

Distributed architectures for big data processing and analytics

July 5, 2024

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

 2. (2 points) Consider the following Spark Streaming applications.

(Application A)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resADStream = inputDStream\

.map(lambda value: int(value))

.filter(lambda value : value>5)

.window(30, 10)

.reduce(lambda v1,v2: min(v1, v2))

.filter(lambda value : value<10)

Print the result

resADStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

(Application B)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resBDStream = inputDStream\

.map(lambda value: int(value))

.reduce(lambda v1,v2: min(v1, v2))

.filter(lambda value : value>5)

.window(30, 10)

.reduce(lambda v1,v2: min(v1, v2))

.filter(lambda value : value<10)

Print the result

resBDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

(Application C)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resCDStream = inputDStream\

.map(lambda value: int(value))

.filter(lambda value : value>5)

.reduce(lambda v1,v2: min(v1, v2))

.filter(lambda value : value<10)

.window(30, 10)

.reduce(lambda v1,v2: min(v1, v2))

.filter(lambda value : value<10)

Print the result

resCDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

Which one of the following statements is true?

 a) Applications A, B, And C are equivalent in terms of returned result, i.e., given the

same input they return the same result.

 b) Applications A and B are equivalent in terms of returned result, i.e., given the

same input they return the same result, while C is not equivalent to the other two

applications.

 c) Applications A and C are equivalent in terms of returned result, i.e., given the

same input they return the same result, while B is not equivalent to the other two

applications.

 d) Applications B and C are equivalent in terms of returned result, i.e., given the

same input they return the same result, while A is not equivalent to the other two

applications.

 2. (2 points) Consider the input HDFS folder myFolder. It contains the following two files:

 ProfilesItaly.txt

o The text file ProfilesItaly.txt contains the following four lines:

Luca,Rome

Luca,Rome

Carmen,Naples

Luca,Turin

 ProfilesSpain.txt

o the text file ProfilesSpain.txt contains the following two lines:

Carmen,Barcelona

Laura,Barcelona

Suppose that you are using a Hadoop cluster that can potentially run up to 2 instances

of the mapper class in parallel. Suppose the HDFS block size is 1024MB. Suppose we

execute a MapReduce application for Hadoop that analyzes the content of myFolder.

Suppose the map phase emits, overall, the following key-value pairs (the key part is a

name while the value part is always 1):

(Luca, 1)

(Luca, 1)

(Carmen, 1)

(Luca,1)

(Carmen,1)

(Laura,1)

Suppose the number of instances of the reducer class is set to 3 and suppose the

reduce method of the reducer class sums the values associated with each key and

emits one pair (name, sum values) for each key. Specifically, suppose the following pair

is emitted overall by the reduce phase:

(Luca, 3)

(Carmen, 2)

(Laura, 1)

Suppose to run the above application once. Which of the following statements is true?

 a) Among the 3 instances of the reducer class:

 The reduce method of the first instance of the reducer class is invoked 2

times.

 The reduce method of the second instance of the reducer class is invoked 1

time.

 The reduce method of the third instance of the reducer class is never

invoked.

 b) Among the 3 instances of the reducer class:

 The reduce method of the first instance of the reducer class is invoked 4

times.

 The reduce method of the second instance of the reducer class is invoked 2

times.

 The reduce method of the third instance of the reducer class is never

invoked.

 c) Among the 3 instances of the reducer class:

 The reduce method of the first instance of the reducer class is invoked 3

times.

 The reduce method of the second instance of the reducer class is invoked 2

times.

 The reduce method of the third instance of the reducer class is invoked 1

time.

 d) Among the 3 instances of the reducer class:

 The reduce method of the first instance of the reducer class is invoked 6

times.

 The reduce method of the second instance of the reducer class is never

invoked.

 The reduce method of the third instance of the reducer class is never

invoked.

Part II

The managers of PoliJob, an international job portal company, asked you to develop some

applications to address the analyses they are interested in. The analyses are based on the

following input data sets/files.

 JobPostings.txt

o It is a textual file containing information about the job postings, i.e., positions

for jobs that companies are looking for. There is one line for each job posting.

The JobID uniquely identifies the job postings. Multiple job postings with the

same position (title) can be present. This file is extremely large and you

cannot suppose its content can be stored in one in-memory variable.

o Each line of JobPostings.txt has the following format

 JobID,Title,Country,Continent,PublicationDate

where JobID is the unique identifier of the job posting, Title is the

title/type of the open job, Country and Continent are the country and

continent where the job position is open, and PublicationDate is the

date of publication of the job posting.

 For example, the following line

J1,Software Engineer,IT,Europe,2024/01/24

means that the job posting with JobID J1 is for a position of Software

Engineer (Title) in Italy, Europe. The job was published on January

24, 2024.

Note that there can be many job postings for the same title (i.e., many lines

of JobPostings.txt can refer to the same title).

 Offers.txt

o It is a textual file containing information about the job offers, i.e., job offers

that were proposed to candidates applying for a Job posting (JobID). There is

one line for each offer. OfferID uniquely identifies the offers. The status

indicates whether the offer has been accepted or not. If an offer is accepted,

then you might have a job contract (i.e., there can be from 0 to 1 line for each

offer in Contracts.txt). This file is extremely large and you cannot suppose its

content can be stored in one in-memory variable.

o Each line of Offers.txt has the following format

 OfferID,JobID,OfferDate,Salary,Status,SSN

where OfferID is the unique identifier of the job offer, JobID is the job

posting for which the offer is made, OfferDate is the date the offer was

made, Salary is the offered salary, Status indicates whether the offer

was accepted or rejected, and SSN is the social security number of

the candidate to whom the offer was made.

 For example, the following line

O101,J1,2024/02/21,97000,Accepted,800-11-2222

means that the offer O101 was proposed to the candidate with SSN

800-11-2222 for job J1 with a salary of 97000 euro on February 21,

2024, and the candidate accepted the offer.

Note that there can be many offers (either accepted or rejected) for the same

job posting.

 Contracts.txt

o It is a textual file containing information about the contracts signed by

candidates, i.e., after an offer has been accepted, a contract is typically

signed (there are from 0 to 1 contract for each accepted offer). There is one

line for each contract, and ContractID uniquely identifies the contracts. This

file is extremely large and you cannot suppose its content can be stored in

one in-memory variable.

o Each line of Contracts.txt has the following format

 ContractID,OfferID,ContractDate,ContractType

where ContractID is the identifier of the contract, OfferID is the

identifier of the job offer for which the contract is signed, ContractDate

is the date of the signature of the contract, and ContractType the type

of contract (Full time, Part time, etc.).

 For example, the following line

C201,O101,2024/03/01,Full-time

means that the contract with id C201 associated with offer O101 is full

time and was signed on March 1, 2024.

Note that there are from 0 to 1 contracts for each accepted offer. No

contracts for rejected offers.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliJob are interested in performing some analyses about job postings.

Design a single application based on MapReduce and Hadoop and write the

corresponding Java code to address the following point:

1. Titles associated with many job postings in at least two different European

countries. The application selects the titles associated with at least 30 job postings

per country in at least 2 different European countries. Store the selected titles in the

output HDFS folder (one title per output line). Note: The number of distinct countries

is 100 (i.e., it is small).

Suppose that the input is JobPostings.txt and it has already been set. Suppose that the

name of the output folder has also already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be

reported.

 Use the following two specific multiple-choice questions to specify the number of

instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if

you override it,

o do not report the get and set methods. Suppose they are "automatically

defined".

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

(a) One single job is needed

(b) 0

(c) exactly 1

(d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliJob asked you to develop a single Spark-based application based on

RDDs or Spark SQL to address the following tasks. The application takes the paths of the

three input files and two output folders (associated with the outputs of the following points

1 and 2, respectively).

1. Job postings with many offers in 2024 and a number of rejected offers greater than

the number of accepted ones in 2024. Considering only the offers made from

January 1, 2024 (referring to OfferDate), the first part of this application selects the

job postings with at least 10 offers (considering all offers in 2024: accepted and

rejected) and a number of rejected offers greater than the number of accepted

offers (always considering only 2024). Store the JobIDs of the selected job postings

and the number of offers for each job posting in 2024 (considering all offers in 2024:

accepted+rejected) in the first output folder. Each output line contains one of the

selected job postings and its number of offers in 2024.

2. For each country, select the job titles with a high percentage of accepted offers that

are not associated with signed contracts from the year 2000. The second part of this

application selects for each country the job titles with more than 50% of the

accepted offers not associated with a contract in at least three different years (not

necessarily consecutive), considering the publication date of the job posting

(PublicationDate) as the reference year. Consider only the job postings published

from 2000 for this second part of the task. Store, in the second HDFS output folder,

the selected job titles, the associated countries, and the number of years with more

than 50% of the accepted offers not associated with a contract (one job title,

country, number of years with more than 50% of the accepted offers not associated

with a contract per output line).

Example Part 2

Consider a toy example that contains only 12 job postings from the year 2000.

 J1,Software Engineer,IT,Europe,2024/01/24

 J2,Software Engineer,IT,Europe,2023/01/24

 J3,Software Engineer,IT,Europe,2023/02/24

 J4,Software Engineer,IT,Europe,2010/01/24

 J5,Software Engineer,IT,Europe,2004/01/24

 J6,Data Engineer,IT,Europe,2020/03/04

 J7,Data Engineer,IT,Europe,2019/03/04

 J8,Data Engineer,IT,Europe,2018/03/04

 J9,Data Engineer,ES,Europe,2018/05/24

 J10,Data Scientist,FR,Europe,2024/01/24

 J11,Data Scientist,FR,Europe,2020/02/02

 J12,Data Scientist,FR,Europe,2018/03/04

Suppose these are the statistics, computed from the input files:

Title Country Year Num. of accepted

offers (considering

all offers and job

postings related to

Title and Country in

Year)

Num. of accepted

offers not

associated with a

contract (considering

all offers related to

Title and Country in

Year)

Percentage of

accepted offers not

associated with a

contract (considering

all offers related to

Title and Country in

Year)

Software Engineer IT

2024 10 6 60%

2023 2 2 100%

2010 5 4 80%

2004 1 0 0%

Data Engineer IT

2020 1 1 100%

2019 3 2 66.6%

2018 2 2 100%

Data Engineer ES 2018 1 0
0%

Data Scientist FR

2024 8 6 75%

2020 2 2 100%

2018 3 1 33.3%

In this case, the output is

 Software Engineer, IT, 3

 Data Engineer, IT, 3

The combination (Software Engineer, IT) is selected because there are at least

three years (specifically, 2010, 2023, and 2024) with the percentage of accepted

offers not associated with a contract greater than 50% for that combination.

The combination (Data Engineer, IT) is selected because there are at least three

years (specifically, 2018, 2019, and 2020) with the percentage of accepted offers

not associated with a contract greater than 50% for that combination.

The combination (Data Engineer, ES) is not selected because there are no years

with the percentage of accepted offers not associated with a contract greater than

50% for that combination.

The combination (Data Scientist, FR) is not selected because there are only two

years (specifically, 2020 and 2024) with the percentage of accepted offers not

associated with a contract greater than 50% for that combination.

 You do not need to write Java imports. Focus on the content of the main method.

 Suppose both SparkContext sc and SparkSession ss have already been set.

 Only if you use Spark SQL, suppose the first line of all files contains the header

information/the name of the attributes. Suppose, instead, there are no header lines

if you use RDDs.

