
Lab 6 Solution

April 29, 2024

1 LAB 06 - Python version
Luca Catalano, Daniele Rege Cambrin, Eleonora Poeta

1.0.1 Disclaimer

The purpose of creating this material is to enhance the knowledge of students who are interested in
learning how to solve problems presented in laboratory classes using Python. This decision stems
from the observation that some students have opted to utilize Python for tackling exam projects
in recent years.

To solve these exercises using Python, you need to install Python (version 3.9.6 or later) and some
libraries using pip or conda.

Here’s a list of the libraries needed for this case:

• os: Provides operating system dependent functionality, commonly used for file operations
such as reading and writing files, interacting with the filesystem, etc.

• pandas: A data manipulation and analysis library that offers data structures and functions
to efficiently work with structured data.

• numpy: A numerical computing library that provides support for large, multi-dimensional
arrays and matrices, along with a collection of mathematical functions to operate on these
arrays.

• matplotlib.pyplot: A plotting library for creating visualizations like charts, graphs, his-
tograms, etc.

• sklearn: Machine learning algorithms and tools.
• xlrd: A Python library used for reading data and formatting information from Excel files

(.xls and .xlsx formats). It provides functionality to extract data from Excel worksheets,
including cells, rows, columns, and formatting details.

You can download Python from here and follow the installation instructions for your operating
system.

For installing libraries using pip or conda, you can use the following commands:

• Using pip:

pip install pandas numpy matplotlib scikit-learn xlrd

• Using conda:

conda install pandas numpy matplotlib scikit-learn xlrd

1

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/
https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Make sure to run these commands in your terminal or command prompt after installing Python.
You can also execute them in a cell of a Jupyter Notebook file (.ipynb) by starting the command
with ‘!’.

2 Exercise 1
Import some libraries

[1]: import pandas as pd

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score
from sklearn.model_selection import cross_val_predict, GridSearchCV
from sklearn.metrics import confusion_matrix

2.1 Read file excel “user.xlsx”
To read the Excel file using a function integrated into the pandas library, you can use the
pd.read_excel() function. Rewrite the instruction with the argument as the path of the file
to be read

[2]: # Read file excel
dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/

↪com~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB06/
↪Lab6Materiale/user.xlsx")

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no
default style, apply openpyxl's default

warn("Workbook contains no default style, apply openpyxl's default")

In a Jupyter Notebook cell, you can print a subset of the representation by simply calling the name
of the variable containing the DataFrame.

[3]: # print dataset
dataset

[3]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse

2

.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Response
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

2.2 Define the label column in the dataset data frame
Rename the ‘Response’ column to ‘Label’ [use dataset.rename(columns={‘actual_col_name’:
‘new_col_name’})]

[4]: # rename column Response to Label
dataset = dataset.rename(columns={'Response': 'Label'})

[5]: # print datsaset to check if the column has been renamed
dataset

[5]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Label

3

0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

2.3 Separate the dataset into features, referred to as X, and labels, referred to
as y. Afterwards, utilize Label Encoder to encode the categorical features.

[You can achieve this by selecting columns using the [] operator on the dataframe, then initializing
the Label Encoder and applying its fit_transform method]

[6]: # Split the dataset into features (X) and target variable (y)
X = dataset.drop(columns=['Label']) # Features
y = dataset['Label'] # Target variable

Label encoding
labelencoder = LabelEncoder()
Apply label encoding to each column, except for the age column
for column in X.columns:

if column != 'Age':
X[column] = labelencoder.fit_transform(X[column])

Transform Negative into 0value and Positive into 1 value (use label encoder␣
↪with .fit_transform)

y = labelencoder.fit_transform(y)

2.4 Use the random forest classifier model.
To start, split the dataset users.xlsx into two parts: training and testing. This allows for training
the model on the training portion and evaluating its performance using the test portion.

Please note that the test portion is not a real-case test dataset but rather an archetype for evaluating
the model with a small dataset that contains the correct labels.

Set these parameters:

• Max Depth: 100
• Number of trees: 20

4

[use train_test_split() to split the dataset]

[Use RandomForestClassifier() and its .fit and .predict function]

[7]: # Split the dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣

↪random_state=42)

Create a Random Forest Classifier
random_forest = RandomForestClassifier(n_estimators=20, max_depth=3,␣

↪random_state=42)

Train the model using the training sets
random_forest.fit(X_train, y_train)

Predict the response for test dataset
y_pred = random_forest.predict(X_test)

Evaluate the model: Accuracy, Precision, Recall
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)

Print the evaluation metrics
print("Accuracy: ", accuracy)
print("Precision: ", precision)
print("Recall: ", recall)

Accuracy: 0.805
Precision: 0.8
Recall: 0.25

2.5 Validation of Random Forest Classifier model using Cross Validation
Cross-validation is a technique used to assess the performance and generalization ability of machine
learning models, particularly in the context of classification tasks. It involves partitioning the
dataset into multiple subsets, known as folds.

1. Partitioning the Dataset: The dataset is divided into k equal-sized folds.

2. Training and Testing: The model is trained k times, each time using k-1 folds for training
and the remaining fold for testing.

3. Evaluation: The performance of the model is evaluated on each fold, and the results are
averaged to obtain a robust estimate of the model’s performance.

4. Advantages: Cross-validation provides a more reliable estimate of the model’s performance
compared to a single train-test split. It helps to detect overfitting and assesses the model’s
ability to generalize to unseen data.

[Use cross_val_score and cross_val_predict to perform cross-validation easily]

5

[8]: # Initialize the decision tree classifier
clf = RandomForestClassifier(n_estimators=200, max_depth=3, random_state=42)

Perform cross-validation predictions
y_pred = cross_val_predict(clf, X, y, cv=5)

Calculate confusion matrix
conf_matrix = confusion_matrix(y, y_pred)

Evaluate accuracy
accuracy = accuracy_score(y, y_pred)
Print accuracy
print("Accuracy:", accuracy)

Print confusion matrix
conf_matrix = pd.DataFrame(conf_matrix, columns=['Predicted No', 'Predicted␣

↪Yes'], index=['Actual No', 'Actual Yes'])
conf_matrix

Accuracy: 0.775

[8]: Predicted No Predicted Yes
Actual No 757 11
Actual Yes 214 18

2.6 Implement Grid Search
Grid Search is a technique used to find the optimal hyperparameters for a machine learning model.
It works by searching through a predefined set of hyperparameters and evaluating the model’s
performance for each combination using cross-validation.

Specifically, you need to:

1. Define a grid of hyperparameters to search through.
2. Use Grid Search to find the best combination of hyperparameters.

[9]: # Grid search. It takes more or less 30 seconds to run
Define the parameter grid
param_grid = {

"n_estimators": [100, 250, 500],
"max_depth": [None, 10, 20, 30],

}
Perform grid search
gs = GridSearchCV(RandomForestClassifier(), param_grid, cv=5)
Initialize the grid search
gs.fit(X, y) # [use .fit() method]
Print the best parameters and the best score
gs.best_params_, gs.best_score_

6

[9]: ({'max_depth': 10, 'n_estimators': 500}, 0.817)

3 Exercise 2
Import some libraries

[24]: import pandas as pd

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC as SupportVectorMachineClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score
from sklearn.model_selection import cross_val_predict, GridSearchCV
from sklearn.metrics import confusion_matrix

3.1 Read file excel “user.xlsx”
To read the Excel file using a function integrated into the pandas library, you can use the
pd.read_excel() function. Rewrite the instruction with the argument as the path of the file
to be read

[25]: # Read file excel
dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/

↪com~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB06/
↪Lab6Materiale/user.xlsx")

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no
default style, apply openpyxl's default

warn("Workbook contains no default style, apply openpyxl's default")

In a Jupyter Notebook cell, you can print a subset of the representation by simply calling the name
of the variable containing the DataFrame.

[26]: # print dataset
dataset

[26]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse

7

996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Response
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

3.2 Define the label column in the dataset data frame
Rename the ‘Response’ column to ‘Label’ [use dataset.rename(columns={‘actual_col_name’:
‘new_col_name’})]

[27]: # rename column Response to Label
dataset = dataset.rename(columns={'Response': 'Label'})

[28]: # print datsaset to check if the column has been renamed
dataset

[28]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Label
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative

8

2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

3.3 Separate the dataset into features, referred to as X, and labels, referred to
as y. Afterwards, utilize Label Encoder to encode the categorical features.

[You can achieve this by selecting columns using the [] operator on the dataframe, then initializing
the Label Encoder and applying its fit_transform method]

[29]: # Split the dataset into features (X) and target variable (y)
X = dataset.drop(columns=['Label']) # Features
y = dataset['Label'] # Target variable

Label encoding
labelencoder = LabelEncoder()
Apply label encoding to each column, except for the age column
for column in X.columns:

if column != 'Age':
X[column] = labelencoder.fit_transform(X[column])

Transform Negative into 0value and Positive into 1 value (use label encoder␣
↪with .fit_transform)

y = labelencoder.fit_transform(y)

3.4 Use the Support Vector Machine classifier model.
Use the same split of the dataset users.xlsx into two parts

Set these parameters:

• C: 100
• gamma: 0.1
• kernel=‘rbf’

[Use SVM() and its .fit and .predict function]

[30]: # Split the dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣

↪random_state=42)

9

Create a SVM Classifier
svm = SupportVectorMachineClassifier(kernel='rbf', C=100, gamma=0.1)

Train the model using the training sets
svm.fit(X_train, y_train)

Predict the response for test dataset
y_pred = svm.predict(X_test)

Evaluate the model: Accuracy, Precision, Recall
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)

Print the evaluation metrics
print("Accuracy: ", accuracy)
print("Precision: ", precision)
print("Recall: ", recall)

Accuracy: 0.735
Precision: 0.4489795918367347
Recall: 0.4583333333333333

3.5 Validation of SVM Classifier model using Cross Validation
Cross-validation is a technique used to assess the performance and generalization ability of machine
learning models, particularly in the context of classification tasks. It involves partitioning the
dataset into multiple subsets, known as folds.

1. Partitioning the Dataset: The dataset is divided into k equal-sized folds.

2. Training and Testing: The model is trained k times, each time using k-1 folds for training
and the remaining fold for testing.

3. Evaluation: The performance of the model is evaluated on each fold, and the results are
averaged to obtain a robust estimate of the model’s performance.

4. Advantages: Cross-validation provides a more reliable estimate of the model’s performance
compared to a single train-test split. It helps to detect overfitting and assesses the model’s
ability to generalize to unseen data.

[Use cross_val_score and cross_val_predict to perform cross-validation easily]

[31]: # Initialize the decision tree classifier
clf = SupportVectorMachineClassifier(kernel='rbf', C=100, gamma=0.1)

Perform cross-validation predictions
y_pred = cross_val_predict(clf, X, y, cv=5)

10

Calculate confusion matrix
conf_matrix = confusion_matrix(y, y_pred)

Evaluate accuracy
accuracy = accuracy_score(y, y_pred)
Print accuracy
print("Accuracy:", accuracy)

Print confusion matrix
conf_matrix = pd.DataFrame(conf_matrix, columns=['Predicted No', 'Predicted␣

↪Yes'], index=['Actual No', 'Actual Yes'])
conf_matrix

Accuracy: 0.744

[31]: Predicted No Predicted Yes
Actual No 663 105
Actual Yes 151 81

3.6 Implement Grid Search
Grid Search is a technique used to find the optimal hyperparameters for a machine learning model.
It works by searching through a predefined set of hyperparameters and evaluating the model’s
performance for each combination using cross-validation.

Specifically, you need to:

1. Define a grid of hyperparameters to search through.
2. Use Grid Search to find the best combination of hyperparameters.

[32]: # Grid search. It takes more or less 30 seconds to run
Define the parameter grid
param_grid = {

"C": [1, 2, 5, 10],
"gamma": [2, 1, 0.1, 0.01],
"kernel": ['rbf', 'linear']

}
Perform grid search
gs = GridSearchCV(SupportVectorMachineClassifier(), param_grid, cv=5)
Initialize the grid search
gs.fit(X, y) # [use .fit() method]
Print the best parameters and the best score
gs.best_params_, gs.best_score_

[32]: ({'C': 5, 'gamma': 1, 'kernel': 'rbf'}, 0.78)

11

4 Exercise 3
Import some libraries

[108]: import pandas as pd

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score
from sklearn.model_selection import cross_val_predict, GridSearchCV
from sklearn.metrics import confusion_matrix

4.1 Read file excel “user.xlsx”
To read the Excel file using a function integrated into the pandas library, you can use the
pd.read_excel() function. Rewrite the instruction with the argument as the path of the file
to be read

[77]: # Read file excel
dataset = pd.read_excel("/Users/luca/Library/Mobile Documents/

↪com~apple~CloudDocs/Business Intelligence per Big Data/Laboratories/LAB06/
↪Lab6Materiale/user.xlsx")

/Users/luca/Library/Python/3.9/lib/python/site-
packages/openpyxl/styles/stylesheet.py:226: UserWarning: Workbook contains no
default style, apply openpyxl's default

warn("Workbook contains no default style, apply openpyxl's default")

In a Jupyter Notebook cell, you can print a subset of the representation by simply calling the name
of the variable containing the DataFrame.

[78]: # print dataset
dataset

[78]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse

12

999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Response
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative
.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

4.2 Define the label column in the dataset data frame
Rename the ‘Response’ column to ‘Label’ [use dataset.rename(columns={‘actual_col_name’:
‘new_col_name’})]

[79]: # rename column Response to Label
dataset = dataset.rename(columns={'Response': 'Label'})

[80]: # print datsaset to check if the column has been renamed
dataset

[80]: Age Workclass Education Marital Status \
0 39.0 State-gov Bachelors Never-married
1 50.0 Self-emp-not-inc Bachelors Married-civ-spouse
2 38.0 Private HS-grad Divorced
3 53.0 Private 11th Married-civ-spouse
4 28.0 Private Bachelors Married-civ-spouse
.. … … … …
995 56.0 Private HS-grad Married-civ-spouse
996 45.0 Private Masters Divorced
997 48.0 Federal-gov Bachelors Divorced
998 40.0 Private Some-college Married-civ-spouse
999 39.0 Self-emp-inc Bachelors Married-civ-spouse

Occupation Relationship Race Sex Native Country Label
0 Adm-clerical Not-in-family White Male United-States Negative
1 Exec-managerial Husband White Male United-States Negative
2 Handlers-cleaners Not-in-family White Male United-States Negative
3 Handlers-cleaners Husband Black Male United-States Negative
4 Prof-specialty Wife Black Female Cuba Negative

13

.. … … … … … …
995 Exec-managerial Husband White Male United-States Positive
996 Prof-specialty Not-in-family White Male United-States Negative
997 Exec-managerial Unmarried White Male United-States Positive
998 Machine-op-inspct Husband White Male United-States Negative
999 Exec-managerial Husband White Male United-States Positive

[1000 rows x 10 columns]

4.3 Separate the dataset into features, referred to as X, and labels, referred to
as y. Afterwards, utilize Label Encoder to encode the categorical features.

[You can achieve this by selecting columns using the [] operator on the dataframe, then initializing
the Label Encoder and applying its fit_transform method]

[81]: # Split the dataset into features (X) and target variable (y)
X = dataset.drop(columns=['Label']) # Features
y = dataset['Label'] # Target variable

Label encoding
labelencoder = LabelEncoder()
Apply label encoding to each column, except for the age column
for column in X.columns:

if column != 'Age':
X[column] = labelencoder.fit_transform(X[column])

Transform Negative into 0value and Positive into 1 value (use label encoder␣
↪with .fit_transform)

y = labelencoder.fit_transform(y)

4.4 Use the MLP classifier model.
Use the same split of the dataset users.xlsx into two parts

A Multi-Layer Perceptron (MLP) is a type of artificial neural network (ANN) that consists of
multiple layers of nodes, or neurons, arranged in a feedforward manner. MLPs are widely used for
various machine learning tasks, including classification and regression.

4.4.1 Structure of an MLP:

1. Input Layer: The first layer of the MLP, which receives input features from the dataset.

2. Hidden Layers: Intermediate layers between the input and output layers. Each hidden
layer consists of multiple neurons, and the number of hidden layers and neurons per layer can
vary depending on the complexity of the task.

3. Output Layer: The final layer of the MLP, which produces the network’s output. The
number of neurons in the output layer depends on the number of classes in the classification

14

task or the number of output values in the regression task.

4.4.2 Activation Function:

Each neuron in the MLP applies an activation function to its input to introduce non-linearity into
the model and enable the network to learn complex patterns. Common activation functions include:

• ReLU (Rectified Linear Unit)
• Sigmoid
• Tanh (Hyperbolic Tangent)

4.4.3 Training an MLP:

MLPs are trained using an optimization algorithm such as gradient descent to minimize a loss
function, which measures the difference between the predicted output and the true labels in the
training data. Common loss functions include cross-entropy loss for classification tasks and mean
squared error for regression tasks.

Set these parameters:

• max_iter = 500
• solver=‘sgd’
• learning_rate_init=0.001
• hidden_layer_sizes=(512, 256, 128)
• random_state=42

[Use MLPClassifier() and its .fit and .predict function]

[107]: # Split the dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣

↪random_state=42)
Create a MLP Classifier
clf = MLPClassifier(max_iter=500, solver='sgd', learning_rate_init=0.01,␣

↪hidden_layer_sizes=(512, 256, 128), random_state=42)
Train the model using the training sets
clf.fit(X_train, y_train)
Predict the response for test dataset
clf.predict(X_test)
Evaluate the model: Accuracy
clf.score(X_test, y_test)

[107]: 0.76

15

	LAB 06 - Python version
	Disclaimer

	Exercise 1
	Read file excel ``user.xlsx''
	Define the label column in the dataset data frame
	Separate the dataset into features, referred to as X, and labels, referred to as y. Afterwards, utilize Label Encoder to encode the categorical features.
	Use the random forest classifier model.
	Validation of Random Forest Classifier model using Cross Validation
	Implement Grid Search

	Exercise 2
	Read file excel ``user.xlsx''
	Define the label column in the dataset data frame
	Separate the dataset into features, referred to as X, and labels, referred to as y. Afterwards, utilize Label Encoder to encode the categorical features.
	Use the Support Vector Machine classifier model.
	Validation of SVM Classifier model using Cross Validation
	Implement Grid Search

	Exercise 3
	Read file excel ``user.xlsx''
	Define the label column in the dataset data frame
	Separate the dataset into features, referred to as X, and labels, referred to as y. Afterwards, utilize Label Encoder to encode the categorical features.
	Use the MLP classifier model.
	Structure of an MLP:
	Activation Function:
	Training an MLP:

