax.set_ylabel("Price")
plt.grid(True, alpha=0.5)
plt.show()

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 4/8

Create a LinearRegression() object and fit the linear regression on the training data. Replace None with your code.

Exercise 3.2

Predict the prices of the houses for your training data in a variable y_pred_train_1d .

The next cell visualize the learned straight line on your training data. Run the following cell to visualize the learned line.

Exercise 3.3

Predict the prices of the houses for your test data in a variable y_pred_test_1d .

The next cell visualize the learned straight line on your training data and the points of the test data. Run the following cell to visualize the

learned line.

In [25]: #### START CODE HERE (~2 lines) ####

regr = linear_model.LinearRegression()
regr.fit(X_train_1d, y_train_1d)

END CODE HERE

Out[25]:

In [26]: #### START CODE HERE (~1 line) ####

y_pred_train_1d = regr.predict(X_train_1d)

END CODE HERE

In [27]: plt.scatter(X_train_1d, y_train_1d, color="black")
plt.plot(X_train_1d, y_pred_train_1d, color="blue", linewidth=3)

plt.xlabel("Area")
plt.ylabel("Price")
plt.xticks()
plt.yticks()

plt.grid(True)
plt.show()

In [28]: #### START CODE HERE (~1 line) ####

y_pred_test_1d = regr.predict(X_test_1d)

END CODE HERE

In [29]: plt.scatter(X_test_1d, y_test_1d, color="black")
plt.plot(X_test_1d, y_pred_test_1d, color="blue", linewidth=3)

plt.xlabel("Area")
plt.ylabel("Price")
plt.xticks()
plt.yticks()

▾ LinearRegression

LinearRegression()

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 5/8

Exercise 3.4

Compute the Mean Absolute Error, the Mean Squared Error and the R2 in the variables mae_test , mse_test , and r2_test ,
respectively. Replace None with your code.

You read more on such metrics in the official documentation:

mean_absolute_error

mean_squared_error

r2_score

Mean of the prices: 4766729.247706422
Std of the prices: 1870439.6156573922
Variance of the prices: 3498544355820.573

Mean Absolute Error on test data: 1407509.8013314893
Mean Squared Error on test data: 3575212178202.1855
R2 score on test data: 0.2467447918823492

The model does not seem to perform very well. Let's see if we can improve by using all the input features.

4. Regression with all input features

Now you will train and evaluate several regression models with all the numerical input features.

price area bedrooms bathrooms stories parking

0 13300000 7420 4 2 3 2

1 12250000 8960 4 4 4 3

2 12250000 9960 3 2 2 2

3 12215000 7500 4 2 2 3

4 11410000 7420 4 1 2 2

plt.grid(True)
plt.show()

In [33]: #### START CODE HERE (~3 lines) ####

mae_test = mean_absolute_error(y_test_1d, y_pred_test_1d)
mse_test = mean_squared_error(y_test_1d, y_pred_test_1d)
r2_test = r2_score(y_test_1d, y_pred_test_1d)

END CODE HERE

In [38]: print(f"Mean of the prices: {price_mean}")
print(f"Std of the prices: {price_std}")
print(f"Variance of the prices: {price_var}")

print(f"\nMean Absolute Error on test data: {mae_test}")
print(f"Mean Squared Error on test data: {mse_test}")
print(f"R2 score on test data: {r2_test}")

In [39]: df.head()

Out[39]:

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 6/8

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html

Run the next cell to select all the numerical input features as input.

Run the next cell to split the data into training and test sets.

area bedrooms bathrooms stories parking

46 6000 3 2 4 1

93 7200 3 2 1 3

335 3816 2 1 1 2

412 2610 3 1 2 0

471 3750 3 1 2 0

area bedrooms bathrooms stories parking

316 5900 4 2 2 1

77 6500 3 2 3 0

360 4040 2 1 1 0

90 5000 3 1 2 0

493 3960 3 1 1 0

As you can see, the input features have very different scales. As discussed in previous labs, features with different scales differentially

impact the calculation of validation metrics. We must therefore perform, separately for each column, the normalization of the input

features.

However, this time we have both training and test set. When you have both training and test, you have to calculate statistics for the

normalization on the training (i.e., with the fit_transform() method) and use those statistics on the test set (i.e., with the

transform() method). This is because the model cannot learn on the test data. This data simulates data never seen by the model on

which it will have to make predictions. Therefore, they cannot even be used to estimate some statistics about the data.

In this case, we want to perform min-max normalization of the dataset. To achieve this in scikit-learn is simple. There is a function in the

pre-processing module to do this. However, as introduced before, the min and max are calculated only on the training and are used to

normalize both the training and the test.

If this step is not clear to you, don't worry. We will see it in detail when we talk about data pre-processing.

Run the following cell to perform the Min-Max normalization.

area bedrooms bathrooms stories parking

0 0.298969 0.4 0.333333 1.000000 0.333333

1 0.381443 0.4 0.333333 0.000000 1.000000

2 0.148866 0.2 0.000000 0.000000 0.666667

3 0.065979 0.4 0.000000 0.333333 0.000000

4 0.144330 0.4 0.000000 0.333333 0.000000

In [40]: df_X = df.loc[:, "area":]
df_y = df[["price"]]

In [42]: X_train, X_test, y_train, y_test = train_test_split(df_X, df_y, test_size=0.2, shuffle=True, random_state=42)

In [43]: X_train.head()

Out[43]:

In [44]: X_test.head()

Out[44]:

In [45]: from sklearn import preprocessing

min_max_scaler = preprocessing.MinMaxScaler()

X_train_processed = min_max_scaler.fit_transform(X_train)
X_train_processed = pd.DataFrame(X_train_processed, columns=X_train.columns)

X_test_processed = min_max_scaler.transform(X_test)
X_test_processed = pd.DataFrame(X_test_processed, columns=X_test.columns)

In [46]: X_train_processed.head()

Out[46]:

In [47]: X_test_processed.head()

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 7/8

area bedrooms bathrooms stories parking

0 0.292096 0.6 0.333333 0.333333 0.333333

1 0.333333 0.4 0.333333 0.666667 0.000000

2 0.164261 0.2 0.000000 0.000000 0.000000

3 0.230241 0.4 0.000000 0.333333 0.000000

4 0.158763 0.4 0.000000 0.000000 0.000000

As you can see, after normalization, all features in the training set are in the range [0, 1].

Exercise 4.1

Now you will train and evalaute several regression models on the preprocessed data. Note that you should use X_train_processed and

X_test_processed as input of your models.

This exercise is open. So it's up to you to choose regression models from those available on scikit-learn, train and validate them.

Out[47]:

In []:

15/05/24, 20:23 Lab8_Scikit-Learn_Regression_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab8_Scikit-Learn_Regression_solutions.html 8/8

