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Introduction to Counterfactual Explanations

Counterfactual explanations involve changing some aspects of an input 
to see how the output changes, answering "What if...?”

Purpose. Provide insight into model decision-making by illustrating how 
small changes can lead to different outcomes.
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Counterfactuals - Example
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Age: 30
Income: 30K
Amount requested: 15K

Loan?
No

What if request = 12K?
Age: 30
Income: 30K
Amount requested: 12K

Loan?
Yes

If the applicant’s request was 12K instead of 15, the loan would be approved.



Counterfactual explanations

Given 
- an instance to explain 𝑥 and its prediction y = 𝑓(𝑥) by model 𝑓
- A predefined output of interest

- E.g., probability 𝑦! ≠ 𝑦 or different predicted class

A counterfactual explanation of a prediction describes the smallest change to the feature 
values that changes the prediction to a predefined output.

A counterfactuals is an example-based explanations as it is a new instance.
- We have a new instance 𝑥’ that, starting from 𝑥, has some of the feature changed. 
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Why Counterfactual Explanations?

• Interpretability.  Help users understand the decision boundary of the model, why 
a prediction is made.
• Generally simple to understand as they involve the change of few features

• Trust. Build user trust by showing how decisions can be altered.
• Provide insights also when users should contest the decision (e.g., to change 

outcome the user should change a sensitive and protected attributed) 

• Actionability.  Offer actionable insights on how to change outcomes.
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Properties and desiderata of counterfactual 
explanations
• Closeness to the predefined output.

• A counterfactual instance should produce the predefined prediction as closely as possible
• Closeness to the input.

• The features of a counterfactual should be as similar as possible to the original instance
• Sparsity.

• The counterfactual changes only few features. 
• Diversity and multiple explanations.

• We should generate multiple counterfactual explanations that are different from each other
• So that we can identify which alterations are more suitable/actionable to get a different 

outcome
• Feasibility and Actionability.

• A counterfactual instance should have feature values that are possible/likely
• E.g., height 1.90 and weight 10 kgs
• E.g., decreasing age is impossible, unactionable
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Wachter et al.

Among first algorithms for generating counterfactual explanations
Target satisfying the two properties of  closeness to the predefined output And closeness 
to the input.

Given: 
- model 𝑓 and the training set
- an instance 𝑥 and an outcome 𝑦
- a desired outcome 𝑦!

The approach targets to find a counterfactual 𝒙′ as close to the original instance 𝒙
but with 𝒇 𝒙! = 𝒚′

7
Counterfactual explanations without opening the black box: Automated decisions and the GDPR (Wachter et al., 2017) 



Wachter et al.

The approach identifyies 𝑥! by minimizing the following loss function

𝐿 𝑥, 𝑥!, 𝑦!, 𝜆 = 𝜆 ⋅ 𝑓 𝑥! − 𝑦! " + 𝑑(𝑥,𝑥’)

where d is a distance function and 𝜆 is a regularization parameter that balances the 
distance in prediction against the distance in feature values.

Larger 𝜆 : prefer counterfactuals very close to 𝑦′.
Smaller 𝜆: prefer counterfactuals very close to the original instance 𝑥
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closeness to the 
predefined output 

closeness to the 
input



Wachter et al.

Closeness to the predefined output. 
𝑓 𝑥! − 𝑦! "

Quadratic distance between the model prediction for the counterfactual 𝑥’ and the desired outcome 𝑦’

Closeness to the input.
Distance d between the instance 𝑥 and the counterfactual 𝑥’, with

𝑑(𝑥,𝑥’) =)
!"#

$ |𝑥! − 𝑥!%|
𝑀𝐴𝐷!

where
𝑀𝐴𝐷& = 𝑚𝑒𝑑𝑖𝑎𝑛'∈{#,…,,} 𝑥',& −𝑚𝑒𝑑𝑖𝑎𝑛'∈ #,…,, 𝑥.,& for feature k. 

The feature-wise distance is scaled by the inverse of the median absolute deviation of feature j over the dataset
- Avoid to have different impacts for features with different variations (e.g., age and income)
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Wachter et al. - Definition of 𝜆

Since 𝜆 may be difficult to select, the approach proposes instead to select a tolerance 𝜖 for 
how far from 𝑦′ the prediction of the counterfactual 𝑥′ is allowed to be:

𝑓 𝑥! − 𝑦! ≤ ϵ

The loss function is minimized for 𝑥′ while increasing 𝜆 until a sufficiently close (i.e., respect to the 
tolerance ϵ) solution is found:

𝑎𝑟𝑔 m𝑖𝑛
/!

max
0
𝐿 𝑥, 𝑥!, 𝑦!, 𝜆
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Wachter et al. - Algorithm

1.Given an instance x to be explained, the desired outcome y’, a tolerance 𝜖 and a (low) 
initial value for 𝜆.

2.Sample a random instance as initial counterfactual.
3.Optimize the loss with the initially sampled counterfactual as starting point.
4.While 𝑓 𝑥! − 𝑦! > ϵ:

1. Increase 𝜆.
2. Optimize the loss with the current counterfactual as starting point.
3. Return the counterfactual that minimizes the loss.

5.Repeat steps 2-4 and return the list of counterfactuals or the one that minimizes the loss.
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DICE

• Diverse Counterfactual Explanations (DiCE)

• Extends Wachter et al. to consider also the properties of Diversity and Feasibility

• Goal to generate a set of counterfactual example {𝑐1, 𝑐2, … , 𝑐3} such that lead to a 
different decision than 𝑥, 𝑦’
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DICE – Terms in the loss function

Closeness to the input.

The set of counterfactual examples should be closed to the original instance

𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 = −
1
𝑘B
451

3

𝑑𝑖𝑠𝑡 𝑥4!, 𝑥
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DICE – Terms in the loss function

Closeness to the predefined output.

Minimize the distance between the counterfactual 𝑥’ and the target outcome 𝑦’

1
𝑘B
451

3

𝑦𝑙𝑜𝑠𝑠 𝑓 𝑥4! , 𝑦!
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DICE – Terms in the loss function

Diversity.

Via Determinantal Point Processes

𝑑𝑝𝑝_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = det(𝐾)

Where  𝐾4,6 =
1

17849:(/!
",/#

" )
and 𝑑𝑖𝑠𝑡 𝑥4!, 𝑥6! = distance between two counterfactuals

We want to penalize similar counterfactuals
The determinant of a symmetric matrix with large values in [0,1]  (i.e., similar 
counterfactual = small distance = large 𝐾4,6) will be small (close to 0).
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DICE – Addional constraints

Feasibility.

• The users can provide constraints on the feature manipulation 
• the feature X cannot increase beyond Y (e.g., income not beyond 1M)
• specify the variables that can be changed (e.g., age)
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DICE – Post-processing constrainsts

Sparsity. 

This property considers the features to change to produce the counterfactuals.
The paper do not include this property in the loss function but operate on counterfactuals 
in a post-processing manner.
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DICE – Final loss

The set of counterfactual is defined by minimizing the following loss function

𝑋′ = argm𝑖𝑛
/$" ,…,/%

"

1
𝑘
B
451

3

𝑦𝑙𝑜𝑠𝑠 𝑓 𝑥4! , 𝑦! +
𝜆1
𝑘
B
451

3

𝑑𝑖𝑠𝑡 𝑥4!, 𝑥 − 𝜆2 𝑑𝑝𝑝_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑥1! , … , 𝑥3! )

Where 𝑋′ is the set of 𝑘 counterfactual, and 𝜆1 and 𝜆2 are regularization terms
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Counterfactual Generation for NLP 

Polyjuice is a tool to generate counterfactuals for NLP
Purpose: explaining but also evaluating, and improving model

• Diverse Counterfactual Generation
• It generates a set diverse of counterfactuals by making minimal changes to the 

original text. 
• Changes involve altering words, phrases, or even larger textual structures while 

preserving grammatical correctness and naturalness.

• Multiple Types of Transformations
• Various textual transformations, including synonym replacement, paraphrasing, 

insertion, deletion

19
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Polyjuice - Desiderata

It accounts for the following desiderata
• Closeness to the input. 
• Diversity and multiple explanations.

• Multiple perturbation types
• Feasibility.

• Fluency/naturalness

+ 
Control perturbation
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Polyjuice – Desiderata - How
• Closeness to the input. 

• Fine-tune GPT-2 on close sentence pairs
• Original text as contenxt, perturbation of the context

• e.g., it is great for kids, it is not great for children
• Fluency & diversity

• Provided by GPT-2 itself
• Fine-tuning of GPT-2 for multiple datasets and diverse perturbations

• Control perturbation and generation process
• Via prompting
Example of perturbations
• Negation
It is great for kids. <|perturb|> [negation] (pos) --> ‘It is not great for children’, ‘It is great for no one.’ (neg)
• Replacing  
It is great for kids . <|perturb|> [lexical] (pos) --> ‘It is bad for kids’ (neg)
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Evaluating counterfactuals
Counterfactual explanations



Evaluating counterfactuals

Validity.
The fraction of examples returned by a method that are actually counterfactuals.
It measures the fraction of counterfactuals that actually have the desider class label

𝐶𝐹 − 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 =
|{𝑥4! ∈ 𝑋!𝑠. 𝑡. 𝑓 𝑥4! = 𝑦′}|

𝑘
Proximity.
Mean of feature-wise distances between the CF example and the original input.

𝐶𝐹 − 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 =
1
𝑘B
451

3

𝑑𝑖𝑠𝑡 𝑥4!, 𝑥
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Evaluating counterfactuals

Sparsity.

Count the number of features that are different, i.e., the number of changes between the original 
input and a generated counterfactual.

𝐶𝐹 − 𝑠𝑝𝑎𝑟𝑖𝑠𝑖𝑡𝑦 =
1
𝑘6
"#$

%

6
&#$

'

1[)/01*)1]

Where 𝑑 is the numbe of features

Diversity.
feature-wise distances between each pair of CF examples. Compute as mean of the distances 

1
#𝑝𝑎𝑖𝑟𝑠

6
"#$

%,$

6
-#".$%

𝑑𝑖𝑠𝑡 𝑥"!, 𝑥-!
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Cognitive metrics: Intuitiveness, 
comprehensibility
• Evaluated with user study
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Advantages

• Easy to interpret
• Changing the feature would change the prediction

• Form of explanations
• Explanation by example
• Minimal change in the features

• Depending on the generation method, we do not require accessing the training data

• Generally easy to implement as often it is a minimization process of a loss function

26



Disadvantages

• Feasibility 
• Unrealistic Changes. Counterfactual explanations might suggest changes that are not feasible 

or realistic, e.g., change age
• Actionability. Suggested changes might not be actionable for the individual, e.g., increase 

salary
• Ambiguity

• Multiple Possible Explanations. There can be many possible counterfactual explanations for a 
given decision. Which one is the best?

• Local Validity. 
• Counterfactual explanations are  local and specific to the individual instance. 
• Lack of Generalizability. Changes suggested by counterfactuals for one instance might not be 

applicable to other 

• Some users may prefer other form of explanations
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