

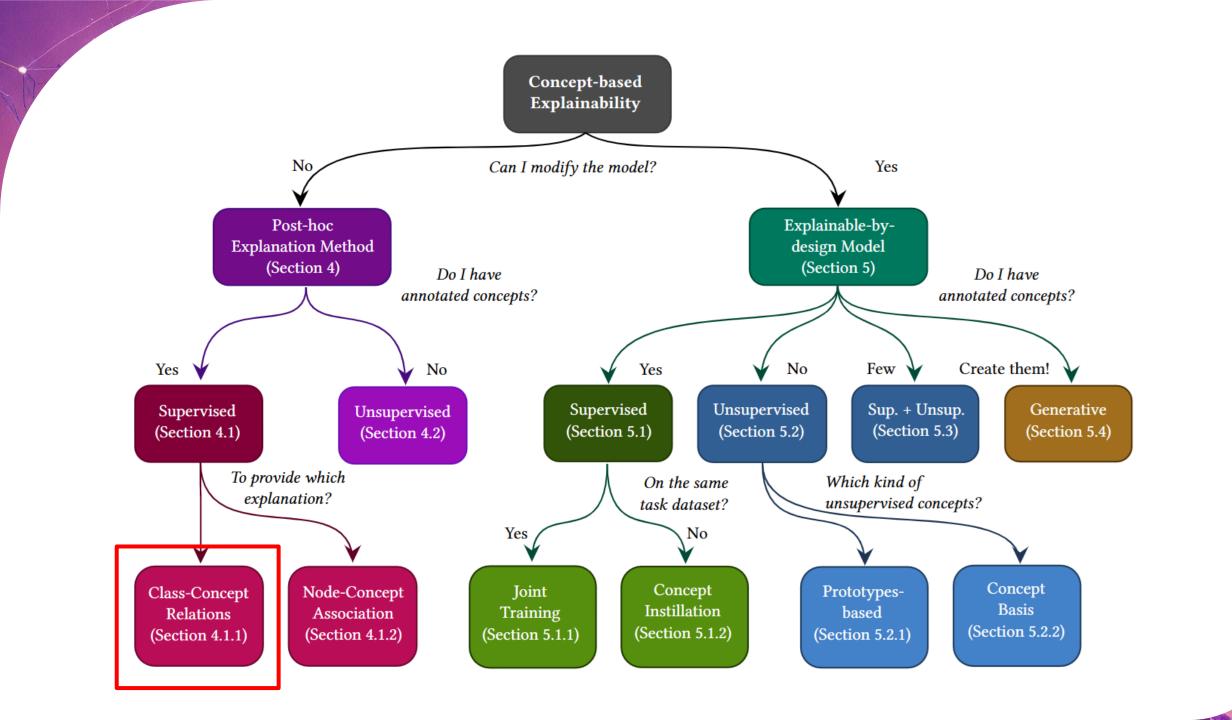
Concept-based Explainable Al

Explainable and Trustworthy Al

OUTLINE

- 1. Motivation
- 2. Concept-based eXplainable AI (C-XAI)
- 3. Testing with Concept Activation Vectors (T-CAV)
- 4. Concept Bottleneck Models (CBM)
- 5. Concept Embedding Models (CEM)

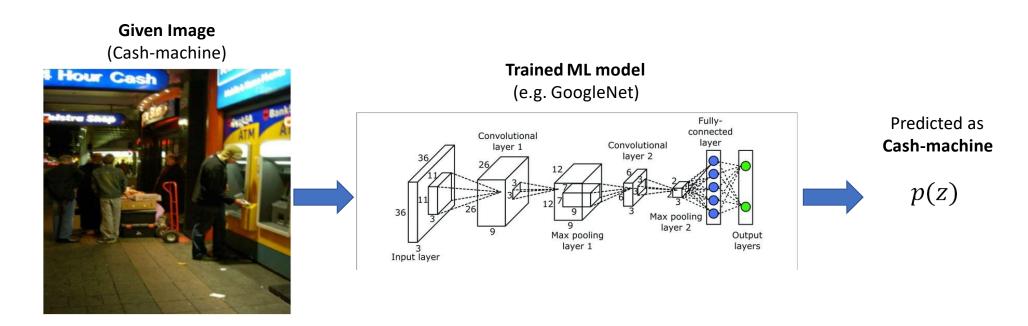
3. Testing with Concept Activation Vectors (T-CAV)



Example: Post-training explanation

- To use machine learning responsibly, we need to ensure that
 - Our values are aligned
 - Our knowledge is reflected
- Standard XAI Solutions
 - Interpretable ML model (e.g. linear model)
 - Simple but we significantly lose the performance
 - Post-training explanation
 - E.g. Perturbation-based/sensitivity analysis-based methods
 - May be difficult to trust for standard users

Example: Post-training explanation

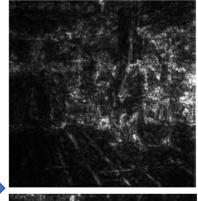


• Why was this a cash machine?

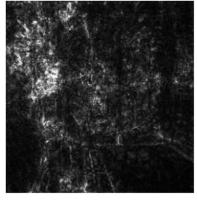
Problem Objective

Given Image

Corresponding **Saliency Map**



Prediction: Cash-machine

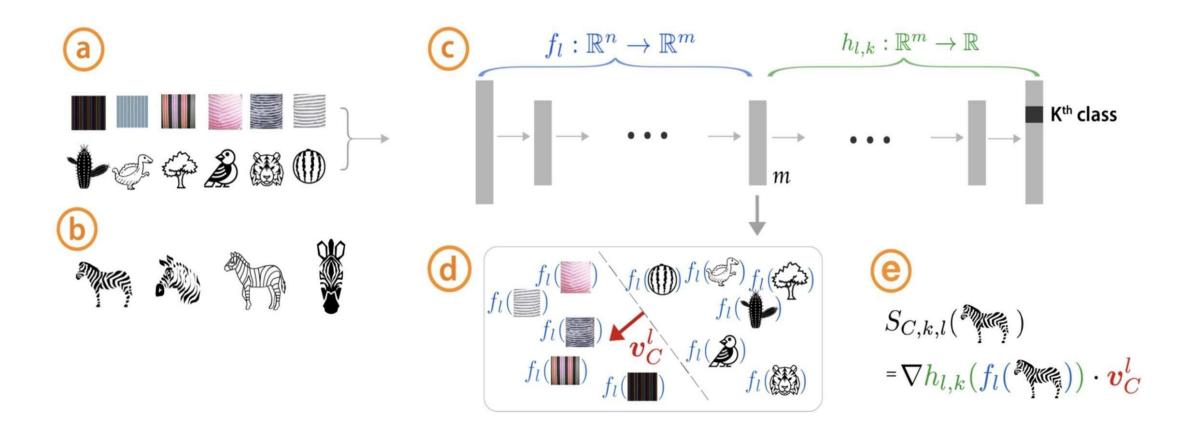


- **TCAV** objective: **Prediction: Sliding door**
 - Quantitatively measure how
 - important are "user- chosen concepts"

Did the 'human' concept matters?

- Did the 'paper' concept matters?
- Did the 'ATM' or 'Cash' concept matters?

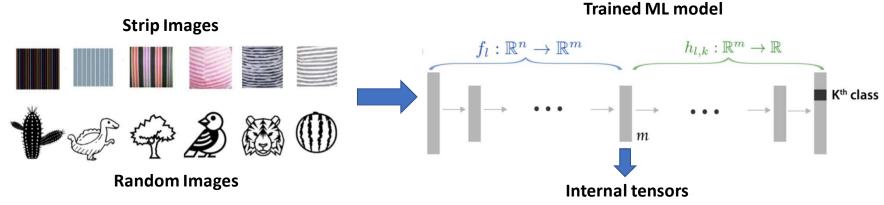
TCAV: Overview



TCAV components

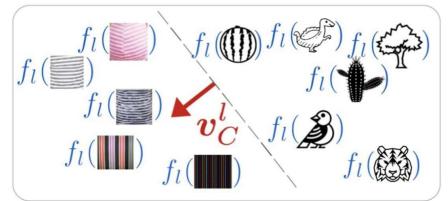
- a) A dataset annotated with both examples of concepts and random images
- b) The dataset with the **original classes**
- c) The **model** to explain
- d) The Concept Activation Vectors (CAV)
- e) The TCAV score showing the **influence** of a concept on a given class

TCAV: (1) How to define CAV?



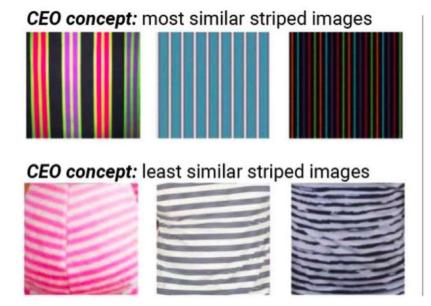
Train a linear classifier to separate the projection of the concepts from the random images

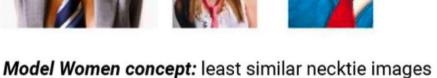
 $\mathsf{CAV}\ (v_{\mathit{C}}^{\mathit{l}})$ is the vector $\mathsf{orthogonal}$ to the decision boundary



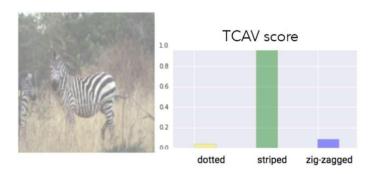
Sorting Images with CAVs

- Given a set of images (e.g., belonging to the same class)
- Compute the cosine similarity between
 - the latent representation of an image $f_l(x)$
 - the CAV $v_{\it C}^{\it l}$ of the selected concept





TCAV: (2) How to compute TCAV scores?



$$S_{C,k,l}(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{h_{l,k}(f_l(\boldsymbol{x}) + \epsilon \boldsymbol{v}_C^l) - h_{l,k}(f_l(\boldsymbol{x}))}{\epsilon}$$
$$= \nabla h_{l,k}(f_l(\boldsymbol{x})) \cdot \boldsymbol{v}_C^l, \tag{1}$$

$$S_{C,k,l}(\mathcal{P}_{\mathcal{K}})$$

$$S_{C,k,l}(\mathcal{S}_{0})$$

$$S_{C,k,l}(\mathbb{Q})$$

$$S_{C,k,l}($$

$$ext{TCAV}_{Q_{C,k,l}} = rac{|\{m{x} \in X_k : S_{C,k,l}(m{x}) > 0\}|}{|X_k|}$$

Directional derivative with CAV:

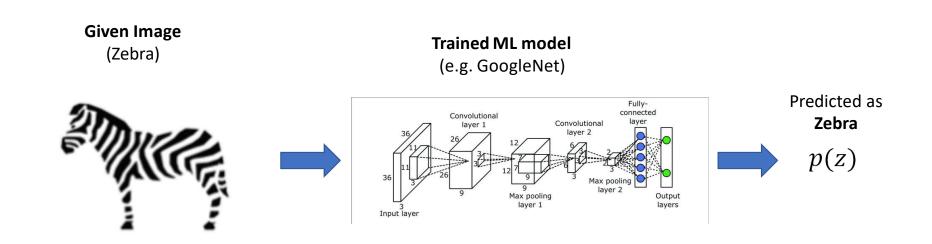
- $S_{C.k.l}(x) > 0$: positive influence
- $S_{C,k,l}(x) < 0$: negative influence

The TCAV score is the number of class samples having a positive directional derivative w.r.t. the CAV

TCAV score characteristcs

- $TCAV_{C,k,l} \in [0,1]$
 - $TCAV_{C,k,l} > 0.5$: positive influence $TCAV_{C,k,l} < 0.5$: negative influence
 - Of concept *C*
 - Over class *k*
 - Computed in layer l

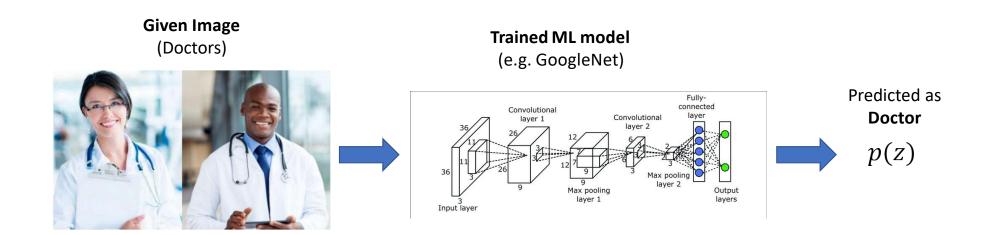
TCAV Example 1 (Zebra)



Was Stripe concept important to this zebra image classifier?

TCAV tells that Stripe
has a positive
importance for the
classification of zebras

TCAV Example 2 (Doctor)



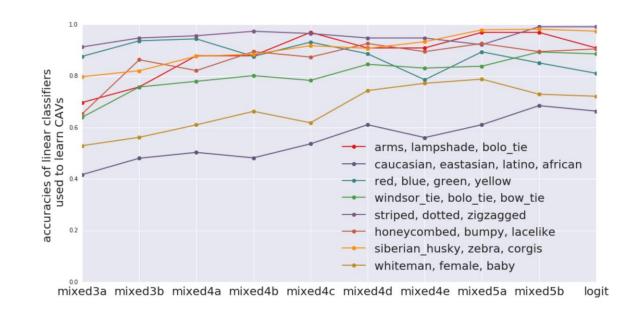
Was Woman
concept important
to this doctor image
classifier?

has a negative importance for the classification of doctors

BIAS IDENTIFICATION!

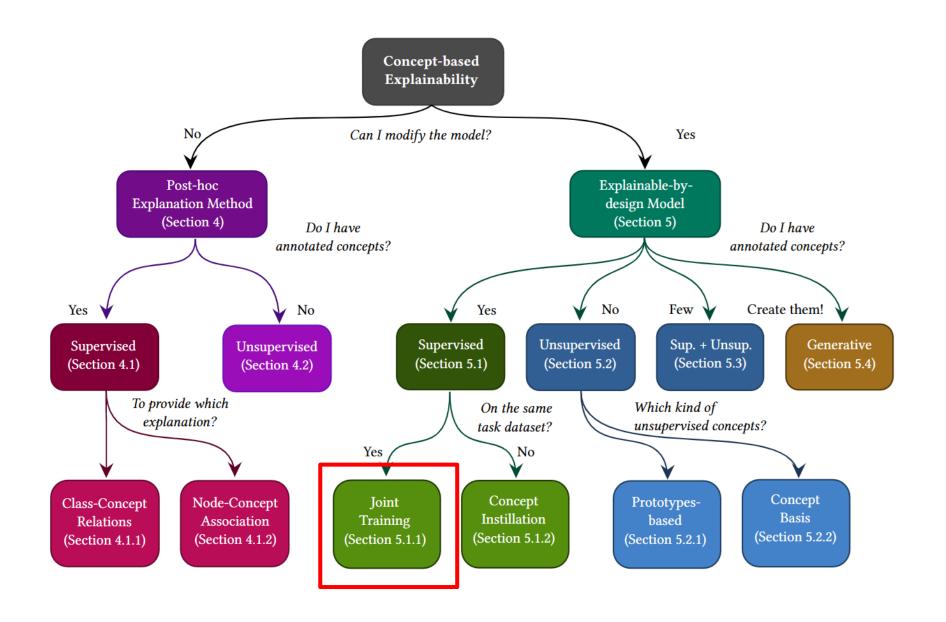
When and where can concept be learnt?

- Accuracy of the «linear probe»
 - High implies the network has automatically learnt a concept
 - Low implies the network does not use that concept for predicting the final class

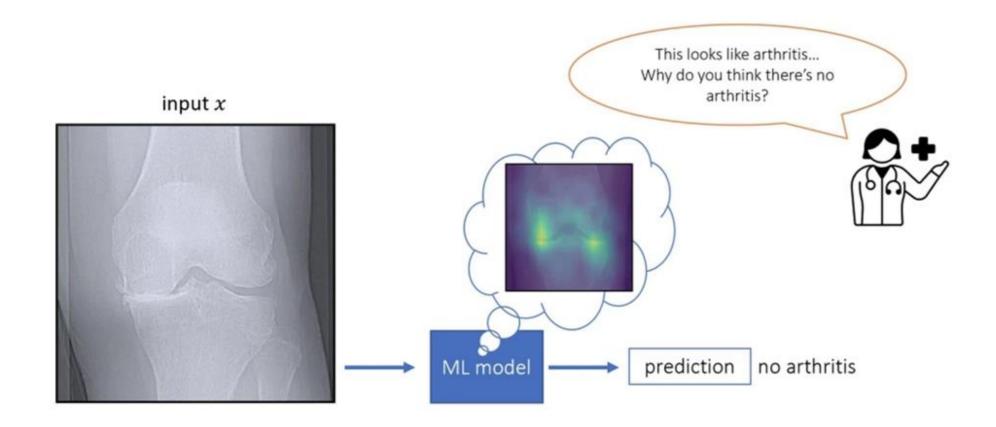


- Simpler concepts have high accuracy throughout the NN
- High-level concepts can be detected better at higher layers

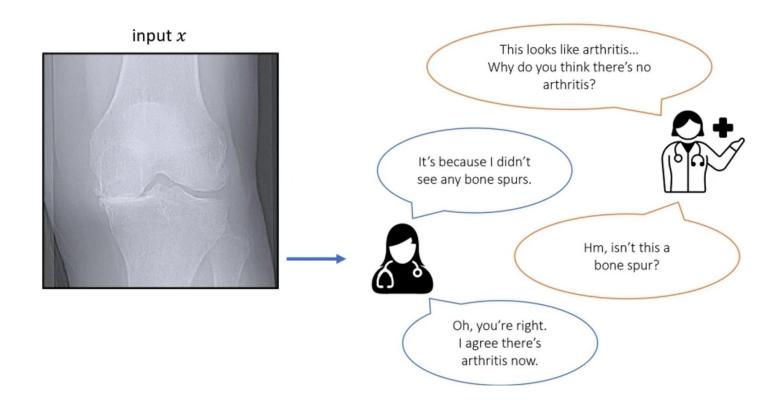
2. Concept Bottleneck Models (CBMs)



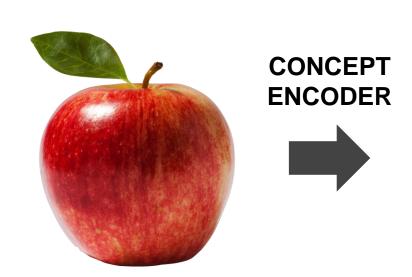
End-2-End models are difficult to interact with

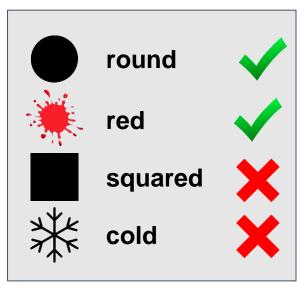


Ideal: Interact through high-level concepts



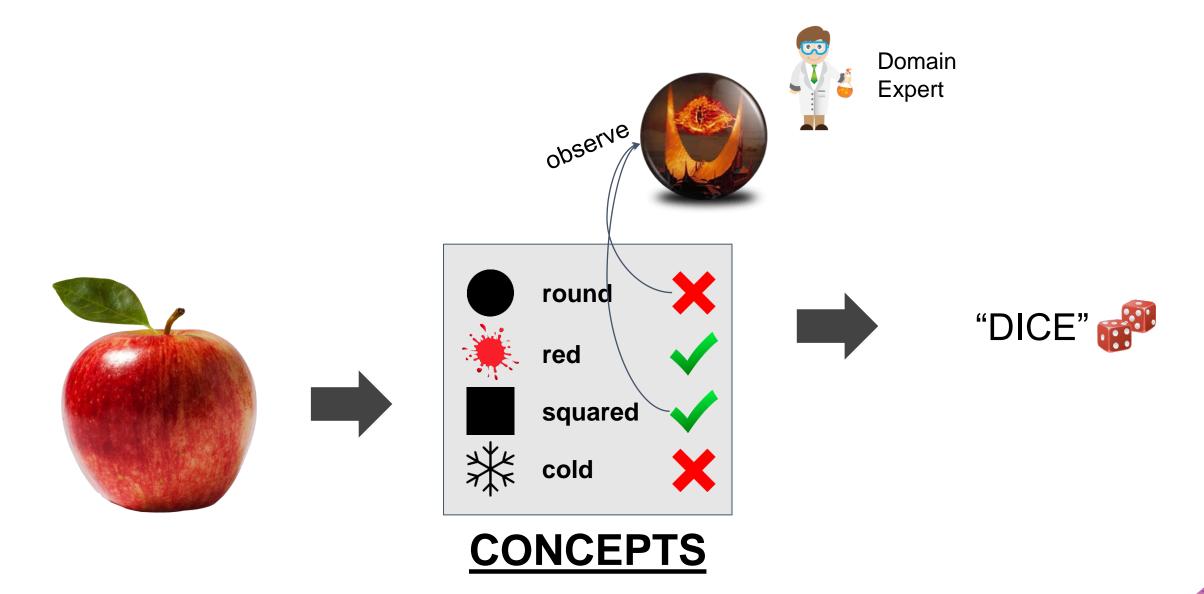
CBMs Explicitly Represents Concepts



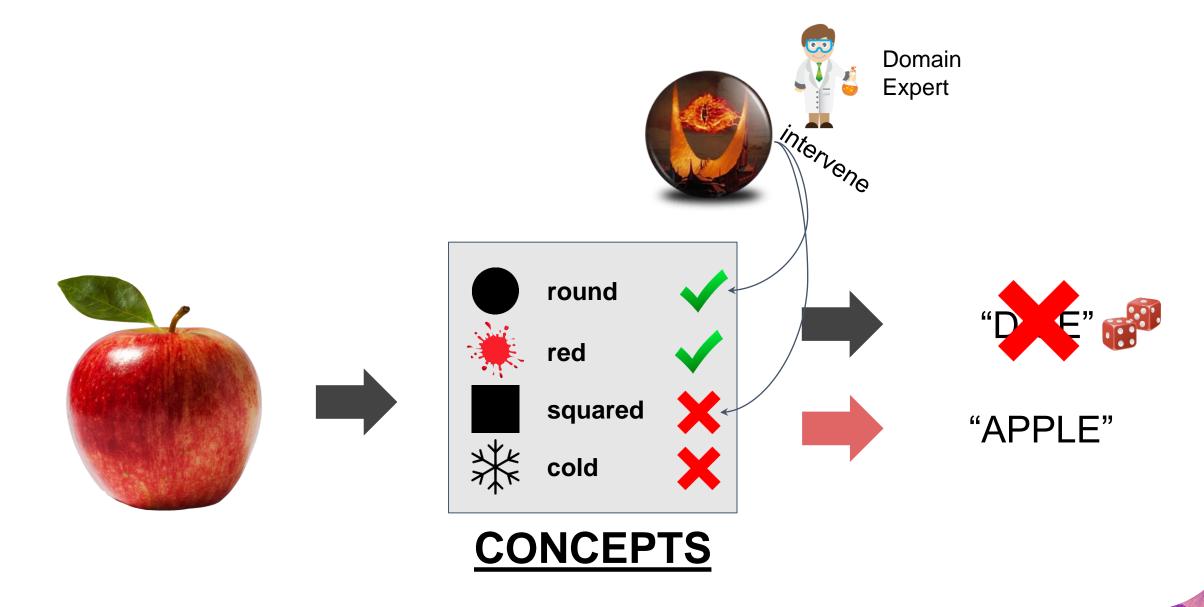


CONCEPTS

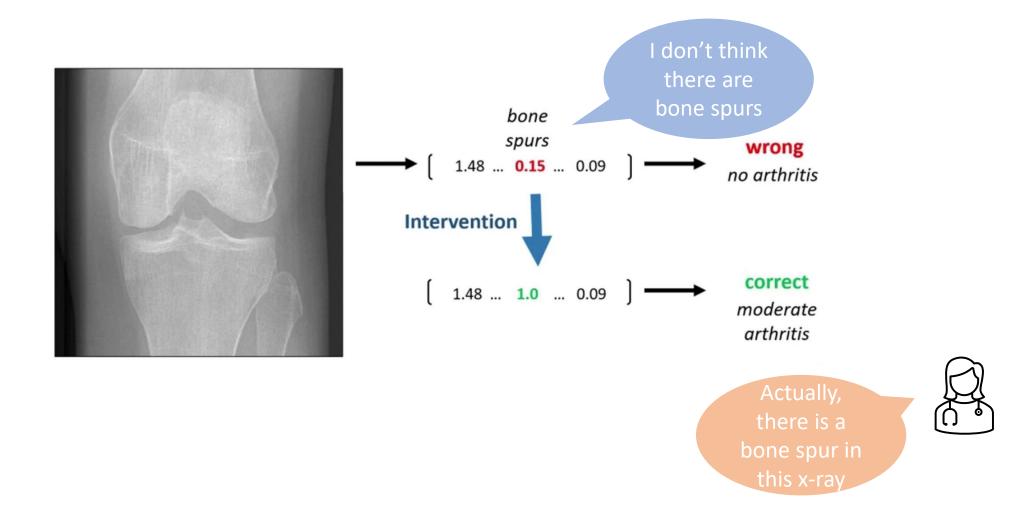
CBMs Allows Interactions!



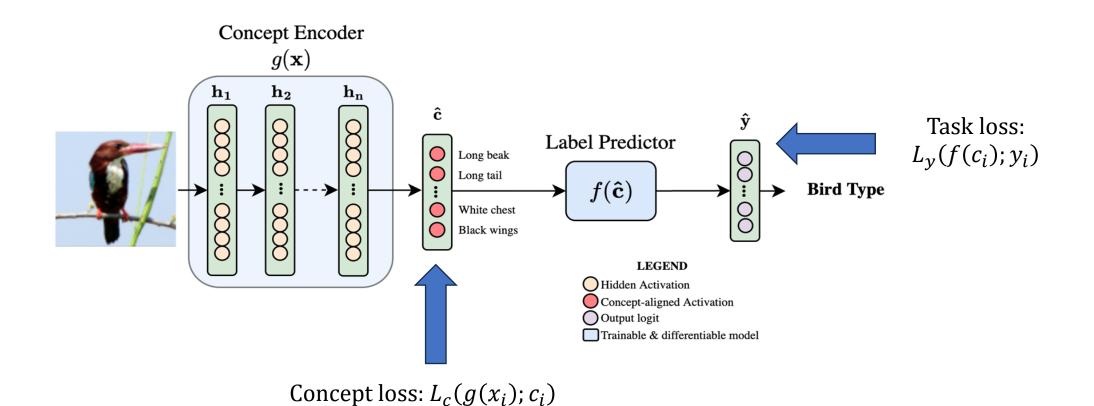
CBMs Allows Interactions!



Importance of Concept Intervention



Concept bottleneck models architecture



Different training strategy

• Indipendent:
$$\hat{f} = \arg\min_{f} \sum_{i} L_{y}(f(c_{i}), y_{i})$$

$$\hat{g} = \arg\min_{g} \sum_{i} L_{c}(g(x_{i}), c_{i})$$

f is trained using the truth concepts

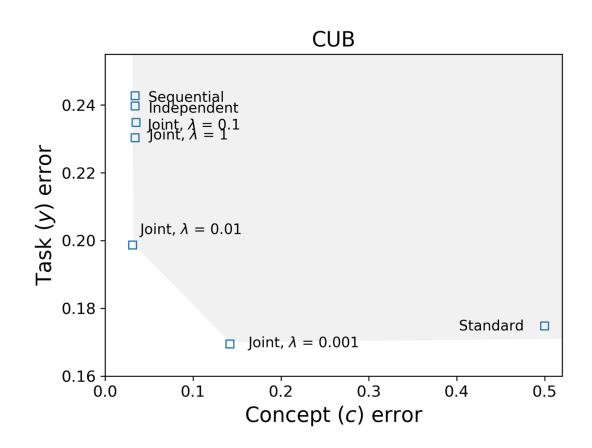
• Sequential: $\hat{f} = \arg\min_{f} \sum_{i} L_{y}(f(g(x_{i})), y_{i})$

g is trained first as above, then freezed

- Joint: \hat{f} , $\hat{g} = \arg\min_{f} \sum_{i} L_{y}(f(c_{i}), y_{i}) + \lambda \arg\min_{g} \sum_{i} L_{c}(g(x_{i}), c_{i})$ for some $\lambda > 0$
- Standard: \hat{f} , $\hat{g} = \arg\min_{f} \sum_{i} L_{y}(f(c_{i}), y_{i})$

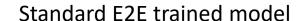
It ignores the concepts loss

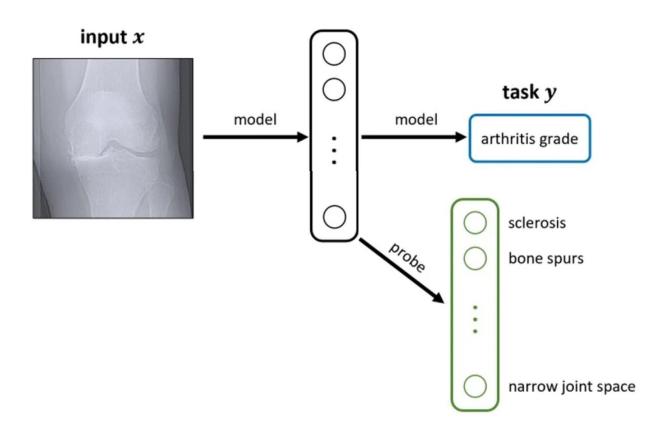
Different interpretability/performance trade-offs



- Sequential and indipendent are the more «trustworthy» beacause they ensure no concept leakage
- Joint strategy provides better task accuracy
 - Different trade-offs according to the λ value
- Standard model still has higher accuracy on average

Explictly concept training ensure model learns the concepts





Method	X-Ray Concept Error (↓)
Independent	0.53
Sequential	0.53
Joint	0.54
TCAV [Probe]	0.68

In an trained model, identifying some concepts may not be possible, because it might not have learnt them automatically

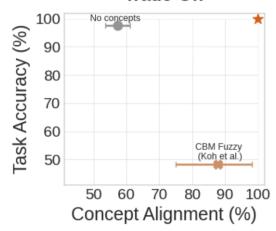
→ Only by explicitly training a model we can ensure it represents all concepts!

CBM Drawbacks

Poor Trade-offs

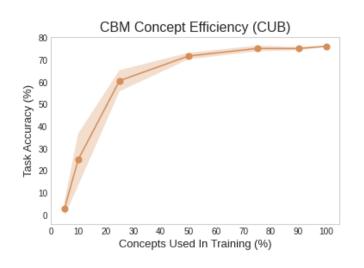
Struggle to compromise between accuracy and explainability

Accuracy-Explainability Trade-Off

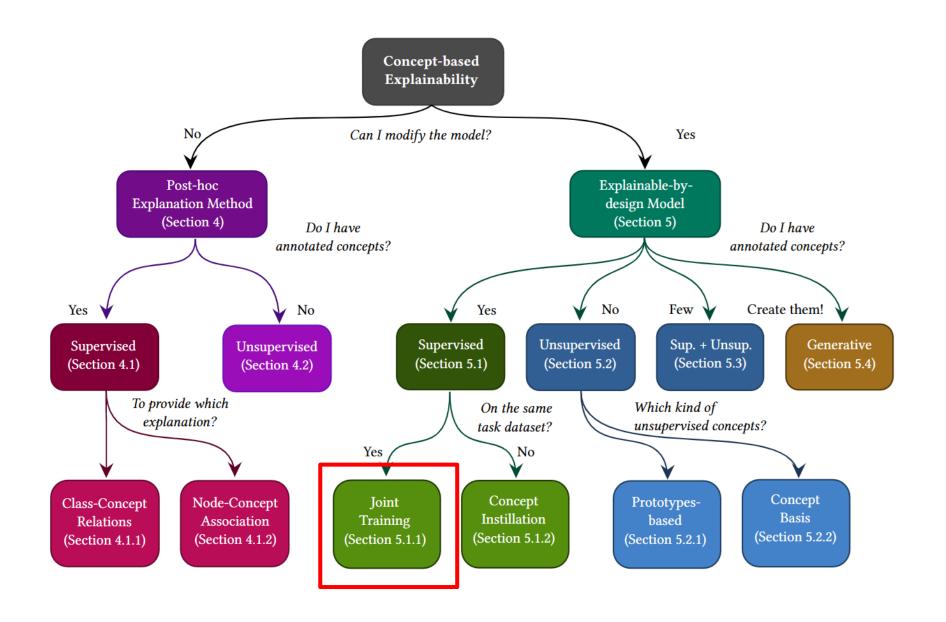


Low Concept Efficiency

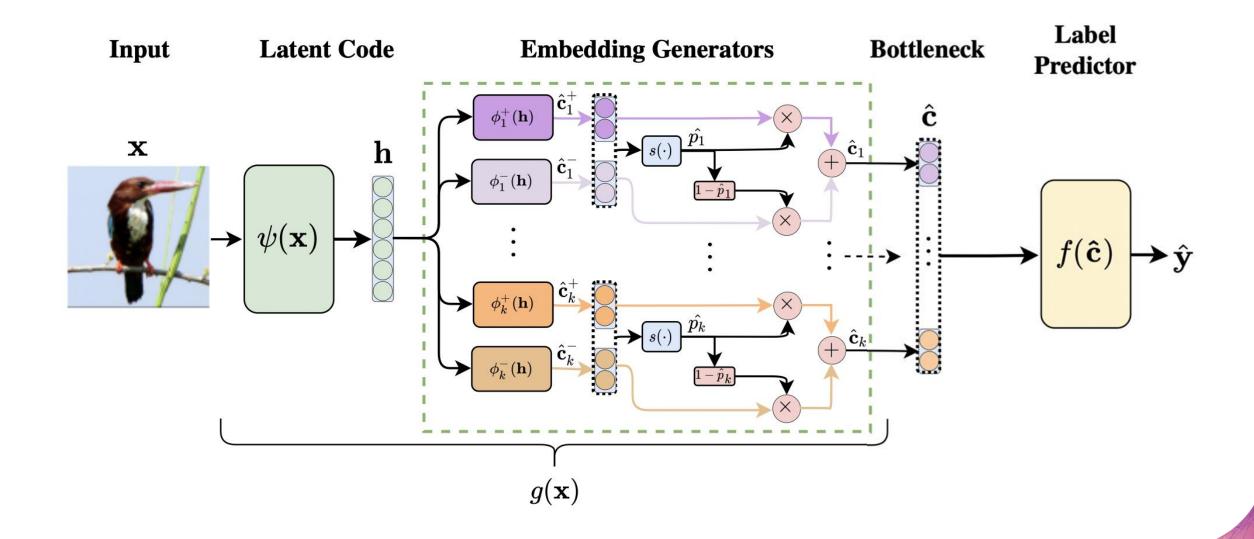
CBMs do not scale in real-world conditions



3. Concept Embedding Models (CEM)



Concept Embedding Models: overview



Concept Embedding workflow

- 1. $h = \psi(x)$: the latent space of the model
- 2. $c_i^+ = \phi_i^+(x)$: neural model dedicated to represent the i-th **positive** concept embedding
- 3. $p_i = s([c_i^+, c_i^-])$: the *concept score* (i.e., probability of presence of the ith concept) is a function shared among concepts working on the concatenations of the concept embeddings
- 4. $\hat{c}_1 = p_i c_i^+ + (1 p_i) c_i^-$: the *concept embedding* is represented by the weighted combination of the positive and negative concept embeddings according to its presence
- 5. $f([\hat{c}_1, ... \hat{c}_i, ... \hat{c}_k])$: the task predictor works on the concatenation of all the concept embeddings

CEM: A neural-symbolic approach

Neural

Concepts are represented with: unsupervised embeddings

 $C_i \in \mathbb{R}^k$

Symbolic (CBM)

Concepts are represented with: **supervised** scalars

 $C_i \in [0,1]$

Neural Symbolic (CEM)

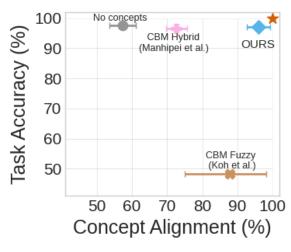
Concepts are represented with: pairs of supervised embeddings

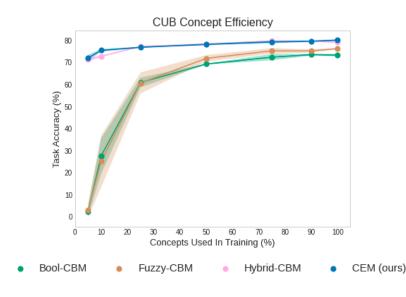
$$C_i \in \mathbb{R}^k$$

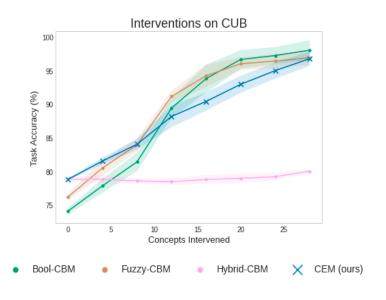
 $C_i = agg(C_i^+, C_i^-)$

CEM Advanatages

Accuracy-Explainability Trade-Off







Beyond Trade-offs

CEMs overcome the current accuracy-explainability trade-off

High Concept Efficiency

CEMs scale to real-world conditions where concept supervisions are scarce

Effective interventions

CEMs are responsive to concept interventions

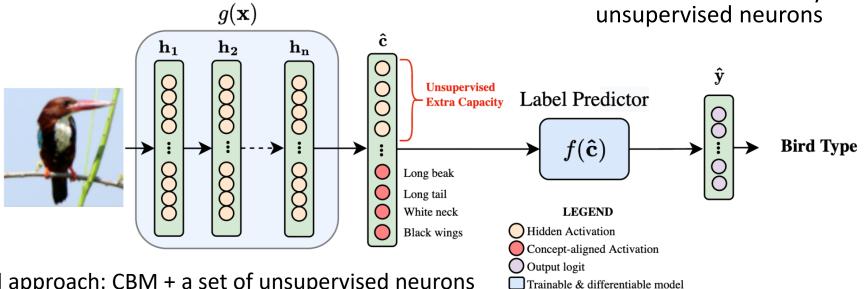
CEM vs Hybrid approach

- PROS:
 - Retain high accuracy
 - Has high concept efficiency like CEM

Concept Encoder $g(\mathbf{x})$ $\mathbf{h_n}$

• CONS:

- Prevent any effect of concept intervention
 - Changing the predicted scores has no effect on the task prediction
- All the information required to predict the task is encoded by the

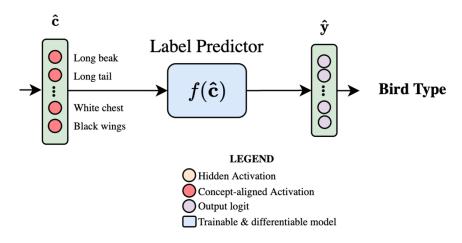


Hybrid approach: CBM + a set of unsupervised neurons

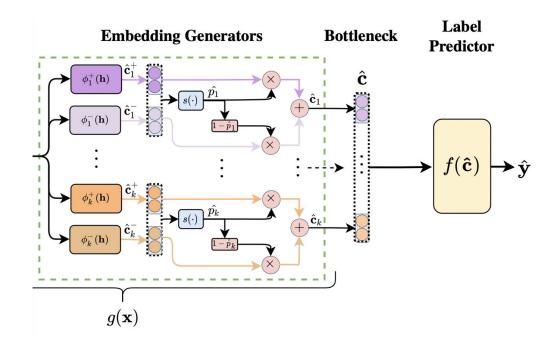
Have we lost something?

Interpretability

CBM: Interpretable

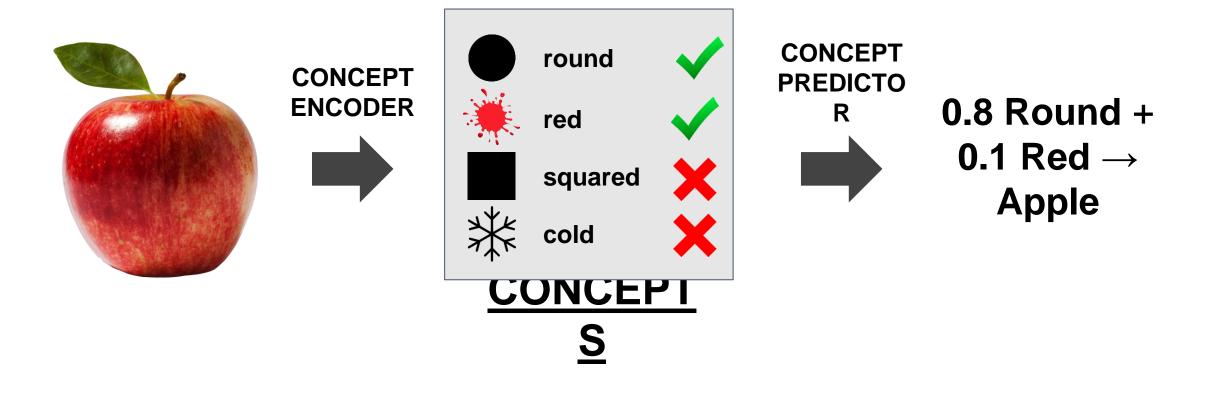


CEM: NON-Interpretable



$$\hat{\mathbf{c}}_{\text{yellow}} = [2.3, 0.3, -3.5, \dots]^T$$

Can we create an Interpretable Model over Concept Embeddings?



Come on Monday to the Project Presentation!

- You will form groups of about 4 people
- We will provide 8-10 different projects among which you will have to choose

 The remaining of the lecture you will do a guided laboratory with Prof. Salvatore Greco on XAI for text models