
Lab 9: Pre-Processing with Scikit-Learn and Pandas

Teaching Assistant: Salvatore Greco

In this lab, you will learn about pre-processing and model training in Machine Learning (ML) with Pandas and Scikit-Learn libraries.

Pandas is a Python library useful for handling and analyzing data structures, particularly bidimensional tables and time series (i.e., data

associated with time). It provides useful data structures (e.g., Series and DataFrames) to manage data effectively. The library provides tools

for managing the data selection, transforming data with grouping and pivoting operations, managing missing data in the dataset, and

performing statistics and charts on data. Pandas is based on Numpy arrays.

Scikit-Learn is a Python library that implements many machine learning algorithms, and it is built on Numpy, SciPy and Matplotlib. In Scikit-

learn both unsupervised (e.g., K-Means, DBScan clustering algorithms), and supervised algorithms for regression and classification tasks

are available. Scikit-Learn also provides useful functions for data pre-processing, feature extraction, feature selection, and dimensionality

reduction.

A typical machine learning pipeline involves the following steps:

1. Data Collection: Gather your data. - (uncovered)

2. Data Exploration: Perform exploratory data analysis to understand patterns, distributions, and correlations in the data. - (uncovered)

3. Data Splitting: Split the dataset into training, validation (optional), and test sets.

4. Data Cleaning: Handle missing values, remove duplicates, and correct errors.

5. Feature Selection: Select relevant features and remove redundant ones.

6. Data Transformation: Normalization, standardization, and encoding.

7. Feature Engineering: Create new features or modify existing ones (e.g., discretization).

8. Data Augmentation: Augment the training set to increase its size and variability (if possible). Apply techniques like oversampling,

undersampling, or SMOTE to handle imbalanced data. - (uncovered)

9. Model Selection and Training: Choose and train the model using the pre-processed training set.

10. Hyperparameters Tuning: Explore various hyperparameter configurations to improve upon the baseline model's performance.

Evaluate each set of hyperparameters using a validation set or cross-validation to assess the model's performance. - (uncovered)

11. Model Evaluation: Evaluate the model's performance on the preprocessed test set using appropriate metrics.

You can also create pre-processing pipelines that automate all the pre-processing steps.

The previous steps are just a general list. However, they depend on the model you want to train. For example, tree-based algorithms such

as decision trees and random forests can handle categorical data naturally. This, they do not require the encoding of categorical features

and normalization/standardization.

Note that, it is reccomended to split the dataset early in the process and using only the training set for deriving any data-specific insights or

transformations are fundamental practices to prevent data leakage and ensure the model's generalizability to new data. This approach

maintains the test set as an unbiased assessment of the model's performance.

Exercise 1: Titanic Survival Prediction

In this exercise, you will train a binary classification model that predicts which passengers survived the Titanic shipwreck link.

The sinking of the Titanic is one of the most famous shipwrecks in history. On April 15, 1912, during her maiden voyage, the widely

considered “unsinkable” RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren’t enough lifeboats for everyone

onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While some element of luck was involved in surviving, it seems some groups of people were more likely to survive than others.

In this exercise, you are asked to build a predictive model that answers the question: “What sorts of people were more likely to survive?”

using passenger data (i.e., name, age, gender, socio-economic class, etc).

You can find two detailed tutorials in the following links: tutorial1 and tutorial2.

Run the next cell to import the required libraries for this exercise.

In [1]: # Import the required libraries for this exercise

from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn import tree

import pandas as pd
import numpy as np

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 1/21

https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://pandas.pydata.org/
https://numpy.org/
https://scikit-learn.org/stable/
https://numpy.org/
https://scipy.org/
https://matplotlib.org/
https://medium.com/@corymaklin/synthetic-minority-over-sampling-technique-smote-7d419696b88c
https://www.kaggle.com/c/titanic
https://datasciencewithchris.com/kaggle-titanic-data-cleaning-and-preprocessing/
https://medium.com/@melodyyip_/titanic-survival-prediction-using-machine-learning-89a779656113

1.1 Load dataset

Firstly, you will load the Titanic dataset used in this lab into a DataFrame df .

Scikit-Learn comes with a built-in dataset for the Titanic survival prediction task. The next cell loads the titanic dataset from Scikit-Learn

and stores it in a Pandas DataFrame.

Number of samples in the dataset: 1309

Pandas DataFrames have useful methods and attributes to manipulate and analyze data efficiently.

Some methods and attributes are useful for getting a quick overview of your data. Some examples include:

df.head() : This method returns the first n rows of the DataFrame, where n is a parameter that you can specify. If you do not specify

n, it defaults to 5. This is particularly useful for quickly inspecting the beginning of your dataset to understand its structure and the

type of data it contains.

df.info() : This method provides a concise summary of the DataFrame, including the number of non-null entries in each column,

the data type of each column, the memory usage, the number of columns, and the range index. It can be useful for getting a quick

overview of the DataFrame's structure and to identify columns with missing values.

df.columns() : This attribute can be used to view or modify the column names. For example, you can use df.columns.tolist() to get a

list of all column names.

df.describe() : This method generates descriptive statistics that summarize the central tendency, dispersion, and shape of the

dataset’s distribution, excluding NaN values. It works on numeric and object data types, providing information such as mean, standard

deviation, minimum, maximum, and quartile values for numeric data, and count, unique, top, and frequency for object data (e.g., strings

or timestamps).

pclass name sex age sibsp parch ticket fare cabin embarked boat body home.dest survived

0 1
Allen, Miss.

Elisabeth Walton female 29.0000 0 0 24160 211.3375 B5 S 2 NaN St Louis, MO 1

1 1
Allison, Master.
Hudson Trevor male 0.9167 1 2 113781 151.5500

C22
C26 S 11 NaN

Montreal, PQ /
Chesterville, ON 1

2 1
Allison, Miss. Helen

Loraine female 2.0000 1 2 113781 151.5500
C22
C26 S NaN NaN

Montreal, PQ /
Chesterville, ON 0

3 1
Allison, Mr. Hudson

Joshua Creighton male 30.0000 1 2 113781 151.5500
C22
C26 S NaN 135.0

Montreal, PQ /
Chesterville, ON 0

4 1
Allison, Mrs.

Hudson J C (Bessie
Waldo Daniels)

female 25.0000 1 2 113781 151.5500 C22
C26

S NaN NaN Montreal, PQ /
Chesterville, ON

0

Dataset columns: ['pclass', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare', 'cabin', 'embarked', 'boat', 'b
ody', 'home.dest', 'survived']

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 pclass 1309 non-null int64
 1 name 1309 non-null object
 2 sex 1309 non-null category
 3 age 1046 non-null float64
 4 sibsp 1309 non-null int64
 5 parch 1309 non-null int64
 6 ticket 1309 non-null object
 7 fare 1308 non-null float64
 8 cabin 295 non-null object
 9 embarked 1307 non-null category
 10 boat 486 non-null object
 11 body 121 non-null float64
 12 home.dest 745 non-null object
 13 survived 1309 non-null category
dtypes: category(3), float64(3), int64(3), object(5)
memory usage: 116.8+ KB

import seaborn as sns
import matplotlib.pyplot as plt

In [2]: # Load input features and target variable
df, y = fetch_openml('titanic', version=1, as_frame=True, parser='auto', return_X_y=True)

The "survived" column contains the target variable
df["survived"] = y

Print the number of samples in the dataset
print(f"Number of samples in the dataset: {len(df)}")

In [3]: df.head()

Out[3]:

In [4]: print(f"Dataset columns: {df.columns.tolist()}")

In [5]: df.info()

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 2/21

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

pclass age sibsp parch fare body

count 1309.000000 1046.000000 1309.000000 1309.000000 1308.000000 121.000000

mean 2.294882 29.881135 0.498854 0.385027 33.295479 160.809917

std 0.837836 14.413500 1.041658 0.865560 51.758668 97.696922

min 1.000000 0.166700 0.000000 0.000000 0.000000 1.000000

25% 2.000000 21.000000 0.000000 0.000000 7.895800 72.000000

50% 3.000000 28.000000 0.000000 0.000000 14.454200 155.000000

75% 3.000000 39.000000 1.000000 0.000000 31.275000 256.000000

max 3.000000 80.000000 8.000000 9.000000 512.329200 328.000000

The "survived" column contains the target variable (i.e., the variable that you want to predict).

Some datasets contain a balanced number of samples for each label. Thus, each category of data is equally represented. However, many

real-world datasets are imbalanced, meaning they have a disproportionate number of samples in one or more classes than others.

Highly imbalanced datasets can cause the model to become biased towards the more frequently represented class(es), thereby reducing

the model's ability to generalize well across all categories. In such cases, the model trained may perform well on the majority class(es) but

poorly on the minority class(es), because it has not had enough data to learn from for the underrepresented categories. Imbalance can

significantly affect the performance and fairness of predictive models, leading to misleadingly high accuracy scores that do not accurately

reflect the model's ability to predict less frequent classes.

Run the next cell to count the number of samples for each class label. This is useful to verify if the dataset is balanced or imbalanced.

0 809
1 500
Name: survived, dtype: int64

In this case, the dataset is slightly imbalanced. The non-survived class (0) is more frequent than the survived class (1).

The next cell counts the number of duplicate rows.

Number of duplicate rows: 0

There are no duplicate rows in this dataset. However, in Pandas, you can remove duplicate rows using df.drop_duplicates() . You can

also remove duplicates based on a specified column df.drop_duplicates(subset='column_name') .

1.2 Train and Test splitting with Stratification

The first step involves splitting your dataset into distinct subsets to ensure that your model can generalize well to unseen data. This step is

crucial for evaluating the performance of your model in an unbiased manner.

Datasets are usually split into the following subset:

Training Set: Subset of your data used to train your model. It is the largest portion from which your model learns the underlying

patterns to perform accurate predictions.

Validation Set: (Optional but highly recommended) Subset used to fine-tune the model's hyperparameters and evaluate which models,

configurations, or hyperparameters is the best performance. It acts as a proxy for the test set during the development phase.

Test Set: Subset used to evaluate the final model's performance after it has been trained and validated. It provides an assessment of

how well your model has learned to generalize from the training data to new, unseen data.

In this lab, we will only use training and test set for semplicity, and due to the low number of samples in the dataset.

Exercise: Split the dataset into train and test datasets. In this case, the dataset is imbalanced. Therefore, it is recommended to split using

stratification (i.e., the class label distribution will be preserved during the splitting).

Split with 80% of samples for training and 20% of samples for validation. Shuffle the dataset before splitting, and perform the

stratification by label. Replace None with your code.

Hints

In [6]: df.describe()

Out[6]:

In [7]: df["survived"].value_counts()

Out[7]:

In [8]: # check for duplicate rows
duplicate_rows = df.duplicated(keep=False).sum()
print(f"Number of duplicate rows: {duplicate_rows}")

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 3/21

Number of samples in the training set 1047
0 647
1 400
Name: survived, dtype: int64

Number of samples in the test set 262
0 162
1 100
Name: survived, dtype: int64

1.3 Handling missing values

Machine learning algorithms require that all the input values are in a numerical formal. However, real-world datasets are often "dirty". For

instance, they can contain missing values for some columns and records. Before training your ML models, you should handle missing

values.

You should first check if null values are present in your dataset. Pandas Dataframes have many useful methods to check for null values in

your dataset.

df.isnull() or df.isna() : They return a DataFrame with the same shape as the input DataFrame, but containing boolean values

(True or False) indicating the presence of null values.

df.notnull() or df.notna() : The opposite of isnull() and isna().

Exercise: Count the number of null values in training and test, and store them in the variables nan_count_train and

nan_count_test . Replace None with your code.

Hints

Train
pclass 0
name 0
sex 0
age 209
sibsp 0
parch 0
ticket 0
fare 1
cabin 822
embarked 0
boat 658
body 955
home.dest 450
survived 0
dtype: int64

Test
pclass 0
name 0
sex 0
age 54
sibsp 0
parch 0
ticket 0
fare 0
cabin 192
embarked 2
boat 165
body 233
home.dest 114
survived 0
dtype: int64

In [9]: #### START CODE HERE (~ 1 line) ####

df_train, df_test = train_test_split(df, test_size=0.2, shuffle=True, random_state=42, stratify=df['survived'])

END CODE HERE

In [10]: print(f"Number of samples in the training set {len(df_train)}")
print(df_train["survived"].value_counts())

In [11]: print(f"Number of samples in the test set {len(df_test)}")
print(df_test["survived"].value_counts())

In [12]: #### START CODE HERE (~ 2 line) ####

nan_count_train = df_train.isna().sum()
nan_count_test = df_test.isna().sum()

END CODE HERE

In [13]: print("Train")
print(nan_count_train)

In [14]: print("Test")
print(nan_count_test)

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 4/21

In several columns of the dataset, missing values are present, specified with NaN (i.e., not a number).

There are several strategies for handling missing data, some examples include:

1. Deletion: Discard entire rows/columns containing missing values.

2. Imputation: Replace missing values with some imputed values (e.g., mean, median, constant, etc.).

3. Inference: Use other data points to train a model that can predict the missing values.

1. Discarding missing values

You can remove rows or columns containing missing values using the df.dropna(axis=) method of Pandas

DataFrames. If you specify axis=0 , it will remove rows containing missing values. In contrast, if you specify axis=1 , it

will remove the columns containing missing values.

You can also remove rows containing missing values in a specific column specifying the subset parameter (e.g.,

df.dropna(subset = ["column_name"])). In this case, all rows containing a missing value in the column_name
column are removed.

Note that, df.dropna() returns a new DataFrame. Therefore, you should re-assign to df the new DataFrame (e.g.,

df = df.dropna()) or set the inplace parameter to True (e.g., df.dropna(inplace=True)).

2. Imputing missing values

You can impute values on missing data with Pandas with the df.fillna() method and specify the new value that will

replace the NaN values. The df.fillna() method returns a new DataFrame by replacing the null values with the

specified value. For instance, you can replace NaN values with the column mean with df.fillna(df.mean()) .

You can also use Scikit-Learn to impute values on missing data with sklearn.impute.SimpleImputer . The

SimpleImputer can replace missing values using a descriptive statistic (e.g., mean, median, or most frequent) along each

column, or using a constant value.

"mean" : replace missing values using the mean along each column (only for numeric data).

"median" : replace missing values using the median along each column (only for numeric data).

"most_frequent" : replace missing using the most frequent value along each column (for both strings and

numeric data).

Below is reported an example of usage:

from sklearn.impute import SimpleImputer

Instantiate a SimpleImputer object specifying the descriptive statistic
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean’)

Compute the mean fitting on training data (important! do not fit on test data)
imp_mean.fit(X_train.values)

Replace missing values in the training set
X_train = imp_mean.transform(X_train.values)
replace missing values in the test set
X_test = imp_mean.transform(X_ test.values)

3. Predicting missing values

Using models to predict the missing values is uncovered in this lab. However, the idea is to simply train a machine learning

model (e.g., linear regression) to predict missing values. If you are interested, you can read more about it here.

Exercise: Fill null values in the column age with the mean of the column age in the training and test set.

Hints

Number of null values in Train before pre-processing: 209/1047
Number of null values in Test before pre-processing: 54/262
Number of null values in Train after pre-processing: 0/1047
Number of null values in Test after pre-processing: 0/262

Exercise: Fill null values in the column fare with the median of the column fare in the training and test set.

Hints

In [15]: print(f'Number of null values in Train before pre-processing: {df_train.age.isnull().sum()}/{len(df_train)}')
print(f'Number of null values in Test before pre-processing: {df_test.age.isnull().sum()}/{len(df_test)}')

START CODE HERE (~ 2 line)

df_train['age'].fillna(df_train['age'].mean(), inplace=True)
df_test['age'].fillna(df_train['age'].mean(), inplace=True)

END CODE HERE

print(f'Number of null values in Train after pre-processing: {df_train.age.isnull().sum()}/{len(df_train)}')
print(f'Number of null values in Test after pre-processing: {df_test.age.isnull().sum()}/{len(df_test)}')

In [16]: print(f'Number of null values in Train before pre-processing: {df_train.fare.isnull().sum()}/{len(df_train)}')
print(f'Number of null values in Test before pre-processing: {df_test.fare.isnull().sum()}/{len(df_test)}')

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 5/21

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://medium.com/machine-learning-mastery/5-ways-to-handle-missing-values-in-python-4fe6a625e251

Number of null values in Train before pre-processing: 1/1047
Number of null values in Test before pre-processing: 0/262
Number of null values in Train after pre-processing: 0/1047
Number of null values in Test after pre-processing: 0/262

Exercise: Fill null values in the column embarked with the most frequent value of the column embarked in the training and test set.

Hints

Number of null values in Train before pre-processing: 0/1047
Number of null values in Test before pre-processing: 2/262
Number of null values in Train after pre-processing: 0/1047
Number of null values in Test after pre-processing: 0/262

1.4 Feature selection

Feature selection is a critical step in the machine learning pipeline, as it involves choosing the most relevant features (or variables) that

contribute to the predictive power of a model. The goal of feature selection is not only to improve the model's performance but also to

reduce the computational complexity and enhance the interpretability of the model. The following are the main advantanges produced by

an effective feature selection:

Improves Model Performance: By removing irrelevant or redundant features, it can increase the accuracy of the model and reduce

the risk of overfitting.

Reduces Training Time: It can reduce training time by reducing the complexity of the inputs, which is particularly beneficial when

dealing with large datasets.

Increases Model Interpretability: Models with fewer features are easier to understand and explain, making the results more

accessible to non-experts.

Identifiers, unique codes, etc., are usually useless features that must be removed.

You can learn more about advanced feature selection techniques here.

In this exercise, you will just remove features based on the domain knowledge. Specifically, you will remove features that are useless or

contain explicit information related to target variable (i.e., the model by using that feature has the information of the actual label). However,

data visualization and exploratory data analysis can help in identifying relationships between features and the target variable, as well as

spotting redundant features. In this lab, you will also optionally exploit a correlation matrix to remove redundant features.

Exercise: Remove columns cabin , body , boat , and home.dest from the train and test sets because they contain info about the

target variable (i.e., the model could "cheat" predicting the target label based on the info in these attributes).

Hints

START CODE HERE (~ 2 line)

df_train['fare'].fillna(df_train['fare'].median(), inplace=True)
df_test['fare'].fillna(df_train['fare'].median(), inplace=True)

END CODE HERE

print(f'Number of null values in Train after pre-processing: {df_train.fare.isnull().sum()}/{len(df_train)}')
print(f'Number of null values in Test after pre-processing: {df_test.fare.isnull().sum()}/{len(df_test)}')

In [17]: print(f'Number of null values in Train before pre-processing: {df_train.embarked.isnull().sum()}/{len(df_train)}')
print(f'Number of null values in Test before pre-processing: {df_test.embarked.isnull().sum()}/{len(df_test)}')

START CODE HERE (~ 3 line)

imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent')

df_train['embarked'] = imp.fit_transform(df_train[['embarked']])

df_test['embarked'] = imp.transform(df_test[['embarked']])

END CODE HERE

print(f'Number of null values in Train after pre-processing: {df_train.embarked.isnull().sum()}/{len(df_train)}')
print(f'Number of null values in Test after pre-processing: {df_test.embarked.isnull().sum()}/{len(df_test)}')

In [18]: #### START CODE HERE (~ 2 line) ####

df_train = df_train.drop(columns=['cabin', 'body', 'boat', 'home.dest'])

df_test = df_test.drop(columns=['cabin', 'body', 'boat', 'home.dest'])

END CODE HERE

df_train.head()

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 6/21

https://nathanrosidi.medium.com/feature-selection-techniques-in-machine-learning-82c2123bd548

pclass name sex age sibsp parch ticket fare embarked survived

999 3 McCarthy, Miss. Catherine 'Katie' female 29.604316 0 0 383123 7.7500 Q 1

392 2 del Carlo, Mrs. Sebastiano (Argenia Genovesi) female 24.000000 1 0 SC/PARIS 2167 27.7208 C 1

628 3 Andersson, Miss. Sigrid Elisabeth female 11.000000 4 2 347082 31.2750 S 0

1165 3 Saad, Mr. Khalil male 25.000000 0 0 2672 7.2250 C 0

604 3 Abelseth, Miss. Karen Marie female 16.000000 0 0 348125 7.6500 S 1

Exercise: Remove other columns that you think are useless features in predicting which people were more likely to survive.

pclass sex age sibsp parch fare embarked survived

999 3 female 29.604316 0 0 7.7500 Q 1

392 2 female 24.000000 1 0 27.7208 C 1

628 3 female 11.000000 4 2 31.2750 S 0

1165 3 male 25.000000 0 0 7.2250 C 0

604 3 female 16.000000 0 0 7.6500 S 1

The next cell plots a correlation matrix of the input features with respect to the target variable. The correlation matrix is a powerful tool in

the data pre-processing phase, especially when you're trying to understand the relationships between your input features and the target

variable. Specifically, the correlation matrix can be used to:

Identify Relationships: It helps in identifying the linear relationship between the input features and the target variable. A high positive

or negative correlation indicates a strong relationship, whereas a correlation close to zero suggests no linear relationship.

Feature Selection: By analyzing the correlation matrix, you can identify and eliminate features that are highly correlated with each

other but not with the target variable. This is because highly correlated features contribute redundant information, which can lead to

overfitting.

Insights for Feature Engineering: Understanding the relationships between features can also provide insights for feature engineering,

such as creating new features that are combinations of existing ones.

<ipython-input-20-7bbd88f3e184>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to sile
nce this warning.
 g = sns.heatmap(df_corr.corr(),

Exercise (optional): Remove or combine highly correlated features based on the correlation matrix.

Out[18]:

In [19]: #### START CODE HERE (~ 2 line) ####

df_train = df_train.drop(columns=['name','ticket'])
df_test = df_test.drop(columns=['name','ticket'])

END CODE HERE

df_train.head()

Out[19]:

In [20]: df_corr= pd.concat([df_train[['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare']], df_train['survived']], axis = 1)

g = sns.heatmap(df_corr.corr(),
 annot=True,
 cmap = "coolwarm")

In [21]: #### START CODE HERE (~ 1 line) ####

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 7/21

pclass sex age sibsp parch fare embarked survived

999 3 female 29.604316 0 0 7.7500 Q 1

392 2 female 24.000000 1 0 27.7208 C 1

628 3 female 11.000000 4 2 31.2750 S 0

1165 3 male 25.000000 0 0 7.2250 C 0

604 3 female 16.000000 0 0 7.6500 S 1

1.5 Feature engineering

Another crucial pre-processing step in the machine learning pipeline is feature engineering, which involves creating new features or

modifying existing ones to improve the performance of a machine learning model. Spefically, it can be useful to:

Improve model accuracy: Effective modified features can capture essential information, making it easier for models to learn.

Improve model's generalizability: By capturing the underlying patterns in the data more effectively, feature engineering can help

models perform better on unseen data.

Reduce the need for complex models: Simpler models with the right features can outperform complex models with a raw set of

features.

Discretization

Discretization is a pre-processing step of machine learning that involves transforming continuous features into discrete or categorical ones.

This process can be particularly useful for certain models that work better with categorical data, or when looking to simplify the patterns in

the data, making them more interpretable for analysis. Discretization can also be beneficial for handling outliers and can improve the

performance of some models by creating bins or categories that group continuous data points. The main advantages of using discretization

can be summarized in the following:

Improves model interpretability: By categorizing continuous features, discretization can potentially make the model's decisions

easier to understand.

Handles outliers: Outliers can have less impact when the data is divided into bins, as they will fall into the upper or lower bins along

with other extreme values.

Reduces Complexity: Discretization can act as a form of dimensionality reduction, simplifying the model by reducing the number of

unique input values.

You can learn more about discretization here.

Exercise: Discretize the age column in the training and test sets into the following categories: ['Child (0-14]', 'Young (14-
24]', 'Adults (24-50]', 'Senior (50+]'] . The new discretized age column must by named age_disc . The discretized age

categories are provided in the age_category list. Once performed the discretization, remove the old age column from the trining and

test set.

Hints

pclass sex sibsp parch fare embarked survived age_disc

999 3 female 0 0 7.7500 Q 1 Adults (24-50]

392 2 female 1 0 27.7208 C 1 Young (14-24]

628 3 female 4 2 31.2750 S 0 Child (0-14]

1165 3 male 0 0 7.2250 C 0 Adults (24-50]

604 3 female 0 0 7.6500 S 1 Young (14-24]

1.8 Feature encoding

Machine learning algorithms operate on numerical data, making it essential to convert any categorical input features into a numerical format

before training your model. This process, known as feature encoding. Proper encoding of input features ensures that the algorithm can

END CODE HERE

df_train.head()

Out[21]:

In [22]: age_category = ['Child (0-14]', 'Young (14-24]', 'Adults (24-50]', 'Senior (50+]']

START CODE HERE (~ 4 line)

df_train['age_disc']=pd.cut(x=df_train['age'], bins=[0,14,24,50,100],labels=age_category)
df_train = df_train.drop(columns=['age']) # Remove the old age column

df_test['age_disc']=pd.cut(x=df_test['age'], bins=[0,14,24,50,100],labels=age_category)
df_test = df_test.drop(columns=['age']) # Remove the old age column

END CODE HERE

In [23]: df_train.head()

Out[23]:

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 8/21

https://trainindata.medium.com/variable-discretization-in-machine-learning-7b09009915c2

interpret the data correctly, leading to more accurate models. Note that this step depends on your algorithm. For instance, Decision trees

and their ensembles (e.g., Random Forests) can handle categorical data naturally (depending on the implementation), but many models

(such as linear regression, logistic regression, and neural networks) require numerical input.

Common encoding techniques include:

One-Hot Encoding: For each unique category value, a new binary column is created. A category value is represented by a 1 in its

corresponding column and 0s in all others. This method avoids implying an ordinal relationship but increases the feature space. For

instance, a variable color containing three possible values, e.g., red , green , and blue , will create three additional columns:

color_red , color_green , and color_blue . To represent the color green, you will represent the input with the following vector

[0, 1, 0] . The main drawback of one-hot encoding is that it can significantly increase the dataset's sparsity (i.e., the number of

zeros). Another possible drawback is that, if data has a natural order to the categories (e.g., low, medium, high) one-hot encoding can

lose this information (use ordinal encoding in this case).

Label Encoding: Each unique category value is assigned an integer value. This method is straightforward but implies an ordinal

relationship between categories, which may not always be appropriate.

Ordinal Encoding: Similar to label encoding, but the integer assignments are made based on the order specified by the user, making it

suitable for ordinal data.

You can learn more about all the encoding techniques here.

One-hot encoding

Scikit-Learn make you easy to perform the one-hot encoding with the OneHotEncoder.

You can also use a similar approach using Pandas which provide a DataFrame's method df.get_dummies() to perform the one-hot

encoding (documentation).

The two approach are similar. The main difference is that the get_dummies method does not store the information about train data

categories. Hence it may result in inconsistencies with train and test data features. You can learn the differences between

OneHotEncoder and get_dummies here.

The next cell performs the one-hot encoding on the training set for the sex and embarked columns using the OneHotEncoder . Then,

it removes the old columns. The new encoded training set is stored in a new DataFrame df_train_encoded .

Now, look the differences between the original raw trainig and the encoded training DataFrames.

pclass sex sibsp parch fare embarked survived age_disc

999 3 female 0 0 7.7500 Q 1 Adults (24-50]

392 2 female 1 0 27.7208 C 1 Young (14-24]

628 3 female 4 2 31.2750 S 0 Child (0-14]

1165 3 male 0 0 7.2250 C 0 Adults (24-50]

604 3 female 0 0 7.6500 S 1 Young (14-24]

pclass sibsp parch fare survived age_disc sex_female sex_male embarked_C embarked_Q embarked_S

0 3 0 0 7.7500 1 Adults (24-50] 1.0 0.0 0.0 1.0 0.0

1 2 1 0 27.7208 1 Young (14-24] 1.0 0.0 1.0 0.0 0.0

2 3 4 2 31.2750 0 Child (0-14] 1.0 0.0 0.0 0.0 1.0

3 3 0 0 7.2250 0 Adults (24-50] 0.0 1.0 1.0 0.0 0.0

4 3 0 0 7.6500 1 Young (14-24] 1.0 0.0 0.0 0.0 1.0

In [24]: from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder(handle_unknown='ignore')

categorical_columns = ['sex', 'embarked']

Fit the one-hot encoder on training data
ohe.fit(df_train[categorical_columns])

Create a new DataFrame with only the one-hot encoded columns
temp_df_train = pd.DataFrame(data=ohe.transform(df_train[categorical_columns]).toarray(),
 columns=ohe.get_feature_names_out())

Create a copy of the DataFrame
df_train_encoded = df_train.copy()

Remove the old categorical columns from the original data
df_train_encoded.drop(columns=categorical_columns, axis=1, inplace=True)
df_train_encoded = pd.concat([df_train_encoded.reset_index(drop=True), temp_df_train], axis=1)

In [25]: df_train.head()

Out[25]:

In [26]: df_train_encoded.head()

Out[26]:

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 9/21

https://medium.com/anolytics/all-you-need-to-know-about-encoding-techniques-b3a0af68338b
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://pythonsimplified.com/difference-between-onehotencoder-and-get_dummies/

You can see that a new column is created for each distinct category of the encoded columns sex and embarked .

Exercise: Perform the same one-hot encoding on the test set. Create a new DataFrame df_test_encoded .

Hints

pclass sex sibsp parch fare embarked survived age_disc

1028 3 female 1 0 24.1500 Q 1 Adults (24-50]

1121 3 male 1 1 22.3583 C 1 Adults (24-50]

1155 3 male 0 0 7.7750 S 0 Adults (24-50]

1251 3 male 0 0 8.0500 S 0 Adults (24-50]

721 3 male 0 0 7.4958 S 0 Adults (24-50]

pclass sibsp parch fare survived age_disc sex_female sex_male embarked_C embarked_Q embarked_S

0 3 1 0 24.1500 1 Adults (24-50] 1.0 0.0 0.0 1.0 0.0

1 3 1 1 22.3583 1 Adults (24-50] 0.0 1.0 1.0 0.0 0.0

2 3 0 0 7.7750 0 Adults (24-50] 0.0 1.0 0.0 0.0 1.0

3 3 0 0 8.0500 0 Adults (24-50] 0.0 1.0 0.0 0.0 1.0

4 3 0 0 7.4958 0 Adults (24-50] 0.0 1.0 0.0 0.0 1.0

Ordinal encoding

With Scikit-Learn you can perform the ordinal encoding with the OrdinalEncoder.

You previously discretized the age column into bins, creating a new column age_disc . This column must be encoded as well. However,

in this case, the categories have an explicit order, Therefore, the ordinal encoding is more suitable.

The next cells perform the ordinal encoding of the age_disc column on the training set by fitting the OrdinalEncoder on the training data,

transform the training dataset column, and delete the old columns.

In [27]: #### START CODE HERE (~ 4 lines) ####

temp_df_test = pd.DataFrame(data=ohe.transform(df_test[categorical_columns]).toarray(),
 columns=ohe.get_feature_names_out()) # Do not fit on test data!

df_test_encoded = df_test.copy()

df_test_encoded.drop(columns=categorical_columns, axis=1, inplace=True)
df_test_encoded = pd.concat([df_test_encoded.reset_index(drop=True), temp_df_test], axis=1)

END CODE HERE

In [28]: df_test.head()

Out[28]:

In [29]: df_test_encoded.head()

Out[29]:

In [30]: from sklearn.preprocessing import OrdinalEncoder

Instantiate the OrdinalEncoder specifying the list of the categories
ord_enc = OrdinalEncoder(categories=[age_category]) # Should be a list becuause you can specify the categories for mul

Fit the OrdinalEncoder on training data
ord_enc.fit(df_train_encoded.loc[:, ["age_disc"]])

ord_enc

Out[30]:

In [31]: # Transform the training data column 'age_disc' into the encoded version 'age_disc_enc'
df_train_encoded["age_disc_enc"] = ord_enc.transform(df_train_encoded.loc[:, ["age_disc"]])

In [32]: df_train_encoded.head()

▾ OrdinalEncoder

OrdinalEncoder(categories=[['Child (0-14]', 'Young (14-24]', 'Adults (24-50]',
 'Senior (50+]']])

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 10/21

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

pclass sibsp parch fare survived age_disc sex_female sex_male embarked_C embarked_Q embarked_S age_disc_enc

0 3 0 0 7.7500 1 Adults (24-50] 1.0 0.0 0.0 1.0 0.0 2.0

1 2 1 0 27.7208 1 Young (14-24] 1.0 0.0 1.0 0.0 0.0 1.0

2 3 4 2 31.2750 0 Child (0-14] 1.0 0.0 0.0 0.0 1.0 0.0

3 3 0 0 7.2250 0 Adults (24-50] 0.0 1.0 1.0 0.0 0.0 2.0

4 3 0 0 7.6500 1 Young (14-24] 1.0 0.0 0.0 0.0 1.0 1.0

You can see that the new column age_disc_enc is represented with an incremental number. Therefore, the order is preserved.

pclass sibsp parch fare survived sex_female sex_male embarked_C embarked_Q embarked_S age_disc_enc

0 3 0 0 7.7500 1 1.0 0.0 0.0 1.0 0.0 2.0

1 2 1 0 27.7208 1 1.0 0.0 1.0 0.0 0.0 1.0

2 3 4 2 31.2750 0 1.0 0.0 0.0 0.0 1.0 0.0

3 3 0 0 7.2250 0 0.0 1.0 1.0 0.0 0.0 2.0

4 3 0 0 7.6500 1 1.0 0.0 0.0 0.0 1.0 1.0

Exercise: Perform the same ordinal encoding on the test set, and remove the old age_disc column.

Hints

pclass sibsp parch fare survived sex_female sex_male embarked_C embarked_Q embarked_S age_disc_enc

0 3 1 0 24.1500 1 1.0 0.0 0.0 1.0 0.0 2.0

1 3 1 1 22.3583 1 0.0 1.0 1.0 0.0 0.0 2.0

2 3 0 0 7.7750 0 0.0 1.0 0.0 0.0 1.0 2.0

3 3 0 0 8.0500 0 0.0 1.0 0.0 0.0 1.0 2.0

4 3 0 0 7.4958 0 0.0 1.0 0.0 0.0 1.0 2.0

1.7 Normalization and Standardization

Some machine learning algorithms require input features to be normalized or standardized to work correctly, as this can significantly

impact the performance of the model, especially in algorithms that rely on distance computation or gradient descent optimization.

Normalization and standardization are two fundamental pre-processing steps that help to bring the data onto a common scale, making it

easier to process by an algorithm. While both methods scale the data, their methods and purposes differ. The choice between

normalization and standardization depends on the specific requirements of the algorithm and the nature of the data.

A normalization technique is Min-Max normalization. It is a simple tehcnique that rescales the range of features into [0, 1] . This is

particularly useful when the parameters have to be bounded within a fixed range. It's also useful in algorithms that compute distances

between data points and need normalization to ensure that each feature contributes equally to the result.

The formula for Min-Max normalization is:

Where:

 is the original value.

 and are the minimum and the maximum of the feature.

 is the normilized value.

Scikit-Learn provides you an useful class to perform the Min-Max normalization, namely MinMaxScaler.

Out[32]:

In [33]: # Delete the old 'age_disc' column
df_train_encoded.drop(columns=["age_disc"], axis=1, inplace=True)

df_train_encoded.head()

Out[33]:

In [34]: #### START CODE HERE (~ 2 lines) ####

df_test_encoded["age_disc_enc"] = ord_enc.transform(df_test_encoded.loc[:, ["age_disc"]])
df_test_encoded.drop(columns=["age_disc"], axis=1, inplace=True)

END CODE HERE

df_test_encoded.head()

Out[34]:

x_norm =
(x − xmin)

(xmax − xmin)

x

xmin xmax

xnorm

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 11/21

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

A widely used standardization technique is the Z-score normalization. This method involves rescaling the features so they have the

properties of a standard normal distribution with zero mean and standard deviation one . Standardization is crucial in cases

where the data follows a Gaussian distribution and when the algorithm assumes data to be centered around zero.

The formula for Z-score normalization is:

Where:

 is the original value.

 is the mean of the feature values.

 is the standard deviation of the feature values.

 is the standardized value.

Unlike Min-Max normalization, standardization does not bind values to a specific range, which makes it useful for features with outliers or

many variances. Algorithms like Support Vector Machines, Linear Regression, and Logistic Regression benefit significantly from

standardization because it enhances their convergence in optimization algorithms.

Scikit-Learn provides you an useful class to perform the Z-score normalization, namely StandardScaler.

Exercise: Perform Min-Max normalization of the numerical features specified in the numerical_features variable for both training and

test sets. Remember to fit on the training and not on the test. Note that age_disc_enc in this case is categorical but can be normalized

too.

Hints

pclass sibsp parch fare survived sex_female sex_male embarked_C embarked_Q embarked_S age_disc_enc

0 1.0 0.000 0.000000 0.015127 1 1.0 0.0 0.0 1.0 0.0 0.666667

1 0.5 0.125 0.000000 0.054107 1 1.0 0.0 1.0 0.0 0.0 0.333333

2 1.0 0.500 0.222222 0.061045 0 1.0 0.0 0.0 0.0 1.0 0.000000

3 1.0 0.000 0.000000 0.014102 0 0.0 1.0 1.0 0.0 0.0 0.666667

4 1.0 0.000 0.000000 0.014932 1 1.0 0.0 0.0 0.0 1.0 0.333333

You can see that the numerical features are now rescaled into [0, 1] .

pclass sibsp parch fare survived sex_female sex_male embarked_C embarked_Q embarked_S age_disc_enc

0 1.0 0.125 0.000000 0.047138 1 1.0 0.0 0.0 1.0 0.0 0.666667

1 1.0 0.125 0.111111 0.043640 1 0.0 1.0 1.0 0.0 0.0 0.666667

2 1.0 0.000 0.000000 0.015176 0 0.0 1.0 0.0 0.0 1.0 0.666667

3 1.0 0.000 0.000000 0.015713 0 0.0 1.0 0.0 0.0 1.0 0.666667

4 1.0 0.000 0.000000 0.014631 0 0.0 1.0 0.0 0.0 1.0 0.666667

2.1 Models training and evaluation

Scikit-Learn offers a wide range of pre-implemented classification algorithms. You can explore the available Scikit-Learn classification

algorithms here.

Training a Scikit-Learn model typically involves the following steps:

Instantiate the model: Select the model and create the model object by settings its parameters.

Training the Model: Fit your model to the training data using the .fit() method.

μ = 0 σ = 1

xstandardized =
(x − μ)

σ

x

μ

σ

xstandardized

In [35]: from sklearn.preprocessing import MinMaxScaler

numerical_features = ["pclass", "sibsp", "parch", "fare", "age_disc_enc"]

START CODE HERE (~ 4 lines)

minmax_s = MinMaxScaler()

minmax_s.fit(df_train_encoded[numerical_features])

df_train_encoded[numerical_features] = minmax_s.transform(df_train_encoded[numerical_features])
df_test_encoded[numerical_features] = minmax_s.transform(df_test_encoded[numerical_features])

END CODE HERE

In [36]: df_train_encoded.head()

Out[36]:

In [37]: df_test_encoded.head()

Out[37]:

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 12/21

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

Evaluating the Model: Assess the model's performance on the testing set using metrics such as accuracy, precision, recall, and the

confusion matrix. Once the model is trained, you can use the .predict() method.

Parameter Tuning: Optionally, use cross-validation and grid search to find the best model parameters.

You can learn more about Scikit-Learn evaluation metrics here.

Scikit-Learn also provides useful functions for cross-validation.

The next cells train and evaluate a LogisticRegression model.

Accuracy: 0.83
F1: 0.81

Remember that, when the dataset is imbalanced, F1 score and recall are more useful metrics than accuracy .

Scikit-Learn provides you a useful function to compute several evaluation metrics, namely classification_report.

 precision recall f1-score support

Not-Survived 0.84 0.90 0.87 162
 Survived 0.81 0.72 0.76 100

 accuracy 0.83 262
 macro avg 0.82 0.81 0.81 262
weighted avg 0.83 0.83 0.83 262

The next cell plots the confusion matrix. The confusion matrix is a useful tool for evaluating the performance of classification models. It

provides a visual summary of how well the model predicts across different classes, allowing you to see not just the overall accuracy but also

more specific details about where the model is making errors.

However, in this case the classification task is binary, so the confusion matrix is not very indicative. However, code is given to show how it

can be fastly implemented using Scikit-Learn.

In [38]: # Extract target variable and input features for the training data
y_train = df_train_encoded['survived'] # Target variable trainig set
X_train = df_train_encoded.drop('survived', axis=1) # Features training set

Extract target variable and input features for the testing data
y_test = df_test_encoded['survived'] # Target variable test set
X_test = df_test_encoded.drop('survived', axis=1) # Features test set

In [39]: from sklearn.linear_model import LogisticRegression

Initialize the model
lr_model = LogisticRegression(max_iter=1000) # Increasing max_iter if convergence warning occurs

Train the model
lr_model.fit(X_train, y_train)

Out[39]:

In [40]: from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score

Make predictions
y_test_pred_lr = lr_model.predict(X_test)

Evaluate the model
lr_acc = accuracy_score(y_test, y_test_pred_lr)
lr_f1 = f1_score(y_test, y_test_pred_lr, average='macro')

Print accuracy and F1 Score
print(f"Accuracy: {lr_acc:.2f}")
print(f"F1: {lr_f1:.2f}")

In [41]: from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

labels = ["Not-Survived", "Survived"]

classification_report_lr = classification_report(y_test, y_test_pred_lr, target_names=labels)
print(classification_report_lr)

In [42]: from sklearn.metrics import ConfusionMatrixDisplay

cmd = ConfusionMatrixDisplay.from_predictions(y_test, y_test_pred_lr, cmap=plt.cm.Blues)
ax = cmd.ax_
ax.set_title('Confusion Matrix')
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
plt.show()

▾ LogisticRegression

LogisticRegression(max_iter=1000)

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 13/21

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

Exercise: Train a RandomForestClassifier and evaluate its performance. Compute the classification report and store it in a variable

classification_report_rf .

 precision recall f1-score support

Not-Survived 0.85 0.91 0.88 162
 Survived 0.83 0.75 0.79 100

 accuracy 0.85 262
 macro avg 0.84 0.83 0.83 262
weighted avg 0.85 0.85 0.85 262

The next cells train and evaluate a SupportVectorMachine and a simple Neural Network models.

 precision recall f1-score support

Not-Survived 0.82 0.98 0.89 162
 Survived 0.94 0.66 0.78 100

 accuracy 0.85 262
 macro avg 0.88 0.82 0.83 262
weighted avg 0.87 0.85 0.85 262

In [43]: from sklearn.ensemble import RandomForestClassifier

START CODE HERE (~ 4 lines)

rf_model = RandomForestClassifier(max_depth=5)

rf_model.fit(X_train, y_train)

y_test_pred_rf = rf_model.predict(X_test)

classification_report_rf = classification_report(y_test, y_test_pred_rf, target_names=labels)

END CODE HERE (~ 4 lines)

print(classification_report_rf)

In [44]: from sklearn.svm import SVC

svm_model = SVC(gamma=1.5, kernel="rbf", probability=True)

svm_model.fit(X_train, y_train)

y_test_pred_svm = svm_model.predict(X_test)

classification_report_svm = classification_report(y_test, y_test_pred_svm, target_names=labels)
print(classification_report_svm)

In [45]: from sklearn.neural_network import MLPClassifier

mlp_model = MLPClassifier(hidden_layer_sizes=(256, 32), max_iter=500).fit(X_train, y_train)

y_test_pred_mlp = mlp_model.predict(X_test)

classification_report_mlp = classification_report(y_test, y_test_pred_mlp, target_names=labels)
print(classification_report_mlp)

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 14/21

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

 precision recall f1-score support

Not-Survived 0.86 0.93 0.89 162
 Survived 0.86 0.76 0.81 100

 accuracy 0.86 262
 macro avg 0.86 0.84 0.85 262
weighted avg 0.86 0.86 0.86 262

Exercise 2: Diabetes prediction

In this exercise, you will train machine learning models to predict diabetes in patients based on their medical history and demographic

information, using the Diabetes prediction dataset.

The Diabetes prediction dataset is a collection of medical and demographic data records from patients, and their diabetes status

(positive or negative).

This is an example of real-world medical application. Indeed, this model can be useful for healthcare professionals in identifying patients

who may be at risk of developing diabetes and in developing personalized treatment plans.

Each record includes several features, such as:

age

gender

body mass index (BMI)

hypertension

heart disease

smoking history

HbA1c level

blood glucose level

Before running the next cell, upload the dataset on colab.

Archive: diabetes-dataset.zip
 inflating: diabetes_prediction_dataset.csv

gender age hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes

0 Female 80.0 0 1 never 25.19 6.6 140 0

1 Female 54.0 0 0 No Info 27.32 6.6 80 0

2 Male 28.0 0 0 never 27.32 5.7 158 0

3 Female 36.0 0 0 current 23.45 5.0 155 0

4 Male 76.0 1 1 current 20.14 4.8 155 0

0 91500
1 8500
Name: diabetes, dtype: int64

Exercise: Now you will implement the pre-processing pipeline, and train and evaluate a binary classifier on the target variable.

The following steps are recommended to complete the task. However, it is up to you to make specific choices about the pre-processing to

be performed.

In [46]: # Import the required libraries for this exercise

from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn import tree

import pandas as pd
import numpy as np

import seaborn as sns
import matplotlib.pyplot as plt

In [47]: # If your dataset is stored on Google Drive, mount the drive before reading it
from google.colab import drive
drive.mount('/content/drive')

In [50]: !unzip diabetes-dataset.zip

In [51]: df = pd.read_csv('data_lab9/diabetes_prediction_dataset.csv')

In [52]: df.head()

Out[52]:

In [53]: # Check if the dataset is balanced
df.diabetes.value_counts()

Out[53]:

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 15/21

Steps:

1. Perform the pre-processing:

Split into train and test sets (80% train and 20% test).

Remove useless or redundant features.

Combine features to create new features.

Handling missing values.

Perform discretization of features if necessary.

Encode categorical features.

Perform normalization or standardization of input features.

Encode the target variable if necessary.

1. Train one or more binary classifiers to predict the diabetes status of patiens. Use appropriate evaluation metrics to identify the best

performing model.

Hints :

>

When performing the pre-processing steps, compute the statistics on training and transform the test data accordingly.

All the categorical features must be properly encoded.

The dataset is highly imbalanced. F1 score and recall are more appropriate metrics for this task.

This time the exercise is open-ended, so it is up to you to write all the code to carry out these steps.

Index(['gender', 'age', 'hypertension', 'heart_disease', 'smoking_history',
 'bmi', 'HbA1c_level', 'blood_glucose_level', 'diabetes'],
 dtype='object')

age hypertension heart_disease bmi HbA1c_level blood_glucose_level diabetes

count 100000.000000 100000.00000 100000.000000 100000.000000 100000.000000 100000.000000 100000.000000

mean 41.885856 0.07485 0.039420 27.320767 5.527507 138.058060 0.085000

std 22.516840 0.26315 0.194593 6.636783 1.070672 40.708136 0.278883

min 0.080000 0.00000 0.000000 10.010000 3.500000 80.000000 0.000000

25% 24.000000 0.00000 0.000000 23.630000 4.800000 100.000000 0.000000

50% 43.000000 0.00000 0.000000 27.320000 5.800000 140.000000 0.000000

75% 60.000000 0.00000 0.000000 29.580000 6.200000 159.000000 0.000000

max 80.000000 1.00000 1.000000 95.690000 9.000000 300.000000 1.000000

Check for duplicate values

Number of duplicate rows: 6939

In [54]: df.columns

Out[54]:

In []: df.info()

In [55]: df.describe()

Out[55]:

In [56]: # check for duplicate rows
duplicates = df.duplicated(keep=False)
print(f"Number of duplicate rows: {duplicates.sum()}")

In [57]: df_duplicates = df.loc[duplicates]
df_duplicates

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 16/21

gender age hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes

1 Female 54.0 0 0 No Info 27.32 6.6 80 0

10 Female 53.0 0 0 never 27.32 6.1 85 0

14 Female 76.0 0 0 No Info 27.32 5.0 160 0

18 Female 42.0 0 0 No Info 27.32 5.7 80 0

41 Male 5.0 0 0 No Info 27.32 6.6 130 0

...

99980 Female 52.0 0 0 never 27.32 6.1 145 0

99985 Male 25.0 0 0 No Info 27.32 5.8 145 0

99989 Female 26.0 0 0 No Info 27.32 5.0 158 0

99990 Male 39.0 0 0 No Info 27.32 6.1 100 0

99995 Female 80.0 0 0 No Info 27.32 6.2 90 0

6939 rows × 9 columns

Number of duplicate rows: 0
New number of samples after removing duplicates: 96146

Number of training examples: 76916
Number of test examples: 19230

Check for missing values

Are there any null values? Training: False, Test: False

Train
gender 0
age 0
hypertension 0
heart_disease 0
smoking_history 0
bmi 0
HbA1c_level 0
blood_glucose_level 0
diabetes 0
dtype: int64

Test
gender 0
age 0
hypertension 0
heart_disease 0
smoking_history 0
bmi 0
HbA1c_level 0
blood_glucose_level 0
diabetes 0
dtype: int64

Discretize age column.

Out[57]:

In [58]: # Remove duplicates
df.drop_duplicates(inplace=True)

check for duplicate rows
duplicates = df.duplicated(keep=False)
print(f"Number of duplicate rows: {duplicates.sum()}")
print(f"New number of samples after removing duplicates: {len(df)}")

In [59]: # Split into training and test set
df_train, df_test = train_test_split(df, test_size=0.2, shuffle=True, random_state=42, stratify=df['diabetes'])

In [60]: # Print the number of samples in training and test set
print(f"Number of training examples: {len(df_train)}")
print(f"Number of test examples: {len(df_test)}")

In [61]: print(f'Are there any null values? Training: {df_train.isnull().values.any()}, Test: {df_test.isnull().values.any()}')

In [62]: nan_count_train = df_train.isna().sum()
nan_count_test = df_test.isna().sum()

In [63]: print("Train")
print(nan_count_train)

In [64]: print("Test")
print(nan_count_test)

In [65]: age_category = ['Child (0-14]', 'Young (14-24]', 'Adults (24-50]', 'Senior (50+]']

df_train['age_disc']=pd.cut(x=df_train['age'], bins=[0,14,24,50,100],labels=age_category)
df_train = df_train.drop(columns=['age']) # Remove the old age column

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 17/21

['No Info', 'current', 'not current', 'ever', 'never', 'former']

['No Info', 'current', 'not current', 'ever', 'never', 'former']

never 27509
No Info 26307
former 7476
current 7349
not current 5108
ever 3167
Name: smoking_history, dtype: int64

never 6889
No Info 6580
current 1848
former 1823
not current 1259
ever 831
Name: smoking_history, dtype: int64

Combine not current and former

never 27509
No Info 26307
not current 12584
current 7349
ever 3167
Name: smoking_history, dtype: int64

never 6889
No Info 6580
not current 3082
current 1848
ever 831
Name: smoking_history, dtype: int64

gender hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes age_disc

79000 Male 0 0 No Info 23.87 5.7 126 0 Adults (24-50]

32011 Female 0 0 not current 33.03 4.0 126 0 Senior (50+]

95559 Female 0 0 No Info 27.32 6.6 126 0 Adults (24-50]

32057 Male 1 0 No Info 28.86 4.8 80 0 Adults (24-50]

97797 Female 0 0 not current 26.48 6.5 200 0 Adults (24-50]

df_test['age_disc']=pd.cut(x=df_test['age'], bins=[0,14,24,50,100],labels=age_category)
df_test = df_test.drop(columns=['age']) # Remove the old age column

In [66]: print(list(set(df_train.smoking_history.tolist())))

In [67]: print(list(set(df_test.smoking_history.tolist())))

In [68]: print(df_train.smoking_history.value_counts())

In [69]: print(df_test.smoking_history.value_counts())

In [70]: df_train.loc[df_train['smoking_history'] == 'former', 'smoking_history'] = 'not current'
df_test.loc[df_test['smoking_history'] == 'former', 'smoking_history'] = 'not current'

In [71]: print(df_train.smoking_history.value_counts())

In [72]: print(df_test.smoking_history.value_counts())

In [73]: df_train_encoded = df_train.copy()
df_test_encoded = df_test.copy()

In [74]: df_train_encoded.head()

Out[74]:

In [75]: smoking_history_order = ["never", "not current", "No Info", "current", "ever"]

In [76]: from sklearn.preprocessing import OrdinalEncoder

Instantiate the OrdinalEncoder specifying the list of the categories
ord_enc = OrdinalEncoder(categories=[smoking_history_order, age_category])

Fit the OrdinalEncoder on training data
ord_enc.fit(df_train_encoded[['smoking_history', 'age_disc']])

ord_enc

Out[76]: ▾ OrdinalEncoder

OrdinalEncoder(categories=[['never', 'not current', 'No Info', 'current',
 'ever'],
 ['Child (0-14]', 'Young (14-24]', 'Adults (24-50]',
 'Senior (50+]']])

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 18/21

gender hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes age_disc

79000 Male 0 0 2.0 23.87 5.7 126 0 2.0

32011 Female 0 0 1.0 33.03 4.0 126 0 3.0

95559 Female 0 0 2.0 27.32 6.6 126 0 2.0

32057 Male 1 0 2.0 28.86 4.8 80 0 2.0

97797 Female 0 0 1.0 26.48 6.5 200 0 2.0

gender hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes age_disc

82004 Female 0 0 3.0 36.77 6.6 159 0 3.0

10542 Male 0 0 2.0 22.29 4.5 90 0 0.0

31572 Female 1 0 1.0 34.24 6.2 90 0 3.0

98055 Male 0 0 1.0 24.39 4.0 100 0 3.0

49107 Male 0 1 2.0 35.00 4.5 145 0 3.0

Female 44817
Male 32085
Other 14
Name: gender, dtype: int64

Female 11344
Male 7882
Other 4
Name: gender, dtype: int64

Female 44817
Male 32085
Name: gender, dtype: int64

Female 11344
Male 7882
Name: gender, dtype: int64

In [77]: df_train_encoded[["smoking_history", "age_disc"]] = ord_enc.transform(df_train_encoded.loc[:, ["smoking_history", "age
df_test_encoded[["smoking_history", "age_disc"]] = ord_enc.transform(df_test_encoded.loc[:, ["smoking_history", "age_d

In [78]: df_train_encoded.head()

Out[78]:

In [79]: df_test_encoded.head()

Out[79]:

In [80]: print(df_train_encoded.gender.value_counts())

In [81]: print(df_test_encoded.gender.value_counts())

In [82]: # Remove all the rows where gender = 'Other'

df_train_encoded = df_train_encoded[df_train_encoded['gender'] != 'Other']
df_test_encoded = df_test_encoded[df_test_encoded['gender'] != 'Other']

In [83]: print(df_train_encoded.gender.value_counts())

In [84]: print(df_test_encoded.gender.value_counts())

In [85]: from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder(handle_unknown='ignore')

ohe_categorical_columns = ['gender']

Fit the one-hot encoder on training data
ohe.fit(df_train_encoded[ohe_categorical_columns])

Create a new DataFrame with only the one-hot encoded columns
temp_df_train = pd.DataFrame(data=ohe.transform(df_train_encoded[ohe_categorical_columns]).toarray(),
 columns=ohe.get_feature_names_out())

Remove the old categorical columns from the original data
df_train_encoded.drop(columns=ohe_categorical_columns, axis=1, inplace=True)
df_train_encoded = pd.concat([df_train_encoded.reset_index(drop=True), temp_df_train], axis=1)

Perform the same procedure on the test set
temp_df_test = pd.DataFrame(data=ohe.transform(df_test_encoded[ohe_categorical_columns]).toarray(),
 columns=ohe.get_feature_names_out())

df_test_encoded.drop(columns=ohe_categorical_columns, axis=1, inplace=True)
df_test_encoded = pd.concat([df_test_encoded.reset_index(drop=True), temp_df_test], axis=1)

In [86]: df_train_encoded.head()

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 19/21

hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes age_disc gender_Female gender_Male

0 0 0 2.0 23.87 5.7 126 0 2.0 0.0 1.0

1 0 0 1.0 33.03 4.0 126 0 3.0 1.0 0.0

2 0 0 2.0 27.32 6.6 126 0 2.0 1.0 0.0

3 1 0 2.0 28.86 4.8 80 0 2.0 0.0 1.0

4 0 0 1.0 26.48 6.5 200 0 2.0 1.0 0.0

hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes age_disc gender_Female gender_Male

0 0 0 3.0 36.77 6.6 159 0 3.0 1.0 0.0

1 0 0 2.0 22.29 4.5 90 0 0.0 0.0 1.0

2 1 0 1.0 34.24 6.2 90 0 3.0 1.0 0.0

3 0 0 1.0 24.39 4.0 100 0 3.0 0.0 1.0

4 0 1 2.0 35.00 4.5 145 0 3.0 0.0 1.0

hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes age_disc gender_Female gender_Male

0 0 0 0.50 0.162657 0.400000 0.209091 0 0.666667 0.0 1.0

1 0 0 0.25 0.270156 0.090909 0.209091 0 1.000000 1.0 0.0

2 0 0 0.50 0.203145 0.563636 0.209091 0 0.666667 1.0 0.0

3 1 0 0.50 0.221218 0.236364 0.000000 0 0.666667 0.0 1.0

4 0 0 0.25 0.193287 0.545455 0.545455 0 0.666667 1.0 0.0

hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level diabetes age_disc gender_Female gender_Mal

0 0 0 0.75 0.314048 0.563636 0.359091 0 1.0 1.0 0.

1 0 0 0.50 0.144115 0.181818 0.045455 0 0.0 0.0 1.

2 1 0 0.25 0.284356 0.490909 0.045455 0 1.0 1.0 0.

3 0 0 0.25 0.168760 0.090909 0.090909 0 1.0 0.0 1.

4 0 1 0.50 0.293275 0.181818 0.295455 0 1.0 0.0 1.

Out[86]:

In [87]: df_test_encoded.head()

Out[87]:

In [88]: from sklearn.preprocessing import MinMaxScaler

features_to_normalize = ['bmi', 'HbA1c_level', 'blood_glucose_level', 'age_disc', 'smoking_history']

minmax_s = MinMaxScaler()

minmax_s.fit(df_train_encoded[features_to_normalize])

df_train_encoded[features_to_normalize] = minmax_s.transform(df_train_encoded[features_to_normalize])
df_test_encoded[features_to_normalize] = minmax_s.transform(df_test_encoded[features_to_normalize])

In [89]: df_train_encoded.head()

Out[89]:

In [90]: df_test_encoded.head()

Out[90]:

In [91]: # Extract target variable and input features for the training data
y_train = df_train_encoded['diabetes']
X_train = df_train_encoded.drop('diabetes', axis=1)

Extract target variable and input features for the testing data
y_test = df_test_encoded['diabetes']
X_test = df_test_encoded.drop('diabetes', axis=1)

In [92]: from sklearn.svm import SVC

svm_model = SVC(gamma=0.5, kernel="rbf", probability=True)

svm_model.fit(X_train, y_train)

Out[92]:

In [93]: from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

labels = ["Non-Diabetes", "Diabetes"]

y_test_pred_svm = svm_model.predict(X_test)

▾ SVC

SVC(gamma=0.5, probability=True)

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 20/21

 precision recall f1-score support

Non-Diabetes 0.96 1.00 0.98 17530
 Diabetes 0.96 0.57 0.72 1696

 accuracy 0.96 19226
 macro avg 0.96 0.79 0.85 19226
weighted avg 0.96 0.96 0.96 19226

 precision recall f1-score support

Non-Diabetes 0.97 1.00 0.98 17530
 Diabetes 0.98 0.69 0.81 1696

 accuracy 0.97 19226
 macro avg 0.97 0.84 0.90 19226
weighted avg 0.97 0.97 0.97 19226

classification_report_svm = classification_report(y_test, y_test_pred_svm, target_names=labels)
print(classification_report_svm)

In [94]: from sklearn.metrics import ConfusionMatrixDisplay

cmd = ConfusionMatrixDisplay.from_predictions(y_test, y_test_pred_svm, cmap=plt.cm.Blues)
ax = cmd.ax_
ax.set_title('Confusion Matrix')
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
plt.show()

In [95]: from sklearn.neural_network import MLPClassifier

mlp_model = MLPClassifier(hidden_layer_sizes=(256, 64, 32), max_iter=2000).fit(X_train, y_train)

y_test_pred_mlp = mlp_model.predict(X_test)

classification_report_mlp = classification_report(y_test, y_test_pred_mlp, target_names=labels)
print(classification_report_mlp)

15/05/24, 20:23 Lab9_Scikit-Learn_pre-processing_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab9_Scikit-Learn_pre-processing_solutions.html 21/21

