

Distributed architectures for big data processing and analytics

February 20, 2024

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

1. (2 points) Consider the following MapReduce application for Hadoop.

DriverBigData.java

/* Driver class */
 package it.polito.bigdata.hadoop;
 import ….;

/* Driver class */

public class DriverBigData extends Configured implements Tool {

 @Override

 public int run(String[] args) throws Exception {

 int exitCode;

 Configuration conf = this.getConf();

 // Define a new job

 Job job = Job.getInstance(conf);

 // Assign a name to the job

 job.setJobName("Exercise 19/02/2024 - Question 1");

 // Set the path of the input file/folder (if it is a folder, the job reads all the files in
 //the specified folder) for this job

 FileInputFormat.addInputPath(job, new Path("inputFolder/"));

 // Set the path of the output folder for this job

 FileOutputFormat.setOutputPath(job, new Path("outputFolder/"));

 // Specify the class of the Driver for this job

 job.setJarByClass(DriverBigData.class);

 // Set job input format

 job.setInputFormatClass(TextInputFormat.class);

 // Set job output format

 job.setOutputFormatClass(TextOutputFormat.class);

 // Set map class

 job.setMapperClass(MapperBigData.class);

 // Set map output key and value classes

 job.setMapOutputKeyClass(IntWritable.class);

 job.setMapOutputValueClass(NullWritable.class);

 // Set reduce class

 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(NullWritable.class);

 // Set the number of reducers to 3

 job.setNumReduceTasks(3);

 // Execute the job and wait for completion
 if (job.waitForCompletion(true)==true)
 exitCode=0;
 else

 exitCode=1;

 return exitCode;

 }

 /* Main of the driver */
 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }

 }

--

MapperBigData.java

/* Mapper class */
 package it.polito.bigdata.hadoop;

 import …;

class MapperBigData extends

 Mapper<LongWritable,

 Text,

 IntWritable,

 NullWritable> {

 // Define count

 int count;

 protected void setup(Context context) {

 // Initialize count

 count = 0;

 }

 protected void map(LongWritable key,

 Text value,

 Context context) throws IOException, InterruptedException {

 // Increment count

 count++;

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {
 // Emit the pair (count, NullWritable))

 context.write(new IntWritable(count), NullWritable.get());

 }

}

--

ReducerBigData.java

/* Reducer class */
package it.polito.bigdata.hadoop;
import …;

class ReducerBigData extends

 Reducer<IntWritable,

 NullWritable,

 IntWritable,

 NullWritable> {

 protected void reduce(IntWritable key,

 Iterable<NullWritable> values,

 Context context) throws IOException, InterruptedException {

 // Emit the pair (key, NullWritable))

 context.write(key, NullWritable.get());

 }

}

Suppose that inputFolder contains the files Cities1.txt, Cities2.txt, and Cities3.txt.

Suppose the HDFS block size is 512 MB.

Content of Cities1.txt, Cities2.txt, and Cities3.txt:

Filename (size and number of lines) Content

Cities1.txt (21 bytes – 3 lines) Tokyo

Delhi

Shanghai

Cities2.txt (26 bytes – 3 lines) Tokyo

Delhi

New York City

Cities3.txt (18 bytes – 2 lines) Mexico City

Cairo

Suppose we run the above MapReduce application (note that the input folder is set

to inputFolder/).

What is a possible output generated by running the above application?

a) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00000

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00001

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 part-r-00002

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 2

part-r-00002 (0 line – empty file)

b) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00000

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00001

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00002

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 3

part-r-00002 (1 line) 2

c) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 4 gen 29 14:01 part-r-00000

-rw-r--r-- 1 paolo paolo 2 gen 29 14:01 part-r-00001

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 part-r-00002

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (2 lines) 3

3

part-r-00001 (1 line) 2

part-r-00002 (0 line – empty file)

d) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 6 gen 29 14:01 part-r-00000

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 part-r-00001

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 part-r-00002

-rw-r--r-- 1 paolo paolo 0 gen 29 14:01 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (3 lines) 3

3

2

part-r-00001 (0 line – empty file)

part-r-00002 (0 line – empty file)

2. (2 points) Consider the following Spark application.

package it.polito.bigdata.spark;
import …;

public class SparkDriver {
 public static void main(String[] args) {
 SparkConf conf = new SparkConf().setAppName("Exam 24/02/05");
 JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> robotsRDD = sc.textFile("Robots.txt");

// Compute the number of distinct cities in Robots.txt and
// print it on stdout
System.out.println("Distinct cities in Robot.txt: "+robotsRDD
 .map(line -> new String(line.split(",")[1]))
 .distinct()

 .count());

JavaRDD<String> citiesRDD = sc.textFile("Cities.txt");

// Print on the standard output the difference between the number of cities

// and the number of distinct cities

System.out.println("Diff: "+ citiesRDD.count()-citiesRDD.distinct().count());

// Map the content of robotsRDD to (City, +1)
JavaPairRDD<String, Integer> CityOneRobotRDD = robotsRDD
 .mapToPair(line ->

 new Tuple2<String, Integer>(line.split(",")[1], 1));

// Map the content of citiesRDD to (City, +0)
 JavaPairRDD<String, Integer> AllCitiesRDD = citiesRDD
 .mapToPair(line ->

 new Tuple2<String, Integer>(line.split(",")[0], 0));

// Union CityOneRobotRDD and AllCitiesRDD
 JavaPairRDD<String, Integer> CityValuesRDD =

 CityOneRobotRDD.union(AllCitiesRDD);

// Compute the number of robots per city
 JavaPairRDD<String, Integer> CitiesNumRobotRDD =
 CityValuesRDD.reduceByKey((v1, v2) -> v1+v2);

// Compute the minimum number of robots per city and print it on stdout
 int minRobots = CitiesNumRobotRDD.values()

 .reduce((v1, v2) -> Math.min(v1, v2));

System.out.println("Minimum number of robots per country: "+ minRobots);

// Close the Spark context
 sc.close();
 }

}

Suppose the input files Robots.txt and Countries.txt are read from HDFS. Suppose

this Spark application is executed only 1 time. Which one of the following

statements is true?

a) This application reads the content of Robots.txt 1 time.

b) This application reads the content of Robots.txt 2 times.

c) This application reads the content of Robots.txt 3 times.

d) This application reads the content of Robots.txt 4 times.

Part II

PoliOnline is an international company that sells items online. To improve the sales and

revenue of PoliOnline, a set of statistics about its items and users are computed based on

the following input data sets/files.

 Catalogue.txt

o Catalogue.txt is a textual file containing information about the items that are

sold by PoliOnline. There is one line for each item and the total number of

items is greater than 10,000,000. This file is large and you cannot suppose

the content of Catalogue.txt can be stored in one in-memory Java variable.

o Each line of Catalogue.txt has the following format

 ItemID,Name,Category,StillinProduction

where ItemID is the unique identifier of the item, Name is the name of

ItemID, Category is its category (i.e., the item category), and

StillInProduction is a string used to specify if ItemID is still in

production or not (True/False).

 For example, the following line

ID1,t-shirt-winter,Clothing,True

means that the item with ItemID ID1 is characterized by the name t-

shirt-winter, it belongs to the Clothing category, and it is still in

production (True).

 Users.txt

o Users.txt is a textual file containing information about the customers/users

who are registered on the PoliOnline website. There is one line for each user

and the total number of users is greater than 100,000,000. This file is large

and you cannot suppose the content of Customers.txt can be stored in one

in-memory Java variable.

o Each line of Users.txt has the following format

 UserID,Name,Surname,City,Country

where UserID is the unique identifier of the user, Name and Surname

are his/her name and surname, respectively, and City and Country are

the city and country where he/she lives.

 For example, the following line

User20,Paolo,Garza,Turin,Italy

means that the name and surname of user User20 are Paolo and

Garza, respectively, and that he lives in Turin (Italy).

 Purchases.txt

o Purchases.txt is a textual file containing information about purchases. A new

line is inserted in Purchases.txt every time an item is bought by a user (i.e.,

each line corresponds to one purchase). Purchases.txt contains historical

data about the last 30 years. This file is big and you cannot suppose the

content of Purchases.txt can be stored in one in-memory Java variable.

o Each line of Purchases.txt has the following format

 SaleTimestamp,UserID,ItemID,SalePrice

where SaleTimestamp is the timestamp at which the user UserID

bought the item identified by ItemID. SalePrice is the price of this

purchase.

 For example, the following line

2019/02/02-09:15:01,User20,ID1,50.99

means that on February 2, 2019, at 09:15:01 the item identified by

ID1 was bought by user User20, and User20 bought that item for

50.99 euro. The format of SaleTimestamp is “YYYY/MM/DD-

HH:MM:SS”.

Note that there is a many-to-many relationship among timestamps, users,

and items (i.e., the triplet (SaleTimestamp, UserID, ItemID) is the “primary

key” of Purchases.txt).

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliOnline are interested in performing some analyses about users.

Design a single application based on MapReduce and Hadoop and write the

corresponding Java code to address the following point:

1. Users who purchased many distinct items. The application selects the users who

purchased at least 50 distinct items in the period from 1/1/2020 to 21/12/2023. Store

the identifiers of the selected users in the output HDFS folder (one UserID per

output line). Note: There are users who have purchased millions of distinct items.

The list of distinct items purchased by one single user is large and cannot be stored

in a Java variable.

Suppose that the input is Purchases.txt and it has already been set. Suppose that the

name of the output folder has also already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be

reported.

 Use the following two specific multiple-choice questions to specify the number of

instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if

you override it,

o do not report the get and set methods. Suppose they are "automatically

defined".

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

(a) One single job is needed

(b) 0

(c) exactly 1

(d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliOnline asked you to develop a single Spark-based application based

on RDDs or Spark SQL to address the following tasks. The application takes the paths of

the input files Catalogue.txt, Users.txt, Purchases.txt, and two output folders (associated

with the outputs of the following points 1 and 2, respectively).

1. Users with the highest number of purchases in 2022 or 2023. Considering only the

purchases related to the years 2022 and 2023, the first part of this application aims

to find the users associated with the highest number of purchases in the years 2022

or 2023. Specifically, a user is selected if (i) the number of purchases of that user in

the year 2022 is equal to the maximum number of purchases in the year 2022

among all users or (ii) the number of purchases of that user in the year 2023 is

equal to the maximum number of purchases in the year 2023 among all users. The

first HDFS output folder must contain the identifiers of the selected users (one

UserId per output line).

Note: There is at least one purchase in the year 2022 and at least one purchase in

the year 2023 (i.e., you do not have to deal with a maximum number of purchases

equal to zero in this part of the problem).

Example Part 1

Only for this toy example, suppose there are only four users who purchased at least

one item in the years 2022 or 2023: User1, User2, User3, and User4.

Suppose that

 User1 is associated with 55 purchases in the year 2022 and 10 purchases in

the year 2023.User2 is associated with 55 purchases in the year 2022 and

100 purchases in the year 2023.

 User3 is associated with 5 purchases in the year 2022 and 100 purchases in

the year 2023.

 User4 is associated with 10 purchases in the year 2022 and 10 purchases in

the year 2023.

In this case, the first part of the application stores the following content in the first

 output folder:

 User1

 User2

 User3

2. For each category, the items purchased by the largest amount of users in the last

two years (2022-2023). Considering only the purchases related to 2022 and 2023,

the second part of this application aims to find, for each category, the items

purchased by the maximum number of unique users over the two years inside each

category. If more than one item of the same category is associated with the

maximum number of unique users for that category, select all those associated with

the maximum value. Store the result in the second HDFS output folder (one pair

(category, selected item) per output line). Output format: Category,ItemId. Store the

pair (Category, “NoPurchases”) for the categories without purchases in the

period 2022-2023.

Example Part 2

Only for this toy example, suppose there are only eight items:

 Item1 associated with the category Home and Kitchen

 Item2 associated with the category Home and Kitchen

 Item3 associated with the category Clothing

 Item4 associated with the category Clothing

 Item5 associated with the category Clothing

 Item6 associated with the category Fitness

 Item7 associated with the category Books

 Item8 associated with the category Books

Suppose that

 1000 unique users purchased Item1 in the period 2022-2023

 500 unique users purchased Item2 in the period 2022-2023

 2000 unique users purchased Item3 in the period 2022-2023

 2000 unique users purchased Item4 in the period 2022-2023

 25 unique users purchased Item5 in the period 2022-2023

 0 unique users purchased Item6 in the period 2022-2023, i.e., it was never

purchased in the period 2022-2023

 3000 unique users purchased Item7 in the period 2022-2023

 20 unique users purchased Item8 in the period 2022-2023

Hence, in this case, it follows that:

 Item1 is the item, among the items of the “Home and Kitchen” category,

purchased by the maximum number of unique users.

 Item3 and Item4 are the items, among the items of the “Clothing” category,

purchased by the maximum number of unique users.

 No items belonging to the “Fitness” category have been purchased from

2022 to 2023.

 Item7 is the item, among the items of the “Books” category, purchased by

the maximum number of unique users.

In this case, the second part of the application stores the following content in the

second output folder:

 Home and Kitchen,Item1

 Clothing,Item3

 Clothing,Item4

 Fitness,NoPurchases

 Books,Item7

 You do not need to write Java imports. Focus on the content of the main method.

 Suppose both JavaSparkContext sc and SparkSession ss have already been set.

 Only if you use Spark SQL, suppose the first line of all files contains the header

information/the name of the attributes. Suppose, instead, there are no header lines

if you use RDDs.

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if

you override it,

o do not report the get and set methods. Suppose they are "automatically

defined".

