
In this laboratory, we will discuss the most impactful architecture over the last 5 years: the Transformer model. Since the paper Attention Is All
You Need by Vaswani et al. had been published in 2017, the Transformer architecture has continued to beat benchmarks in many domains,
prominently in Natural Language Processing but also in many related �elds (e.g., Computer Vision).

Here are three examples of the amazing Transformer applications:

The Guardian newspaper article written with GPT2
DALL·E 2: text 2 image generator
GATO: multi-modal multi-task learning model

As the hype of the Transformer architecture seems not to come to an end in the next years, it is important to understand how it works, and have
implemented it yourself, which we will do in this notebook.

Lab 8: Transformers and Attention-based Explainability

This notebook requires some packages besides pytorch-lightning. It may take a while to setup the environment. After that you will also need to
restart the runtime.

Setup

Below, we import some standard libraries.

Standard libraries
import math
import os
import urllib.request
from functools import partial
from urllib.error import HTTPError
from tqdm.notebook import tqdm
import random

Plotting
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data

%matplotlib inline

Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)
DATASET_PATH = "data/"
Path to the folder where the pretrained models are saved
CHECKPOINT_PATH = "saved_models/"

Set seed to ensure that all operations are deterministic for reproducibility
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Device:", device)

Device: cuda:0

In this notebook, we will implement the Transformer architecture by hand. As the architecture is so popular, there already exists a Pytorch
module nn.Transformer (documentation) and a tutorial on how to use it for next token prediction. However, we will implement it here ourselves,
to get through to the smallest details.

The Transformer architecture

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1706.03762
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1706.03762
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F2010.11929
https://www.google.com/url?q=https%3A%2F%2Fwww.theguardian.com%2Fcommentisfree%2F2020%2Fsep%2F08%2Frobot-wrote-this-article-gpt-3
https://www.google.com/url?q=https%3A%2F%2Fopenai.com%2Fdall-e-2%2F
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F2205.06175.pdf
https://www.google.com/url?q=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.nn.Transformer.html
https://www.google.com/url?q=https%3A%2F%2Fpytorch.org%2Ftutorials%2Fbeginner%2Ftransformer_tutorial.html

There are of course many more tutorials out there about attention and Transformers. Below, we list a few that are worth exploring if you are
interested in the topic and might want yet another perspective on the topic after this one:

Transformer: A Novel Neural Network Architecture for Language Understanding (Jakob Uszkoreit, 2017) - The original Google blog post
about the Transformer paper, focusing on the application in machine translation.
The Illustrated Transformer (Jay Alammar, 2018) - A very popular and great blog post intuitively explaining the Transformer architecture
with many nice visualizations. The focus is on NLP.
Attention? Attention! (Lilian Weng, 2018) - A nice blog post summarizing attention mechanisms in many domains including vision.
Illustrated: Self-Attention (Raimi Karim, 2019) - A nice visualization of the steps of self-attention. Recommended going through if the
explanation below is too abstract for you.
The Transformer family (Lilian Weng, 2020) - A very detailed blog post reviewing more variants of Transformers besides the original one.

The attention mechanism describes a weighted average of (sequence) elements with the weights dynamically computed based on input
queries and elements' keys. This average has to represent:

The numerical representation of the elements of the input sequence (values).
The correlations among the elements (for self-attention) or with the output elements (for language models)(queries).
The relevant features of each input elements with respect to the task at hand (keys).

Also, we need to specify a score function that takes the query and a key as input, and output the score/attention weight of the query-key
pair. The weights of the average are calculated by a softmax over all score function outputs. Hence,

We assign higher attention scores to those values whose corresponding key is most similar to the query.

If we try to describe it with pseudo-math, we can write:

Visually, we can show the attention over a sequence of words as follows:

Most attention mechanisms differ in terms of what queries they use, how the key and value vectors are de�ned, and what score function is
used.

The attention applied within the Encoder and the Decoder of Transformers is called self-attention. In self-attention, each sequence
element provides a key, value, and query.
In Language models (therefore also in Transformers) between the Encoder and the decoder we have the standard attention or encoder-
decoder attention. We use as queries the output of the model, i.e. the decoded or generated output sequence.

What is Attention?

fattn

= , out = ⋅αi

exp((, query))fattn keyi
exp((, query))∑j fattn keyj

∑
i

αi valuei

https://www.google.com/url?q=https%3A%2F%2Fai.googleblog.com%2F2017%2F08%2Ftransformer-novel-neural-network.html
https://www.google.com/url?q=http%3A%2F%2Fjalammar.github.io%2Fillustrated-transformer%2F
https://www.google.com/url?q=https%3A%2F%2Flilianweng.github.io%2Flil-log%2F2018%2F06%2F24%2Fattention-attention.html
https://www.google.com/url?q=https%3A%2F%2Ftowardsdatascience.com%2Fillustrated-self-attention-2d627e33b20a
https://www.google.com/url?q=https%3A%2F%2Flilianweng.github.io%2Flil-log%2F2020%2F04%2F07%2Fthe-transformer-family.html

We will now go into a bit more detail by �rst looking at the speci�c implementation of the attention mechanism which in the Transformer is the
scaled dot product attention.

The core concept behind self-attention is the scaled dot product attention. Our goal is to have an attention mechanism comparing each
element in a sequence with any other (in an e�cient way).

The dot product attention takes as input a set of queries , keys and values where is the sequence
length, and and are the hidden dimensionality for queries/keys and values respectively. For simplicity, we neglect the batch dimension for
now. The attention value from element to is based on its similarity of the query and key , using the dot product as the similarity
metric. In math, we calculate the dot product attention as follows:

The matrix multiplication performs the dot product for every possible pair of queries and keys, resulting in a matrix .
Each row represents the attention logits for a speci�c element to all other elements in the sequence.
On these, we apply a softmax and multiply with the value vector to obtain an average weighted by the attention.

The computation graph is visualized below:

The scaling factor of is crucial to maintain an appropriate variance of attention values after initialization. Remember that we intialize
our layers (therefore also and) to have a variance close to . However, performing a dot product over two vectors with a variance results
in a scalar having -times higher variance:

If we do not scale down the variance to , the softmax over the logits will already saturate to for one random element and for
all others. The gradients through the softmax will be and we wont learn the parameters appropriately (vanishing gradient).

Scaled Dot Product Attention

Q ∈ RT×dk K ∈ RT×dk V ∈ RT×dv T

dk dv
i j Qi Kj

Attention(Q,K,V) = softmax()V
QK T

dk
−−√

QK T T × T

i

1/ dk
−−√
Q K 1 σ

dk

σ 1 0
≈ 0

The masking block Mask(opt.) is used to stack multiple sequences with different lengths into a batch. To still bene�t from parallelization in
PyTorch, we pad the sentences to the same length and mask out the padding tokens during the calculation of the attention values. This is
usually done by setting the respective attention logits to a very low (negative) values, e.g. .

Let's now write a function computing the output features given the triple of queries, keys, and values:

10−14

def scaled_dot_product(q, k, v, mask=None):
 d_k = q.size()[-1]
 attn_logits = torch.matmul(q, k.transpose(-2, -1))
 attn_logits = attn_logits / math.sqrt(d_k)
 if mask is not None:
 attn_logits = attn_logits.masked_fill(mask == 0, -10e14)
 attention = F.softmax(attn_logits, dim=-1)

 # In order to save the gradient of the attention (we will need it later)
 attention.requires_grad_(True)
 attention.retain_grad()

 output_values = torch.matmul(attention, v)

 return output_values, attention

Note that our code above supports any additional dimensionality in front of the sequence length so that we can also use it for batches.
However, for a better understanding, let's generate a few random queries, keys, and value vectors, and calculate the attention outputs:

b_s, seq_len, d_k, d_v = 1, 3, 2, 1
q = torch.randn(b_s, seq_len, d_k)
k = torch.randn(b_s, seq_len, d_k)
v = torch.randn(b_s, seq_len, d_v)
q = torch.tensor([[-0.8920, -1.5091],
[0.3704, 1.4565],
[0.9398, 0.7748]])
k = torch.tensor([[0.1919, 1.2638],
[-1.2904, -0.7911],
[-0.0209, -0.7185]])
v = torch.tensor([[0.5186, -1.3125],
[0.1920, 0.5428],
[-2.2188, 0.2590]])
print(f"Q: {q.shape}\n{q}\nK: {k.shape}\n{k}\nV: {v.shape}\n{v}")

output_values, attention = scaled_dot_product(q, k, v)

print(f"Attention: {attention.shape}\n{attention}")
print(f"Output: {output_values.shape}\n{output_values}")

assert (output_values - torch.tensor([[-0.4846, 0.4063],
[0.2174, -1.0264],
[-0.0766, -0.8279]]) < 1e-4).all(), \
f"Error in computing the attention"
assert (attention - torch.tensor([[0.0300, 0.6852, 0.2847],
[0.8302, 0.0678, 0.1019],
[0.7071, 0.0857, 0.2072]]) < 1e-4).all(), \
f"Error in computing the attention"

Q: torch.Size([1, 3, 2])
tensor([[[1.5410, -0.2934],
 [-2.1788, 0.5684],
 [-1.0845, -1.3986]]])
K: torch.Size([1, 3, 2])
tensor([[[0.4033, 0.8380],
 [-0.7193, -0.4033],
 [-0.5966, 0.1820]]])
V: torch.Size([1, 3, 1])
tensor([[[-0.8567],
 [1.1006],
 [-1.0712]]])
Attention: torch.Size([1, 3, 3])
tensor([[[0.5662, 0.2156, 0.2182],
 [0.1249, 0.4274, 0.4477],
 [0.0758, 0.6120, 0.3122]]], requires_grad=True)
Output: torch.Size([1, 3, 1])
tensor([[[-0.4815],
 [-0.1161],
 [0.2741]]], grad_fn=<UnsafeViewBackward0>)

Before continuing, make sure you can follow the calculation of the speci�c values here, and also check it by hand. It is important to fully
understand how the scaled dot product attention is calculated.

The scaled dot product attention allows a network to attend over a sequence. However, often there are multiple different aspects a sequence
element wants to attend to, and a single weighted average is not a good option for it. This is why we extend the attention mechanisms to
multiple heads, i.e. multiple different query-key-value triplets on the same features. Speci�cally, given a query, key, and value matrix:

We transform those into sub-queries, sub-keys, and sub-values,
We pass through the scaled dot product attention independently.
We concatenate the heads and combine them with a �nal weight matrix.

Mathematically,

We refer to this as Multi-Head Attention layer with the learnable parameters , , , and
 (being the input dimensionality). Expressed in a computational graph:

What are the Query, the Key and the Value in a NN where we only have the output of the previous layer?

Looking at the computation graph above, a possible implementation is to obtain them from the current feature map (
being the batch size, the sequence length, the hidden dimensionality of). The consecutive weight matrices , , and
can transform to the corresponding Queries, Keys, and Values of the input.

Using this approach, let's implement the Multi-Head Attention module below.

Multi-Head Attention

h

Multihead(Q,K,V)

where headi

= Concat(, . . . ,)head1 headh W O

= Attention(Q ,K ,V)W Q
i W K

i W V
i

∈W Q
1...h RD×dk ∈W K

1...h RD×dk ∈W V
1...h RD×dv

∈W O Rh⋅ ×dk dout D

X ∈ RB×T×dmodel B

T dmodel X W Q W K W V

X

class MultiheadAttention(nn.Module):
 def __init__(self, input_dim, embed_dim, num_heads):
 super().__init__()
 assert embed_dim % num_heads == 0, "Embedding dimension must be 0 modulo number of heads."

 self.embed_dim = embed_dim # dimension of concatenated heads
 self.num_heads = num_heads
 self.head_dim = embed_dim // num_heads

 # Stack all weight matrices 1...h together for efficiency
 # Note that in many implementations you see "bias=False" which is optional
 self.qkv_proj = nn.Linear(input_dim, 3 * embed_dim)
 self.o_proj = nn.Linear(embed_dim, embed_dim)

 self._reset_parameters()

 def _reset_parameters(self):
 # Original Transformer initialization, see PyTorch documentation
 nn.init.xavier_uniform_(self.qkv_proj.weight)
 self.qkv_proj.bias.data.fill_(0)
 nn.init.xavier_uniform_(self.o_proj.weight)
 self.o_proj.bias.data.fill_(0)

 def forward(self, x, mask=None, return_attention=False):
 batch_size, seq_length, input_dim = x.size()
 qkv = self.qkv_proj(x)

 # Extract Q, K, V from linear projection of the input
 qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3 * self.head_dim)
 qkv = qkv.permute(0, 2, 1, 3) # [Batch, Head, SeqLen, Dims]
 q, k, v = qkv.chunk(3, dim=-1)
 # print(f"Query, key, value shape: {q.shape} {k.shape}")

 # Apply Dot Product Attention
 values, attention = scaled_dot_product(q, k, v, mask=mask)

 # Concatenate heads
 values = values.permute(0, 2, 1, 3) # [Batch, SeqLen, Head, Dims]
 values = values.reshape(batch_size, seq_length, self.embed_dim)

 # Output projection
 o = self.o_proj(values)

 if return_attention:
 return o, attention
 else:
 return o

input_d = 3
seq_l = 5
embed_d = 4
n_heads = 2
b_size = 1

mh_att = MultiheadAttention(input_d, embed_d, n_heads)

x = torch.rand(b_size, seq_l, input_d)
x = torch.tensor([[[0.3360, 0.6676, 0.6393],
 [0.2083, 0.5484, 0.1204],
 [0.3533, 0.3038, 0.9383],
 [0.0499, 0.2048, 0.0107],
 [0.5019, 0.5082, 0.3027]]])
print(f"Input x: {x}")
print(f"Input x shape: {x.shape}")

att_output, attention = mh_att(x, return_attention=True)
print(f"MhA Output {att_output}")
assert att_output.shape == torch.Size([1, 5, 4]), "Error in computing multi-head attention"
print(attention.shape)

Input x: tensor([[[0.3360, 0.6676, 0.6393],
 [0.2083, 0.5484, 0.1204],
 [0.3533, 0.3038, 0.9383],
 [0.0499, 0.2048, 0.0107],
 [0.5019, 0.5082, 0.3027]]])
Input x shape: torch.Size([1, 5, 3])
MhA Output tensor([[[0.0895, 0.0139, -0.2404, -0.0016],
 [0.0892, 0.0107, -0.2436, 0.0013],
 [0.0905, 0.0200, -0.2399, -0.0054],
 [0.0897, 0.0133, -0.2458, 0.0004],
 [0.0893, 0.0123, -0.2416, -0.0006]]], grad_fn=<ViewBackward0>)
torch.Size([1, 2, 5, 5])

One crucial characteristic of the multi-head attention is that it is permutation-equivariant with respect to its inputs. This means that if we switch
two input elements in the sequence, e.g. (neglecting the batch dimension for now), the output is exactly the same besides the
elements 1 and 2 switched. Hence, the multi-head attention is looking at the input not as a sequence, but as a set of elements. This property
makes the multi-head attention block and the Transformer architecture so powerful and widely applicable! But what if the order of the input is
actually important for solving the task, like language modeling? The answer is to encode the position in the input features, which we will take a
closer look at later (topic Positional encodings below).

Attention is permutation equivariant

↔X1 X2

Next, we will look at how to apply the multi-head attention inside the Transformer architecture. Originally, the Transformer model was designed
for machine translation. Hence, it got an encoder-decoder structure where the encoder takes as input the sentence in the original language and
generates an attention-based representation. The decoder, instead, attends over the encoded information and generates the translated
sentence in an autoregressive manner, as in a standard RNN.

While this structure is extremely useful for Sequence-to-Sequence tasks, it is not always necessary and. Many advances in NLP have been
made using pure encoder-based Transformer models (e.g. BERT-family, the Vision Transformer, and more). Therefore, we will focus here only on
the encoder part. If you have understood the encoder architecture, the decoder is a very small step to implement as well. The full Transformer
architecture looks as follows:

Transformer Encoder

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1810.04805
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F2010.11929

Encoder Decoder

The encoder consists of identical blocks that are applied in sequence. Taking as input , it is �rst passed through a Multi-Head Attention
block as we have implemented above. The output is added to the original input using a residual connection, and we apply a consecutive Layer
Normalization on the sum. Overall, it calculates (being , and input to the attention layer).

The residual connection is crucial in the Transformer architecture to:

1. Avoid vanishing gradients, as in ResNet, but valid for all deep architectures (Some models contain more than 24 blocks in the encoder)
2. Retain the information about the original sequence (remember that Self-Attention do not necessairly consider the input as a sequence)

The Layer Normalization also plays an important role in the Transformer architecture as it enables faster training and provides small
regularization. Additionally, it ensures that the features are in a similar magnitude among the elements in the sequence. We are not using Batch
Normalization because it depends on the batch size which is often small with Transformers.

Additionally to the Multi-Head Attention, a small fully connected Feed-Forward Network (FFN) is added to the model, which is applied to each
position separately and identically. Speci�cally, the model uses a Linear ReLU Linear MLP. The full transformation including the residual
connection can be expressed as:

This MLP adds extra complexity to the model and allows transformations on each sequence element separately. You can imagine as this
allows the model to "post-process" the new information added by the previous Multi-Head Attention, and prepare it for the next attention block.
Usually, the inner dimensionality of the MLP is 2-8 larger than , i.e. the dimensionality of the original input . The general advantage of
a wider layer instead of a narrow, multi-layer MLP is the faster, parallelizable execution.

Finally, after looking at all parts of the encoder architecture, we can start implementing it below. We �rst start by implementing a single encoder
block.

Additionally to the layers described above, we will add Dropout layers in the MLP and on the output of the MLP and Multi-Head Attention
for regularization.
Also, we will assume now on a constant input_dim = embed_dim throughout the Transformer and therefore we will instantiate the
attention as MultiheadAttention(input_dim, input_dim, num_heads) . The dimensionality of the �rst input will be addressed later.

N x

LayerNorm(x+Multihead(x,x,x)) x Q K V

→ →

FFN(x)
output

= max(0,x +) +W1 b1 W2 b2

= LayerNorm(x+FFN(x))

× dmodel x

class EncoderBlock(nn.Module):
 def __init__(self, input_dim, num_heads, dim_feedforward, dropout=0.0):
 """
 Args:
 input_dim: Dimensionality of the input
 num_heads: Number of heads to use in the attention block
 dim_feedforward: Dimensionality of the hidden layer in the MLP
 dropout: Dropout probability to use in the dropout layers
 """
 super().__init__()

 # Attention layer
 self.self_attn = MultiheadAttention(input_dim, input_dim, num_heads)

 # Two-layer MLP
 self.MLP = nn.Sequential(
 nn.Linear(input_dim, dim_feedforward),
 nn.Dropout(dropout),
 nn.ReLU(inplace=True),
 nn.Linear(dim_feedforward, input_dim),
)

 # Layers to apply in between the main layers (Layer Norm and Dropout)
 self.norm1 = nn.LayerNorm(input_dim)
 self.norm2 = nn.LayerNorm(input_dim)
 self.dropout = nn.Dropout(dropout)

 def forward(self, x, mask=None, return_attention=False):
 # Attention part
 attn_out, attention = self.self_attn(x, mask, return_attention=True)

 x = x + self.dropout(attn_out)
 x = self.norm1(x)

 # MLP part
 mlp_out = self.MLP(x)
 x = x + self.dropout(mlp_out)
 x = self.norm2(x)

 if return_attention:
 return x, attention
 return x

Based on this block, we can implement a module for the full Transformer encoder. Additionally to a forward function that iterates through the
sequence of encoder blocks, we also provide a function called get_attention_maps . The idea of this function is to return the attention
probabilities for all Multi-Head Attention blocks in the encoder. They helps us in understanding, and partially, explaining the model. Attention
scores may not necessarily re�ect the true interpretation of the model (it is disputed in literature, check Attention is not Explanation and
Attention is not not Explanation).

class TransformerEncoder(nn.Module):
 def __init__(self, num_layers, **block_args):
 super().__init__()
 self.layers = nn.ModuleList([EncoderBlock(**block_args) for _ in range(num_layers)])

 def forward(self, x, mask=None):
 for layer in self.layers:
 x = layer(x, mask=mask)
 return x

 def get_attention_maps(self, x, mask=None, return_outputs=False):
 attn_maps = []
 for layer in self.layers:
 x, attn_map = layer(x, mask, return_attention=True)
 attn_maps.append(attn_map)
 if return_outputs:
 return x, attn_maps
 return attn_maps

We have discussed before that the Multi-Head Attention block is permutation-equivariant. In tasks like language understanding, however, the
position is important for interpreting the input words. The position information is therefore added in the input features by means of feature
patterns that the network can identify and potentially generalize to larger sequences. The speci�c pattern chosen by Vaswani et al. are sine and
cosine functions of different frequencies, as follows:

Positional encoding

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1902.10186
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1908.04626

 represents the position encoding at position in the sequence, and hidden dimensionality . These values, concatenated for all
hidden dimensions, are added to the original input features (in the Transformer visualization above, see "Positional encoding"), and constitute
the position information. We distinguish between even () and uneven () hidden dimensionalities where we apply a
sine/cosine respectively. The intuition behind this encoding is that you can represent as a linear function of , which might
allow the model to easily attend to relative positions. The wavelengths in different dimensions range from to .

The positional encoding is implemented below.

P =E(pos,i)

⎧

⎩
⎨
⎪

⎪

sin()pos

10000i/dmodel

cos()pos

10000(i−1)/dmodel

if i mod 2 = 0

otherwise

PE(pos,i) pos i

i mod 2 = 0 i mod 2 = 1
PE(pos+k,:) PE(pos,:)

2π 10000 ⋅ 2π

class PositionalEncoding(nn.Module):
 def __init__(self, d_model, max_len=5000):
 """
 Args
 d_model: Hidden dimensionality of the input.
 max_len: Maximum length of a sequence to expect.
 """
 super().__init__()

 # Create matrix of [SeqLen, HiddenDim] representing the positional encoding for max_len inputs
 pe = torch.zeros(max_len, d_model)
 position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
 div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
 pe[:, 0::2] = torch.sin(position * div_term)
 pe[:, 1::2] = torch.cos(position * div_term)
 pe = pe.unsqueeze(0)

 # register_buffer => Tensor which is not a parameter, but should be part of the modules state.
 # Used for tensors that need to be on the same device as the module.
 # persistent=False tells PyTorch to not add the buffer to the state dict (e.g. when we save the model)
 self.register_buffer("pe", pe, persistent=False)

 def forward(self, x):
 x = x + self.pe[:, : x.size(1)]
 return x

To understand the positional encoding, we can visualize it below. We will generate an image of the positional encoding over hidden
dimensionality and position in a sequence. Each pixel, therefore, represents the change of the input feature we perform to encode the speci�c
position. Let's do it below.

encod_block = PositionalEncoding(d_model=48, max_len=96)
pe = encod_block.pe.squeeze().T.cpu().numpy()

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 3))
pos = ax.imshow(pe, cmap="RdGy", extent=(1, pe.shape[1] + 1, pe.shape[0] + 1, 1))
fig.colorbar(pos, ax=ax)
ax.set_xlabel("Position in sequence")
ax.set_ylabel("Hidden dimension")
ax.set_title("Positional encoding over hidden dimensions")
ax.set_xticks([1] + [i * 10 for i in range(1, 1 + pe.shape[1] // 10)])
ax.set_yticks([1] + [i * 10 for i in range(1, 1 + pe.shape[0] // 10)])
plt.show()

Finally, we can implement a template for a classi�er based on the Transformer encoder.

Transformer Encoder Classi�er

Additionally to the Transformer architecture, we add:

a small input network (maps input dimensions to model dimensions)
the positional encoding
an output network (transforming output encodings to predictions).

Notice that the output network will take in input a 3D tensor <batch_samples, seq_len, model_dim> and produces in output another 2D tensor
<batch_samples, seq_len> where each output value represents the prediction of the corresponding reversed number.

If we would need a classi�er over the whole sequence, instead, the common approach is to add an additional [CLS] token to the sequence,
representing the classi�er token and then get the prediction only from that output token.

class TransformerPredictor(nn.Module):
 def __init__(
 self,
 input_dim,
 model_dim,
 num_classes,
 num_heads,
 num_layers,
 dropout=0.0,
 input_dropout=0.0,
):
 """
 Args:
 input_dim: Hidden dimensionality of the input
 model_dim: Hidden dimensionality to use inside the Transformer
 num_classes: Number of classes to predict per sequence element
 num_heads: Number of heads to use in the Multi-Head Attention blocks
 num_layers: Number of encoder blocks to use.
 lr: Learning rate in the optimizer
 warmup: Number of warmup steps. Usually between 50 and 500
 max_iters: Number of maximum iterations the model is trained for. This is needed for the CosineWarmup scheduler
 dropout: Dropout to apply inside the model
 input_dropout: Dropout to apply on the input features
 """
 super().__init__()
 self.input_dim = input_dim
 self.model_dim = model_dim
 self.num_classes = num_classes
 self.num_heads = num_heads
 self.num_layers = num_layers
 self.dropout = dropout
 self.input_dropout = input_dropout

 # Learn an Generic Input Encoder Input dim -> Model dim
 self.input_net = nn.Sequential(
 nn.Dropout(self.input_dropout),
 nn.Linear(self.input_dim, self.model_dim)
)

 # Positional encoding for sequences
 self.positional_encoding = PositionalEncoding(d_model=self.model_dim)

 # Transformer
 self.transformer = TransformerEncoder(
 num_layers=self.num_layers,
 input_dim=self.model_dim,
 dim_feedforward=2 * self.model_dim,
 num_heads=self.num_heads,
 dropout=self.dropout,
)
 # Output classifier per sequence element
 self.output_net = nn.Sequential(
 nn.Linear(self.model_dim, self.model_dim),
 nn.LayerNorm(self.model_dim),
 nn.ReLU(inplace=True),
 nn.Dropout(self.dropout),
 nn.Linear(self.model_dim, self.num_classes),
)

 def forward(self, x, mask=None, add_positional_encoding=True):
 """
 Args:
 x: Input features of shape [Batch, SeqLen, input_dim]
 mask: Mask to apply on the attention outputs (optional)
 add_positional_encoding: If True, we add the positional encoding to the input.
 Might not be desired for some tasks.
 """
 x = self.input_net(x)
 if add_positional_encoding:

lf iti l di ()

 x = self.positional_encoding(x)
 x = self.transformer(x, mask=mask)
 x = self.output_net(x)
 return x

 def get_attention_maps(self, x, mask=None, add_positional_encoding=True,
 return_outputs=False):
 """Function for extracting the attention matrices of the whole Transformer for a single batch.

 Input arguments same as the forward pass.
 """
 x = self.input_net(x)
 if add_positional_encoding:
 x = self.positional_encoding(x)
 transf_outputs, attn_maps = self.transformer.get_attention_maps(x, mask, return_outputs=True)

 if return_outputs:
 transf_outputs = self.output_net(transf_outputs)
 return transf_outputs, attn_maps
 return attn_maps

After having �nished the implementation of the Transformer architecture, we can start experimenting.

A Seq-2-Seq task represents a task where the input and the output is a sequence, not necessarily of the same length. Popular tasks in this
domain include machine translation and summarization. For this, we usually have a Transformer encoder for interpreting the input sequence,
and a decoder for generating the output in an autoregressive manner. Here, however, we will go back to a much simpler example task and use
only the encoder, since the output length is �xed. Given a sequence of numbers between and , the task is to reverse the input sequence.
In Numpy notation, if our input is , the output should be [::-1]. Although this task sounds very simple, RNNs can have issues with such
because the task requires long-term dependencies. Transformers are built to support such, and hence, we expect it to perform very well.

First, let's create a dataset class below.

Experiment: Sequence to Sequence

N 0 M

x x

class ReverseDataset(data.Dataset):
 def __init__(self, num_categories, seq_len, size):
 super().__init__()
 self.num_categories = num_categories
 self.seq_len = seq_len
 self.size = size

 self.data = torch.randint(self.num_categories, size=(self.size, self.seq_len))

 def __len__(self):
 return self.size

 def __getitem__(self, idx):
 inp_data = self.data[idx]
 labels = torch.flip(inp_data, dims=(0,))
 return inp_data, labels

We create an arbitrary number of random sequences of numbers between 0 and num_categories-1 . The label is simply the tensor �ipped over
the sequence dimension. We can create the corresponding data loaders below.

dataset = partial(ReverseDataset, 10, 16)
train_dl = data.DataLoader(dataset(50000), batch_size=128, shuffle=True, drop_last=True, pin_memory=True)
val_dl = data.DataLoader(dataset(1000), batch_size=128)
test_dl = data.DataLoader(dataset(10000), batch_size=128)

Let's look at an arbitrary sample of the dataset:

inp_data, labels = train_dl.dataset[0]
print("Input data:", inp_data)
print("Labels: ", labels)

Input data: tensor([2, 1, 4, 9, 1, 1, 0, 3, 0, 6, 7, 6, 9, 1, 6, 4])
Labels: tensor([4, 6, 1, 9, 6, 7, 6, 0, 3, 0, 1, 1, 9, 4, 1, 2])

During training, we pass the input sequence through the Transformer encoder and predict the output for each input token. We use the standard
Cross-Entropy loss to perform this. Every number is represented as a one-hot vector. Remember that representing the categories as single
scalars decreases the expressiveness of the model extremely as and are not closer related than and in our example. An alternative to a
one-hot vector is using a learned embedding vector as it is provided by the PyTorch module nn.Embedding . However, using a one-hot vector

0 1 0 9

with an additional linear layer as in our case has the same effect as an embedding layer (self.input_net maps one-hot vector to a dense
vector, where each row of the weight matrix represents the embedding for a speci�c category).

In the following we will implement the training and evaluation step required for �tting the model

def train_step(model, x, y, optim):
 model.train()

 # Fetch data and transform categories to one-hot vectors
 inp_data = F.one_hot(x, num_classes=model.num_classes).float()
 inp_data, y = inp_data.to(device), y.to(device)

 # Perform prediction and calculate loss and accuracy
 preds = model(inp_data, add_positional_encoding=True)
 loss = F.cross_entropy(preds.view(-1, preds.size(-1)), y.view(-1))
 acc = (preds.argmax(dim=-1) == y).float().mean()

 # Backpropagate and update weights
 loss.backward()
 optim.step()
 model.zero_grad()

 return loss, acc

def eval_step(model, x, y):
 with torch.no_grad():
 model.eval()

 # Fetch data and transform categories to one-hot vectors
 inp_data = F.one_hot(x, num_classes=model.num_classes).float()
 inp_data, y = inp_data.to(device), y.to(device)

 # Perform prediction and calculate loss and accuracy
 preds = model(inp_data, add_positional_encoding=True)
 loss = F.cross_entropy(preds.view(-1, preds.size(-1)), y.view(-1))
 acc = (preds.argmax(dim=-1) == y).float().mean()

 return loss, acc

Finally, we can create a training function similar to the one we have seen in previous laboratories. We running for epochs printing the training
and validation loss and saving our best model based on the validation. Afterward, we test our models on the test set.

N

def train_model(model, train_loader, val_loader, test_loader,
 optim, epochs=5):
 best_acc = 0.
 pbar = tqdm(range(epochs))
 for e in range(epochs):
 # Train model
 train_loss, train_acc = 0., 0.
 for x, y in train_loader:
 loss, acc = train_step(model, x, y, optim)
 train_loss += loss
 train_acc += acc

 # Validate model
 val_loss, val_acc = 0., 0.
 for x, y in val_loader:
 loss, acc = eval_step(model, x, y)
 val_loss += loss
 val_acc += acc

 # Saving best model for early stopping
 if val_acc/len(val_loader) > best_acc:
 torch.save(model.state_dict(), "best_model.pt")
 best_acc = val_acc/len(val_loader)

 pbar.update()
 pbar.set_description(f"Train Acc: {train_acc/len(train_loader)* 100:.2f} "
 f"Train Loss: {train_loss/len(train_loader):.2f} "
 f"Val Acc: {val_acc/len(val_loader)* 100 :.2f} "
 f"Val loss: {val_loss/len(val_loader):.2f} ")

 pbar.close()
 # Load best model for early stopping
 model.load_state_dict(torch.load("best_model.pt"))

 # Test model
 test_loss, test_acc = 0., 0.
 for x, y in test_loader:
 loss, acc = eval_step(model, x, y)
 test_loss += loss
 test_acc += acc

 print(f"Test accuracy: {test_acc/len(test_loader)*100 :.2f}")

 return model

Finally, we can train the model. In this setup, we will use a single encoder block and a single head in the Multi-Head Attention. This is chosen
because of the simplicity of the task, and in this case, the attention can actually be interpreted as an "explanation" of the predictions (compared
to the other papers above dealing with deep Transformers).

reverse_model = TransformerPredictor(
 input_dim=train_dl.dataset.num_categories,
 model_dim=32,
 num_heads=1,
 num_classes=train_dl.dataset.num_categories,
 num_layers=1,
 dropout=0.0,
)
reverse_model = reverse_model.to(device)
optimizer = optim.AdamW(reverse_model.parameters(), lr=0.001)

reverse_model = train_model(reverse_model, train_dl, val_dl, test_dl, optimizer)

Show hidden output

As we would have expected, the Transformer can correctly solve the task. However, how does the attention in the Multi-Head Attention block
looks like for an arbitrary input? Let's try to visualize it below.

data_input, labels = next(iter(val_dl))
inp_data = F.one_hot(data_input, num_classes=reverse_model.num_classes).float()
inp_data = inp_data.to(device)
attention_maps = reverse_model.get_attention_maps(inp_data)

The object attention_maps is a list of length where is the number of layers. Each element is a tensor of shape [Batch, Heads, SeqLen,
SeqLen], which we can verify below.

N N

attention maps[0] shape

attention_maps[0].shape

Next, we will write a plotting function that takes as input the sequences, attention maps, and an index indicating for which batch element we
want to visualize the attention map. We will create a plot where over the rows we have different layers, while over columns we show the
different heads. Remember that the softmax has been applied for each row separately.

def plot_attention_maps(input_data, attn_maps, idx=0):
 if input_data is not None:
 input_data = input_data[idx].detach().cpu().numpy()
 else:
 input_data = np.arange(attn_maps[0][idx].shape[-1])
 attn_maps = [m[idx].detach().cpu().numpy() for m in attn_maps]

 num_heads = attn_maps[0].shape[0]
 num_layers = len(attn_maps)
 seq_len = input_data.shape[0]
 fig_size = 4 if num_heads == 1 else 3
 fig, ax = plt.subplots(num_layers, num_heads, figsize=(num_heads * fig_size, num_layers * fig_size))
 if num_layers == 1:
 ax = [ax]
 if num_heads == 1:
 ax = [[a] for a in ax]
 for row in range(num_layers):
 for column in range(num_heads):
 ax[row][column].imshow(attn_maps[row][column], origin="lower", vmin=0)
 ax[row][column].set_xticks(list(range(seq_len)))
 ax[row][column].set_xticklabels(input_data.tolist())
 ax[row][column].set_yticks(list(range(seq_len)))
 ax[row][column].set_yticklabels(input_data.tolist())
 ax[row][column].set_title("Layer %i, Head %i" % (row + 1, column + 1))
 fig.subplots_adjust(hspace=0.5)
 plt.show()

Finally, we can plot the attention maps of our trained Transformer on the reverse task:

plot_attention_maps(data_input, attention_maps, idx=5)

The model has learned to attend to the token that is on the �ipped index of itself. Hence, it actually does what we intended it to do. We see that
it however also pays some attention to values close to the �ipped index. This is because the model doesn't need the perfect, hard attention to
solve this problem, but is �ne with this approximate, noisy attention map. The close-by indices are caused by the similarity of the positional
encoding, which we also intended with the positional encoding.

Retrain your model with now 4 heads and 3 layers. What happens to the visualization?

Compute and visualize with the previous function:

Standard attention explanation for 1st and last layer
Rollout
Transformer Attention (Attention x Gradient)

Note: don't forget to aggregate over the heads!

Now let's perform some more advanced attention-based explanation!

Retraining with 2 attention heads and 3 layers
reverse_model = TransformerPredictor(
 input_dim=train_dl.dataset.num_categories,
 model_dim=32,
 num_heads=4,
 num_classes=train_dl.dataset.num_categories,
 num_layers=4,
 dropout=0.0,
)
reverse_model = reverse_model.to(device)
optimizer = optim.AdamW(reverse_model.parameters(), lr=0.001)

reverse_model = train_model(reverse_model, train_dl, val_dl, test_dl, optimizer)

Show hidden output

data_input, labels = next(iter(val_dl))
inp_data = F.one_hot(data_input, num_classes=reverse_model.num_classes).float()
inp_data, labels = inp_data.to(device), labels.to(device)
attention_maps = reverse_model.get_attention_maps(inp_data)

Plot the matrix of attention maps
plot_attention_maps(data_input, attention_maps, idx=5)

Plot STANDARD ATTENTION FIRST LAYER: aggregated attentions over the first layer
standard_attention_first = attention_maps[0].mean(dim=-3) # batch_size x heads x seq_len x seq_len

plot_attention_maps(data_input, [standard_attention_first.unsqueeze(dim=-3)], idx=5) # the function still requires list of attention

Plot STANDARD ATTENTION LAST: aggregated attentions over the last layer
standard_attention_last = attention_maps[-1].mean(dim=-3) # batch_size x heads x seq_len x seq_len

plot_attention_maps(data_input, [standard_attention_last.unsqueeze(dim=-3)], idx=5) # the function still requires list of attention with

def get_rollout_attention(attentions):
 """Factorize attentions over the layers after aggregating the heads"""

 cumulated_attention = None
 for i, attention in enumerate(attentions):
 # aggregated the attention heads of the current layer
 aggregated_attention = attention.mean(dim=-3)
 if i == 0:
 cumulated_attention = aggregated_attention # initialize cumulated_attention
 else:
 # factorize attention over the layers
 cumulated_attention = cumulated_attention * aggregated_attention

 # print(f"Iteration: {i}")
 # plot_attention_maps(data_input, [aggregated_attention.unsqueeze(dim=-3)], idx=5) # the function still requires list of attenti
 # plot_attention_maps(data_input, [cumulated_attention.unsqueeze(dim=-3)], idx=5) # the function still requires list of attentio

 return cumulated_attention

Plot ROLLOUT ATTENTION
rollout_attention = get_rollout_attention(attention_maps)

plot_attention_maps(data_input, [rollout_attention.unsqueeze(dim=-3)], idx=5) # the function still requires list of attention with head

