
Lab_6a_NLP_training_tutorial

May 7, 2024

1 Lab 6a - Explainable and Trustworthy AI

Teaching Assistant: Salvatore Greco

DISCLAIMER: This lab contains examples of offensive language.

1.1 Lab 6a: Introduction to Natural Language Processing (NLP) with Hug-
gingFace

In this lab, you will learn how to train NLP classifiers and make inferences using the HuggingFace
library.

Two of the most famous libraries inside HuggingFace are the Transformers and Datasets libraries. -
Datasets provides classes and methods to access and share datasets for NLP, computer vision, and
audio tasks. - Transformers provides classes and methods to train and use deep learning models
for PyTorch, TensorFlow, and JAX.

The objective of this notebook is to train and use a binary toxicity prediction classifier.

Firstly, you need to install these libraries. Run the next cell to install it (uncomment the lines if
you need to insall them).

[1]: #!pip install transformers
#!pip install datasets
#!pip install accelerate -U

Run the next cell to import the required libraries for this lab.

[2]: # Import the required libraries for this lab
from datasets import load_dataset
import transformers

from collections import Counter

import matplotlib.pyplot as plt

import sklearn
import numpy as np

1

https://huggingface.co/docs
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/transformers/index

import os
import torch
from torch import nn

/home/students/s289159/.conda/envs/audio-env/lib/python3.9/site-
packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update
jupyter and ipywidgets. See
https://ipywidgets.readthedocs.io/en/stable/user_install.html

from .autonotebook import tqdm as notebook_tqdm

Run the following command to check GPU utilization, memory usage, and availability. If the
command outputs information about your GPU, it means the GPU is available. In contrast, the
command returns an error or no information; it indicates that the GPU might not be available or
there is an issue.

Note that a GPU is required to train (fine-tune) transformer models.

[3]: !nvidia-smi

Tue May 7 12:17:58 2024
+---
--------+
| NVIDIA-SMI 535.86.10 Driver Version: 535.86.10 CUDA Version:
12.2 |
|---+----------------------+--------------
--------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile
Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util
Compute M. |
| | |
MIG M. |
|===+======================+==============
========|
| 0 Tesla V100-PCIE-16GB On | 00000000:D8:00.0 Off |
0 |
| N/A 40C P0 24W / 250W | 0MiB / 16384MiB | 0%
Default |
| | |
N/A |
+---+----------------------+--------------
--------+

+---
--------+
| Processes:
|
| GPU GI CI PID Type Process name GPU
Memory |

2

| ID ID
Usage |
|===
========|
| No running processes found
|
+---
--------+

1.2 Exercise 1: Fine-tuning BERT for Toxicity prediction
1.2.1 BERT Model

In this exercise, you will fine-tune a BERT model for toxicity predictions using the Hugging-
Face library.

BERT is a transformer-encoder model pre-trained on a large corpus of English data in a self-
supervised fashion, using Masked Language Modeling (MLM) and Next Sentence Predic-
tion (NSP) tasks.

You will fine-tune the original pre-trained weights of the base and uncased version of BERT (avail-
able here). The base version contains 12 transformer (encoder) layers and with embedding dimen-
sionality 768. The model is uncased, thus it perform lowercasing during tokenization (i.e., it does
not discriminate between upper and lower case letters).

You can learn about the BERT architecture from the following links: blog1 and blog2.

1.3 Dataset
You will use a dataset (Jigsaw Toxic Comments) of publicly available Wikipedia comments anno-
tated for several aspects of toxicity: toxic, severe_toxic, obscene, threat, insult, identity_hate. To
simplify the task, and, later, the model’s explanation, you will train a binary model to predict
the toxic label only.

1.3.1 1.1 Load dataset

Firstly, you will load the dataset using the load_dataset function of the Datasets transformers
library.

The Transformers library, along with the datasets library, provides many pre-uploaded datasets
that you can download with just one line of code using the load_dataset function. These datasets
range across a variety of domains and tasks, such as text classification, sentiment analysis, machine
translation, and many more.

The dataset of Wikipedia comments annotated for toxicity is available on HugginFace Here. How-
ever, in this particular case, you must also have the files in a local folder and specify that folder in
the load_dataset function.

Make sure you have a local folder with the following tree structure:

.

3

https://aclanthology.org/N19-1423.pdf
https://huggingface.co/google-bert/bert-base-uncased
https://jalammar.github.io/illustrated-bert/
https://medium.com/@shaikhrayyan123/a-comprehensive-guide-to-understanding-bert-from-beginners-to-advanced-2379699e2b51
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://huggingface.co/docs/datasets/loading
https://huggingface.co/datasets/google/jigsaw_toxicity_pred

��� jigsaw_toxicity_pred/
��� train.csv
��� test.csv
��� test_labels.csv

You can download the files from Kaggle, or you can use the data zip file for this lab.

[4]: #!ls

Uncomment the next line if you need to unzip the file.

[5]: #!unzip -o jigsaw_toxicity_pred.zip

[6]: # Load the jigsaw toxicity prediction dataset
dataset = load_dataset("google/jigsaw_toxicity_pred",␣

↪data_dir="jigsaw_toxicity_pred")

Using custom data configuration default-data_dir=jigsaw_toxicity_pred
Reusing dataset jigsaw_toxicity_pred (/home/students/s289159/.cache/huggingface/
datasets/google___jigsaw_toxicity_pred/default-data_dir=jigsaw_toxicity_pred/1.1
.0/9cf096ac4341c35839bc8a9f6a19d93e18e5ad3d84cf05f690d2bc6f7384af85)
100%|����������| 2/2 [00:01<00:00, 1.83it/s]

[7]: # Dictionary that maps the label id to the label name
id2label = {0: "Non-Toxic", 1: "Toxic"}

Dictionary that maps the label name to the label id
label2id = {"Non-Toxic": 0, "Toxic": 1}

label_names = ['Non-Toxic', 'Toxic']

1.3.2 1.2 Dataset exploration

The dataset contains 159,571 training and 63,978 test samples.

Each sample contains the input comment comment_text and all the toxicity related labels: toxic,
severe_toxic, obscene, threat, insult, and identity_hate. However, you will only use the
toxic label.

[8]: dataset

[8]: DatasetDict({
train: Dataset({

features: ['comment_text', 'toxic', 'severe_toxic', 'obscene', 'threat',
'insult', 'identity_hate'],

num_rows: 159571
})
test: Dataset({

features: ['comment_text', 'toxic', 'severe_toxic', 'obscene', 'threat',

4

https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data

'insult', 'identity_hate'],
num_rows: 63978

})
})

In the next cells you will explore some samles of the dataset. Feel free to change the text_id.

[9]: text_id = 5000

[10]: # Print the comment in the position equal to `text_id`
print(dataset["train"]['comment_text'][text_id])

hay bitch

thank you kindly for your advice on my vandalism but if your the dick who
removed the thing abouth Berties make up costs Thats true… so ah FUCK YOU

[11]: # Print the label identifier and name in the position equal to `text_id`
print(f"Label ID: {dataset['train']['toxic'][text_id]}")
print(f"Label name: {id2label[dataset['train']['toxic'][text_id]]}")

Label ID: 1
Label name: Toxic

The next two cells count and plot the number of non-toxic and toxic samples in the training
and test set

[12]: # Count the number of samples for each label
print("Number of samples for each label in the Training set:")
for label_id, count in Counter(dataset['train']['toxic']).items():

print(f"Label: {id2label[label_id]}, Count: {count}")

print("\nNumber of samples for each label in the Test set:")
for label_id, count in Counter(dataset['test']['toxic']).items():

print(f"Label: {id2label[label_id]}, Count: {count}")

Number of samples for each label in the Training set:
Label: Non-Toxic, Count: 144277
Label: Toxic, Count: 15294

Number of samples for each label in the Test set:
Label: Non-Toxic, Count: 57888
Label: Toxic, Count: 6090

[13]: # Extract the 'toxic' column from the training set
train_toxic_labels = dataset['train']['toxic']
test_toxic_labels = dataset['test']['toxic']

Count the number of samples for each label in the training set

5

train_label_counts = Counter(train_toxic_labels)
test_label_counts = Counter(test_toxic_labels)

Plot the bar plots
fig, axes = plt.subplots(1, 2, figsize=(8, 3))

Plot for training set
axes[0].bar(label_names, train_label_counts.values(), color=['blue', 'red'])
axes[0].set_xlabel('Label')
axes[0].set_ylabel('Number of Samples')
axes[0].set_title('Training Set')

Plot for test set
axes[1].bar(label_names, test_label_counts.values(), color=['blue', 'red'])
axes[1].set_xlabel('Label')
axes[1].set_ylabel('Number of Samples')
axes[1].set_title('Test Set')

plt.tight_layout()
plt.show()

As you can see from the previous cells, the dataset is highly imbalanced (as expected). Indeed,
non-toxic comments are one order of magnitude more than toxic ones. Therefore, you will use
inversely proprotional class weights in the loss function.

Run the next cell to compute the inversely proportional class weights. Since you will use it in the
loss function, you must convert it to a PyTorch tensor class_weights.

[14]: # Calculate class frequencies in the training data
class_frequencies = np.bincount(train_toxic_labels)
total_samples = len(train_toxic_labels)

Calculate class frequencies in the training data

6

class_frequencies = np.bincount(train_toxic_labels)
total_samples = len(train_toxic_labels)

Calculate class weights based on class frequencies, ensuring they sum up to 1
class_weights = total_samples / (class_frequencies * len(class_frequencies))
class_weights /= class_weights.sum() # Normalize to ensure they sum to 1

Convert class_weights to a PyTorch tensor
class_weights = torch.tensor(class_weights, dtype=torch.float32)
print("class weights", class_weights)

class weights tensor([0.0958, 0.9042])

1.3.3 1.3 Load the model and the tokenizer

The next cell loads the model and tokenizer using AutoCLasses. AutoClasses can automatically
retrieves the relevant model given the name or path to the pre-trained weights, config, and vocabu-
lary. Specifically, the AutoClasses automatically retrive the architecture you want to use from the
name or the path of the pretrained model you are supplying to the from_pretrained() method.

You will use AutoTokenizer to automatically download the tokenizer. For the model, you use
AutoModelForSequenceClassification since you will be performing a sentence classification task.
You can see all the AutoModels here.

For the tokenizer, you have to specify 'do_lower_case' = True to lowercase the input when
tokenizing.

Notice that you are downloading the pre-trained weights of BERT (i.e., pre-trained for MLM
and NSP on huge corpora). This model already has a lot of prior knowledge and understanding
of general English. You will then fine-tune the pre-trained model to your domain-specific data to
adapt this broad understanding to your specific task (i.e., toxicity predictions). This is much more
effective than training a model from scratch.

[15]: from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification

model_name = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=True)

model = AutoModelForSequenceClassification.from_pretrained(model_name,
␣

↪num_labels=len(id2label),
label2id=label2id,
id2label=id2label)

Some weights of the model checkpoint at bert-base-uncased were not used when
initializing BertForSequenceClassification:
['cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias',

7

https://huggingface.co/docs/transformers/model_doc/auto
https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#autotokenizer
https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#automodelforsequenceclassification
https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#automodels

'cls.predictions.transform.LayerNorm.weight',
'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight',
'cls.predictions.bias', 'cls.predictions.transform.dense.weight',
'cls.predictions.decoder.weight']
- This IS expected if you are initializing BertForSequenceClassification from
the checkpoint of a model trained on another task or with another architecture
(e.g. initializing a BertForSequenceClassification model from a
BertForPreTraining model).
- This IS NOT expected if you are initializing BertForSequenceClassification
from the checkpoint of a model that you expect to be exactly identical
(initializing a BertForSequenceClassification model from a
BertForSequenceClassification model).
Some weights of BertForSequenceClassification were not initialized from the
model checkpoint at bert-base-uncased and are newly initialized:
['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it
for predictions and inference.

Alternatively, if you would not have wanted to use AutoModels, the code would be as follows.

from transformers import BertTokenizer, BertForSequenceClassification

model_name = "bert-base-uncased"

Use BertTokenizer specific for the "bert-base-uncased" model
tokenizer = BertTokenizer.from_pretrained(model_name, do_lower_case=True)

Use BertForSequenceClassification specific for the "bert-base-uncased" model
model = BertForSequenceClassification.from_pretrained(

model_name,
num_labels=len(id2label),
label2id=label2id,
id2label=id2label

)

1.3.4 1.4 Tokenize the training and test datasets

The main pre-processing steps in NLP consist of splitting the input sentences into words, padding
sentences to make sure they have a similar length, and truncating sequences longer than the max
sequence length.

Subword-based tokenization Sub-words tokenization tries to reduce i) the vocabulary size,
ii) the number of out-of-vocabulary (OOV) words, and iii) the risk to create different representations
of very similar words (e.g., words that differ for just one letter such as ‘dog’ and ‘dogs’).

The subword-based tokenization algorithms generally use a special symbol to indicate which
word is the start of the token and which word is the completion. For the BERT model, the special
symbol is ##. For isntance, the word “tokenization” can be split into “token” and “##ization”
which indicates that “token” is the start of the word and “##ization” is the completion of the

8

word.

You can learn more about subword tokenization here.

Tokenization with HuggingFace You will use the Tokenizer to split the input sentences in
into words (i.e., tokens). Remember that transformer models, such as BERT, tokenizer the input
sentence into sub-words when they are not present as full tokens in the vocabulary.

For the tokenization, you specify the following parameters: - max_length=256: It Controls the
maximum length in terms of subwords. If left unset or set to None, this will use the prede-
fined model maximum length. In the case of BERT base, the maximum possible length is 512.
- padding="max_length": Padding in tokenization is the process of adding extra tokens to text
sequences to make them a uniform length for batch processing. The pad token has identifier equal
to 0. This parameter controls how padding is performed. It performs padding to a maximum length
specified with the argument max_length or to the maximum acceptable input length for the model
if that argument is not provided. - truncation=True: Truncation is the process of cutting off
text sequences that exceed a specified length, ensuring they fit within a defined token limit. This
parameter activates and controls truncation. If truncation is enabled, the tokenizer truncates to
a maximum length specified with the argument max_length or to the maximum acceptable input
length for the model if that argument is not provided. This will truncate token by token, removing
a token from the longest sequence

You have to first define a tokenization function. Then, you use the map() method of datasets to
tokenize each sample in the dataset, and you process them in batches instead of one by one.

[16]: def tokenize_function(examples):
return tokenizer(examples["comment_text"], max_length=256,␣

↪padding="max_length", truncation=True)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

100%|����������| 160/160 [00:22<00:00, 7.06ba/s]
100%|����������| 64/64 [00:08<00:00, 7.24ba/s]

[17]: tokenized_datasets

[17]: DatasetDict({
train: Dataset({

features: ['comment_text', 'toxic', 'severe_toxic', 'obscene', 'threat',
'insult', 'identity_hate', 'input_ids', 'token_type_ids', 'attention_mask'],

num_rows: 159571
})
test: Dataset({

features: ['comment_text', 'toxic', 'severe_toxic', 'obscene', 'threat',
'insult', 'identity_hate', 'input_ids', 'token_type_ids', 'attention_mask'],

num_rows: 63978
})

})

9

https://towardsdatascience.com/word-subword-and-character-based-tokenization-know-the-difference-ea0976b64e17
https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__.max_length

[20]: print(tokenized_datasets['train']['comment_text'][5000])

hay bitch

thank you kindly for your advice on my vandalism but if your the dick who
removed the thing abouth Berties make up costs Thats true… so ah FUCK YOU

[21]: print(tokenizer.tokenize(tokenized_datasets['train']['comment_text'][5000]))

['hay', 'bitch', 'thank', 'you', 'kindly', 'for', 'your', 'advice', 'on', 'my',
'van', '##dal', '##ism', 'but', 'if', 'your', 'the', 'dick', 'who', 'removed',
'the', 'thing', 'about', '##h', 'bertie', '##s', 'make', 'up', 'costs', 'that',
'##s', 'true', '.', '.', '.', 'so', 'ah', 'fuck', 'you']

input_ids refers to the numerical identifiers assigned to each token in a sequence. [PAD]
tokens are specified with the id 0. The first token is the [CLS] with id 101. This token can be used
to perform the classification.

[22]: print(tokenized_datasets['train']['input_ids'][5000])

[101, 10974, 7743, 4067, 2017, 19045, 2005, 2115, 6040, 2006, 2026, 3158, 9305,
2964, 2021, 2065, 2115, 1996, 5980, 2040, 3718, 1996, 2518, 2055, 2232, 20743,
2015, 2191, 2039, 5366, 2008, 2015, 2995, 1012, 1012, 1012, 2061, 6289, 6616,
2017, 102, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0, 0]

token_type_ids (also known as segment IDs) distinguish different segments of text within
a sequence. For tasks involving pairs of sentences (like question answering or sentence pairs
classification), the token_type_ids specify which sentence each token belongs to. Typically, tokens
from the first sentence are assigned 0, and tokens from the second sentence are assigned 1. This
allows BERT to differentiate between multiple segments and understand the relationships between
them. However, in the case of classification, only a single segment is required (i.e., the whole
sentence to be classified).

[23]: print(tokenized_datasets['train']['token_type_ids'][5000])

[0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,

10

0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

attention_mask indicates which tokens should be attended to and which should be ignored during
self-attention. Tokens that are real (not padding) have an attention mask value of 1, while padding
tokens are marked with 0. This mask ensures that the model doesn’t compute attention scores for
padded tokens, focusing only on meaningful parts of the input sequence.

[24]: print(tokenized_datasets['train']['attention_mask'][5000])

[1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1.3.5 1.5 Remove unused columns

The following cell removes unused columns to decrease the size of the dataset. Moreover, it renames
the "toxic" column as "label" for clarity and to match the format expected by the model.

[25]: # Drop the specified columns
tokenized_datasets['train'] = tokenized_datasets['train'].

↪remove_columns(['severe_toxic', 'obscene', 'threat', 'insult',␣
↪'identity_hate'])

tokenized_datasets['test'] = tokenized_datasets['test'].
↪remove_columns(['severe_toxic', 'obscene', 'threat', 'insult',␣
↪'identity_hate'])

tokenized_datasets['train'] = tokenized_datasets['train'].
↪rename_columns({"toxic": "label"})

tokenized_datasets['test'] = tokenized_datasets['test'].rename_columns({"toxic":
↪ "label"})

[26]: tokenized_datasets

[26]: DatasetDict({
train: Dataset({

features: ['comment_text', 'label', 'input_ids', 'token_type_ids',
'attention_mask'],

num_rows: 159571

11

})
test: Dataset({

features: ['comment_text', 'label', 'input_ids', 'token_type_ids',
'attention_mask'],

num_rows: 63978
})

})

1.3.6 1.6 Define a function to compute the evaluation metrics

The next cell defines a function, compute_metrics, that calculates key evaluation metrics, including
precision, recall, F1 score, and accuracy for a model’s predictions. It processes the predicted labels,
handles multiple prediction structures, and returns these metrics as a dictionary. Additionally, it
prints a classification report for a detailed performance overview.

This function will be used later during training.

[27]: def compute_metrics(pred):
labels = pred.label_ids
print(pred)
try:

preds = pred.predictions.argmax(-1)
except:

preds = pred.predictions[0].argmax(-1)
precision, recall, f1, _ = sklearn.metrics.precision_recall_fscore_support(

labels, preds, average="macro", labels=list(set(labels))
)
print(sklearn.metrics.classification_report(labels, preds, digits=4))
acc = sklearn.metrics.accuracy_score(labels, preds)
return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall}

1.3.7 1.7 Define the training arguments and loop

The next cell defines the training arguments for the model using the TrainingArguments class. The
key settings include:

• Output Directory: Specifies the directory for saving checkpoints.
• Learning Rate: Sets the learning rate to 2e-5 for model training.
• Epochs: Sets the number of training epochs to 3.
• Batch Sizes: Defines per-device batch sizes for training and evaluation.
• Weight Decay: Adds a weight decay of 0.01 to prevent overfitting.
• Evaluation and Save Strategies: Evaluates and saves the model after each epoch.
• Best Model: Identifies the best model using the F1 score, and loading it at the end.

[28]: from transformers import TrainingArguments

model_dir = "saved_models"

12

https://huggingface.co/docs/transformers/v4.40.2/en/main_classes/trainer#transformers.TrainingArguments

training_args = TrainingArguments(
output_dir=os.path.join(model_dir, "checkpoint"),
learning_rate=2e-5,
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
metric_for_best_model="f1",
load_best_model_at_end=True,
greater_is_better=True,

)

This cell defines a CustomTrainer class that extends the Trainer class from the Transformers library
to include a custom loss function. You use it to include the inversionally proportional weights in
the loss function due to the imbalanced dataset. However, you can usually just use the default
Trainer.

Specifically, the defined loss function compute_loss performs the following steps: - Receives model
input and retrieves the labels. - Performs a forward pass through the model to generate logits. -
Uses nn. CrossEntropyLoss with class weights to calculate the loss based on the model’s predictions
and the ground truth. - Returns the calculated loss alone or along with model outputs if requested.

[29]: from transformers import Trainer

class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):

labels = inputs.get("labels")
forward pass
outputs = model(**inputs)
logits = outputs.get('logits')
compute custom loss
loss_fct = nn.CrossEntropyLoss(weight=class_weights.to(torch.cuda.

↪current_device()))
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.

↪view(-1))
return (loss, outputs) if return_outputs else loss

The next cell creates a CustomTrainer instance using the previously defined custom trainer class.
The trainer setup combines all relevant components to train, evaluate, and save the best-performing
model efficiently using custom metrics and loss functions.

[30]: trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],

13

https://huggingface.co/docs/transformers/main_classes/trainer

tokenizer=tokenizer,
compute_metrics=compute_metrics,

)

1.3.8 1.8 Model training

Run the train() method of the trainer to perform the training.

[31]: trainer.train()

The following columns in the training set don't have a corresponding argument in
`BertForSequenceClassification.forward` and have been ignored: comment_text. If
comment_text are not expected by `BertForSequenceClassification.forward`, you
can safely ignore this message.
/home/students/s289159/.conda/envs/audio-env/lib/python3.9/site-
packages/transformers/optimization.py:306: FutureWarning: This implementation of
AdamW is deprecated and will be removed in a future version. Use the PyTorch
implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True`
to disable this warning

warnings.warn(
***** Running training *****

Num examples = 159571
Num Epochs = 3
Instantaneous batch size per device = 16
Total train batch size (w. parallel, distributed & accumulation) = 16
Gradient Accumulation steps = 1
Total optimization steps = 29922

<IPython.core.display.HTML object>

The following columns in the evaluation set don't have a corresponding argument
in `BertForSequenceClassification.forward` and have been ignored: comment_text.
If comment_text are not expected by `BertForSequenceClassification.forward`,
you can safely ignore this message.
***** Running Evaluation *****

Num examples = 63978
Batch size = 16

<transformers.trainer_utils.EvalPrediction object at 0x7f8a70543ca0>
precision recall f1-score support

0 0.9873 0.9325 0.9591 57888
1 0.5798 0.8857 0.7008 6090

accuracy 0.9280 63978
macro avg 0.7835 0.9091 0.8299 63978

weighted avg 0.9485 0.9280 0.9345 63978

14

Saving model checkpoint to saved_models/checkpoint/checkpoint-9974
Configuration saved in saved_models/checkpoint/checkpoint-9974/config.json
Model weights saved in saved_models/checkpoint/checkpoint-9974/pytorch_model.bin
tokenizer config file saved in
saved_models/checkpoint/checkpoint-9974/tokenizer_config.json
Special tokens file saved in
saved_models/checkpoint/checkpoint-9974/special_tokens_map.json
The following columns in the evaluation set don't have a corresponding argument
in `BertForSequenceClassification.forward` and have been ignored: comment_text.
If comment_text are not expected by `BertForSequenceClassification.forward`,
you can safely ignore this message.
***** Running Evaluation *****

Num examples = 63978
Batch size = 16

<transformers.trainer_utils.EvalPrediction object at 0x7f874f501af0>
precision recall f1-score support

0 0.9898 0.9162 0.9516 57888
1 0.5332 0.9100 0.6725 6090

accuracy 0.9156 63978
macro avg 0.7615 0.9131 0.8120 63978

weighted avg 0.9463 0.9156 0.9250 63978

Saving model checkpoint to saved_models/checkpoint/checkpoint-19948
Configuration saved in saved_models/checkpoint/checkpoint-19948/config.json
Model weights saved in
saved_models/checkpoint/checkpoint-19948/pytorch_model.bin
tokenizer config file saved in
saved_models/checkpoint/checkpoint-19948/tokenizer_config.json
Special tokens file saved in
saved_models/checkpoint/checkpoint-19948/special_tokens_map.json
The following columns in the evaluation set don't have a corresponding argument
in `BertForSequenceClassification.forward` and have been ignored: comment_text.
If comment_text are not expected by `BertForSequenceClassification.forward`,
you can safely ignore this message.
***** Running Evaluation *****

Num examples = 63978
Batch size = 16

<transformers.trainer_utils.EvalPrediction object at 0x7f874f501bb0>
precision recall f1-score support

0 0.9891 0.9164 0.9513 57888
1 0.5320 0.9039 0.6698 6090

accuracy 0.9152 63978

15

macro avg 0.7606 0.9101 0.8106 63978
weighted avg 0.9456 0.9152 0.9245 63978

Saving model checkpoint to saved_models/checkpoint/checkpoint-29922
Configuration saved in saved_models/checkpoint/checkpoint-29922/config.json
Model weights saved in
saved_models/checkpoint/checkpoint-29922/pytorch_model.bin
tokenizer config file saved in
saved_models/checkpoint/checkpoint-29922/tokenizer_config.json
Special tokens file saved in
saved_models/checkpoint/checkpoint-29922/special_tokens_map.json

Training completed. Do not forget to share your model on huggingface.co/models
=)

Loading best model from saved_models/checkpoint/checkpoint-9974 (score:
0.8299364228139947).

[31]: TrainOutput(global_step=29922, training_loss=0.18763850862094963,
metrics={'train_runtime': 8633.6416, 'train_samples_per_second': 55.447,
'train_steps_per_second': 3.466, 'total_flos': 6.297734132227584e+16,
'train_loss': 0.18763850862094963, 'epoch': 3.0})

1.3.9 1.9 Model evaluation

Run the next cell to evaluate the best model on the test set.

[32]: trainer.evaluate(eval_dataset=tokenized_datasets["test"])

The following columns in the evaluation set don't have a corresponding argument
in `BertForSequenceClassification.forward` and have been ignored: comment_text.
If comment_text are not expected by `BertForSequenceClassification.forward`,
you can safely ignore this message.
***** Running Evaluation *****

Num examples = 63978
Batch size = 16

<IPython.core.display.HTML object>

<transformers.trainer_utils.EvalPrediction object at 0x7f873ef88670>
precision recall f1-score support

0 0.9873 0.9325 0.9591 57888
1 0.5798 0.8857 0.7008 6090

accuracy 0.9280 63978
macro avg 0.7835 0.9091 0.8299 63978

16

weighted avg 0.9485 0.9280 0.9345 63978

[32]: {'eval_loss': 0.2672027349472046,
'eval_accuracy': 0.9280065022351434,
'eval_f1': 0.8299364228139947,
'eval_precision': 0.7835103226248628,
'eval_recall': 0.9090850311932401,
'eval_runtime': 328.8711,
'eval_samples_per_second': 194.538,
'eval_steps_per_second': 12.16,
'epoch': 3.0}

The next cells save the weights, tokenizer and configuration of the best fine-tuned model on disk.

[]: #!mkdir saved_models

[33]: # Save model
trainer.save_model("saved_models/best_model/")

Saving model checkpoint to saved_models/best_model/
Configuration saved in saved_models/best_model/config.json
Model weights saved in saved_models/best_model/pytorch_model.bin
tokenizer config file saved in saved_models/best_model/tokenizer_config.json
Special tokens file saved in saved_models/best_model/special_tokens_map.json

1.4 Exercise 2: Use the model for inference
Now, you will load the fine-tuned model to make predictions on new texts.

1.4.1 2.1 Load the model from disk or hub

You will exploit the AutoModels again to load the fine-tuned model. You can load the fine-tuned
model that you saved on this using the following code:

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("saved_models/best_model")
model = AutoModelForSequenceClassification.from_pretrained("saved_models/best_model")

However, since you may have had trouble training the model given the GPU re-
source shoes, I uploaded a fine-tuned version of the model to HuggingFace Model
Hub. The fine-tuned model is available on HuggingFace Hub at the following url:
"grecosalvatore/binary-toxicity-BERT-xai-course".

[34]: from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("grecosalvatore/
↪binary-toxicity-BERT-xai-course")

17

https://huggingface.co/docs/hub/models-the-hub
https://huggingface.co/docs/hub/models-the-hub

model = AutoModelForSequenceClassification.from_pretrained("grecosalvatore/
↪binary-toxicity-BERT-xai-course")

loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/vocab.txt from cache at /home/students/s289159/.cache/huggin
gface/transformers/e5d43b2d386e860156c0114600c61ed0e9feb26bae30f318e14ec6de23cb5
8f2.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/tokenizer.json from cache at /home/students/s289159/.cache/h
uggingface/transformers/197677385b6f4dc4e2bb944de4c5bce1857e0b1497d5d430714c74fb
c6c181bd.f71e12dcf3314f964e59f54247509b88c99b9eac702db689a9c4bd9444c88904
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/added_tokens.json from cache at None
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/special_tokens_map.json from cache at /home/students/s289159
/.cache/huggingface/transformers/bf2740924fc589f72a385c1124fa32ab61cf01a89b3a037
2215343e5eb0d27cf.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd8061
1d
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/tokenizer_config.json from cache at /home/students/s289159/.
cache/huggingface/transformers/97adaca2779dde487f57cfdbcff7295a1587032e0c7a23736
10baf64591f81a9.59407384618422b5f582b6046df91db98a0f921d6c959dc7b1f50000ffea1032
loading configuration file https://huggingface.co/grecosalvatore/binary-
toxicity-BERT-xai-course/resolve/main/config.json from cache at /home/students/s
289159/.cache/huggingface/transformers/8d225c3b3f0ed4509a3b5567c392bf0734d85bf09
9d44e4891a866032098492f.cd4bae7b8486cb55bc5d195b2000fbf818e16477049363db98324119
66d55f88
Model config BertConfig {

"_name_or_path": "grecosalvatore/binary-toxicity-BERT-xai-course",
"architectures": [
"BertForSequenceClassification"

],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "Non-Toxic",
"1": "Toxic"

},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"Non-Toxic": 0,
"Toxic": 1

18

},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"problem_type": "single_label_classification",
"torch_dtype": "float32",
"transformers_version": "4.19.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522

}

loading weights file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-
xai-course/resolve/main/pytorch_model.bin from cache at /home/students/s289159/.
cache/huggingface/transformers/ec780ca78e1d963ddadcf3154f5d4cb59ad4aa72e5d45b22b
d2239689b911c8e.5ac834e1e5c3fc826c9861d33e68c424abe73d90ee3d89985377815f07c57b19
All model checkpoint weights were used when initializing
BertForSequenceClassification.

All the weights of BertForSequenceClassification were initialized from the model
checkpoint at grecosalvatore/binary-toxicity-BERT-xai-course.
If your task is similar to the task the model of the checkpoint was trained on,
you can already use BertForSequenceClassification for predictions without
further training.

1.4.2 2.2 Make predictions

The easiest way to make predictions on new texts is to use Hugging Face Pipelines, which offer
high-level API functions to process data using a specified model.

[35]: # Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("text-classification", model="grecosalvatore/
↪binary-toxicity-BERT-xai-course")

loading configuration file https://huggingface.co/grecosalvatore/binary-
toxicity-BERT-xai-course/resolve/main/config.json from cache at /home/students/s
289159/.cache/huggingface/transformers/8d225c3b3f0ed4509a3b5567c392bf0734d85bf09
9d44e4891a866032098492f.cd4bae7b8486cb55bc5d195b2000fbf818e16477049363db98324119
66d55f88
Model config BertConfig {

"_name_or_path": "grecosalvatore/binary-toxicity-BERT-xai-course",
"architectures": [

19

https://huggingface.co/docs/transformers/main_classes/pipelines

"BertForSequenceClassification"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "Non-Toxic",
"1": "Toxic"

},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"Non-Toxic": 0,
"Toxic": 1

},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"problem_type": "single_label_classification",
"torch_dtype": "float32",
"transformers_version": "4.19.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522

}

loading configuration file https://huggingface.co/grecosalvatore/binary-
toxicity-BERT-xai-course/resolve/main/config.json from cache at /home/students/s
289159/.cache/huggingface/transformers/8d225c3b3f0ed4509a3b5567c392bf0734d85bf09
9d44e4891a866032098492f.cd4bae7b8486cb55bc5d195b2000fbf818e16477049363db98324119
66d55f88
Model config BertConfig {

"_name_or_path": "grecosalvatore/binary-toxicity-BERT-xai-course",
"architectures": [
"BertForSequenceClassification"

],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,

20

"hidden_size": 768,
"id2label": {
"0": "Non-Toxic",
"1": "Toxic"

},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"Non-Toxic": 0,
"Toxic": 1

},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"problem_type": "single_label_classification",
"torch_dtype": "float32",
"transformers_version": "4.19.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522

}

loading weights file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-
xai-course/resolve/main/pytorch_model.bin from cache at /home/students/s289159/.
cache/huggingface/transformers/ec780ca78e1d963ddadcf3154f5d4cb59ad4aa72e5d45b22b
d2239689b911c8e.5ac834e1e5c3fc826c9861d33e68c424abe73d90ee3d89985377815f07c57b19
All model checkpoint weights were used when initializing
BertForSequenceClassification.

All the weights of BertForSequenceClassification were initialized from the model
checkpoint at grecosalvatore/binary-toxicity-BERT-xai-course.
If your task is similar to the task the model of the checkpoint was trained on,
you can already use BertForSequenceClassification for predictions without
further training.
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/vocab.txt from cache at /home/students/s289159/.cache/huggin
gface/transformers/e5d43b2d386e860156c0114600c61ed0e9feb26bae30f318e14ec6de23cb5
8f2.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/tokenizer.json from cache at /home/students/s289159/.cache/h
uggingface/transformers/197677385b6f4dc4e2bb944de4c5bce1857e0b1497d5d430714c74fb
c6c181bd.f71e12dcf3314f964e59f54247509b88c99b9eac702db689a9c4bd9444c88904
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/added_tokens.json from cache at None

21

loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/special_tokens_map.json from cache at /home/students/s289159
/.cache/huggingface/transformers/bf2740924fc589f72a385c1124fa32ab61cf01a89b3a037
2215343e5eb0d27cf.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd8061
1d
loading file https://huggingface.co/grecosalvatore/binary-toxicity-BERT-xai-
course/resolve/main/tokenizer_config.json from cache at /home/students/s289159/.
cache/huggingface/transformers/97adaca2779dde487f57cfdbcff7295a1587032e0c7a23736
10baf64591f81a9.59407384618422b5f582b6046df91db98a0f921d6c959dc7b1f50000ffea1032

[36]: example_texts = [
"you are white",
"you are asian",
"you are latin",
"You are black"

]

[37]: pipe(example_texts)

Disabling tokenizer parallelism, we're using DataLoader multithreading already

[37]: [{'label': 'Non-Toxic', 'score': 0.9957643747329712},
{'label': 'Non-Toxic', 'score': 0.9985798597335815},
{'label': 'Non-Toxic', 'score': 0.9994617104530334},
{'label': 'Toxic', 'score': 0.9810092449188232}]

You can see that by just changing the word related to the race, the classifier can have different
outputs. Even if it can be subjective whether the previous sentences are offensive or not, the
classifier must have consistent outputs across different words related to race. This can be
a possible warning of bias learned by the model. This probably happened because many toxic
sentences contain the word "black" in the training dataset. Thus, the classifiers learned that the
word "black" usually indicates toxic language.

If you don’t want to use pipelines, an alternative is to directly use the pre-trained model’s tokenizer
and model objects. This gives you more control over the input processing and prediction steps.

[39]: # Tokenize the input texts for model inference
inputs = tokenizer(example_texts, padding=True, truncation=True,␣

↪return_tensors="pt")

Forward pass through the model to obtain logits
with torch.no_grad():

outputs = model(**inputs)
logits = outputs.logits

Convert logits to probabilities using softmax
probabilities = torch.nn.functional.softmax(logits, dim=-1)

22

Get predicted class labels (0 for non-toxic, 1 for toxic)
predicted_classes = torch.argmax(probabilities, dim=-1)

Print predictions with corresponding probabilities
class_names = ["Non-Toxic", "Toxic"]
for text, prob, pred in zip(example_texts, probabilities, predicted_classes):

class_prob = prob[pred].item()
print(f"Text: {text}\nPrediction: {class_names[pred]} (Probability:␣

↪{class_prob:.2f})\n")

Text: you are white
Prediction: Non-Toxic (Probability: 1.00)

Text: you are asian
Prediction: Non-Toxic (Probability: 1.00)

Text: you are latin
Prediction: Non-Toxic (Probability: 1.00)

Text: You are black
Prediction: Toxic (Probability: 0.98)

This approach provides more flexibility and insight into how the predictions are generated. You
can preprocess text inputs and inspect the logits and confidence scores more transparently.

Now, you will predict the labels for the test set, and save them to a csv file for the next lab.

[]: pipe = pipeline("text-classification", model="grecosalvatore/
↪binary-toxicity-BERT-xai-course", return_all_scores=True, truncation=True,␣
↪device=0)

[]: test_predictions = pipe(dataset["test"]["comment_text"][:])

[]: predictions[0]

[]: predictions_dicts = []
for p in predictions:

non_toxic_prob = p[0]['score']
toxic_prob = p[1]['score']
if toxic_prob >= non_toxic_prob:

predicted_label = "Toxic"
else:

predicted_label = "Non-Toxic"
predictions_dicts.append({"non_toxic_prob": non_toxic_prob, "toxic_prob":␣

↪toxic_prob, "pred_label": predicted_label})

23

[]: import pandas as pd

df = pd.DataFrame(predictions_dicts)
df.head()

[]: df.to_csv("jigsaw_toxicity_pred/test_pred.csv")

24

	Lab 6a - Explainable and Trustworthy AI
	Lab 6a: Introduction to Natural Language Processing (NLP) with HuggingFace
	Exercise 1: Fine-tuning BERT for Toxicity prediction
	BERT Model

	Dataset
	1.1 Load dataset
	1.2 Dataset exploration
	1.3 Load the model and the tokenizer
	1.4 Tokenize the training and test datasets
	1.5 Remove unused columns
	1.6 Define a function to compute the evaluation metrics
	1.7 Define the training arguments and loop
	1.8 Model training
	1.9 Model evaluation

	Exercise 2: Use the model for inference
	2.1 Load the model from disk or hub
	2.2 Make predictions

