

Distributed architectures for big data processing and analytics

July 19, 2024

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark application.

tempRDD = sc.textFile("Temperature.txt")

Computes the number of lines of Temperature.txt

numLinesTemp = tempRDD.count()

Select high temperature values

highTempRDD = tempRDD.map(lambda v: int(v))\

 .filter(lambda v: v>35)\

 .cache()

Computes the number of high temperatures

numHighTemp = highTempRDD.count()

Retrieve the maximum high temperature

maxHighTemp = highTempRDD.reduce(lambda v1, v2: max(v1, v2))

Print on the standard output the three computed values

print("Num lines: " + str(numLinesTemp))

print("Num high temperatures: " + str(numHighTemp))

print("Max high temperature: " + str(maxHighTemp))

 Suppose the input file Temperature.txt is read from HDFS. Suppose this Spark

application is executed only 1 time. Suppose highTempRDD is small enough to be

completely cached. Which one of the following statements is true?

 a) This application reads the content of Temperature.txt 1 time.

 b) This application reads the content of Temperature.txt 2 times.

 c) This application reads the content of Temperature.txt 3 times.

 d) This application reads the content of Temperature.txt 6 times.

 2. (2 points) Consider the input HDFS folder myFolder. It contains the following two files:

 ProfilesItaly.txt

o The text file ProfilesItaly.txt contains the following 4 lines:

Luca,Rome

Luca,Rome

Carmen,Naples

Luca,Turin

 ProfilesSpain.txt

o The text file ProfilesSpain.txt contains the following 2 lines:

Carmen,Barcelona

Laura,Barcelona

Suppose that you are using a Hadoop cluster that can potentially run up to 3 instances

of the mapper class in parallel. Suppose the HDFS block size is 1024MB. Suppose we

execute a MapReduce application for Hadoop that analyzes the content of myFolder.

The content of myFolder is read using the TextInputFormat class. Suppose the map

phase selects only the lines with a name starting with L and emits, overall, the following

key-value pairs (the key part is a selected name while the value part is 1):

(Luca, 1)

(Luca, 1)

(Luca, 1)

(Laura, 1)

Suppose the number of instances of the reducer class is set to 4 and suppose the

reduce method of the reducer class sums the values associated with each key and

emits one pair (name, sum values) for each key. Specifically, suppose the following

pairs are emitted overall by the reduce phase:

(Luca, 3)

(Laura, 1)

Considering all the mapper class instances, how many times is the map method

invoked?

 a) 2

 b) 3

 c) 4

 d) 6

Part II

PoliCourses is an international company that manages online and in-person courses

attended by students worldwide. Statistics about the organized courses, lectures, and

students are computed based on the following input data files, which have been collected

in the company's latest ten years of activity.

 Students.txt

o Students.txt is a textual file containing information about the students of

PoliCourses. There is one line for each student. The total number of students is

greater than 100,000,000. This file is large and you cannot suppose the content

of Students.txt can be stored in one in-memory Java/Python variable.

o Each line of Students.txt has the following format

 SID,Name,Surname,Country

where SID is the user’s unique identifier, Name and Surname are his/her

name and surname, respectively, and Country is the country where

he/she lives.

 For example, the following line

SID10,Maria,Rossi,Italy

means that the name and surname of the user with identifier SID10 are

Maria and Rossi, respectively, and the student lives in Italy.

 Courses.txt

o Courses.txt is a textual file containing information about the courses organized

by PoliCourses. There is one line for each course. The total number of courses

stored in Courses.txt is greater than 200,000. This file is large and you cannot

suppose the content of Courses.txt can be stored in one in-memory Java/Python

variable.

o Each line of Courses.txt has the following format

 CID,Title,Topic

where CID is the course’s unique identifier, Title is the title of the course,

and Topic is the main topic covered by the course.

 For example, the following line

CID3024,MapReduce and Hadoop,Big data

means that the course with CID CID3024 is titled “MapReduce and

Hadoop” and covers the “Big data” topic.

 Lectures.txt

o Lectures.txt is a textual file containing information about the lectures offered by

PoliCourses. There is one line for each lecture. The total number of lectures

stored in Lectures.txt is greater than 3,000,000. This file is large and you cannot

suppose the content of Lectures.txt can be stored in one in-memory Java/Python

variable.

o Each line of Lectures.txt has the following format

 NUML,CID,Title,Date,StartingHour,Duration,Recorded

where the combination (NUML,CID) is the lecture’s unique identifier,

NUML is the number of the lecture inside the course, CID is the identifier

of the course associated with this lecture, Title is the lecture's title, Date

and StartingHour are the date and hour at which the lecture is scheduled,

Duration is its duration in minutes, and Recorded specify if the lecture is

video recorded (value ‘Yes’) or not (value ‘No’). Duration is an integer and

represents the lecture’s duration in minutes. Each lecture is associated

with one single course, while each course is associated with/is composed

of many lectures.

 For example, the following line

2,CID3024,Introduction to HDFS,2024/01/30,10:00,90,Yes

means that the lecture identified by the combination (2,CID3024) is the

second lecture of the course with CID CID3024, is titled “Introduction to

HDFS”, was scheduled for January, 30, 2024 at 10:00, lasts 90 minutes,

and is video recorded.

 UsersWatchedRecordedLectures.txt

o UsersWatchedRecordedLectures.txt is a textual file containing information about

who watched which of the recorded lectures. This file does not contain data

about the non-recorded lectures. A new line is inserted in this file every time a

student watches one of the recorded lectures. This file contains historical data

about the last 10 years. This file is big and you cannot suppose the content of

UsersWatchedLectures.txt can be stored in one in-memory Java/Python varia-

ble.

o Each line of UsersWatchedRecordedLectures.txt has the following format

 SID,StartWatchingTime,NUML,CID

where SID is the identifier of the student who watched the recorded

lecture identified by the combination (NUML,CID). The student SID

started watching the recorded lecture (NUML,CID) at StartWatchingTime.

StartWatchingTime is a timestamp in the format YYYY/MM/DD-HH:MM.

 For example, the following line

SID10,2024/02/01-20:40,2,CID3024

means that the student identified by SID10 watched the recorded lecture

identified by the combination (2,CID3024). He/she started watching the

recorded lecture on February 1, 2024, at 20:40.

Note that each student can watch many recorded lectures, and each recorded

lecture can be watched by many students. Moreover, the same student can watch

each recorded lecture several times at different starting times (a new line is

inserted in UsersWatchedRecordedLectures.txt for each visualization). The

combination of attributes (SID, StartWatchingTime) is the “primary key” of the input

file. Hence, each pair (SID, StartWatchingTime) occurs at most one time in

UsersWatchedRecordedLectures.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliCourses are interested in performing some analyses about the

managed courses.

Design a single application based on MapReduce and Hadoop and write the

corresponding Java code to address the following point:

1. Courses with all recorded lectures and courses with no recorded lectures. The

application computes the percentage of recorded lectures for each course and

selects the courses for which all lectures are recorded (percentage of recorded

lectures equal to 100%) and those for which no lectures are recorded (percentage

of recorded lectures equal to 0%). Store the result in the output HDFS folder (one

select course per output line). For the courses for which all lectures are recorded

(100%), store their CIDs and the constant string "All recorded". For the courses

without recorded lectures (0%), store their CIDs and the constant string "No

recorded lectures".

Note that there is at least one lecture for each course in Lectures.txt.

Example

Suppose, for this toy example, that there are only five courses, identified by the

following CIDs: CID1, CID2, CID3, CID4, and CID5.

Suppose that:

 CID1 is associated with 10 lectures: 6 recorded lectures and 4 non-recorded

lectures.

 CID2 is associated with 20 lectures: 20 recorded lectures and 0 non-recorded

lectures.

 CID3 is associated with 10 lectures: 9 recorded lectures and 1 non-recorded

lecture.

 CID4 is associated with 5 lectures: 0 recorded lectures and 5 non-recorded

lectures.

 CID5 is associated with 15 lectures: 15 recorded lectures and 0 non-recorded

lectures.

In this case, CID2, CID4, and CID5 are selected.

CID2 is selected because its percentage of recorded lectures is 100%.

CID4 is selected because its percentage of recorded lectures is 0%.

CID5 is selected because its percentage of recorded lectures is 100%.

The output is as follows:

CID2,All recorded

CID4,No recorded lectures

CID5,All recorded

CID2 is selected because its percentage of recorded lectures is 100%

CID4 is selected because its percentage of recorded lectures is 0%

CID5 is selected because its percentage of recorded lectures is 100%

Suppose that the input is Lectures.txt and it has already been set. Suppose that the name

of the output folder has also already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be

reported.

 Use the following two specific multiple-choice questions to specify the number of

instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if

you override it,

o do not report the get and set methods. Suppose they are "automatically

defined".

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

(a) One single job is needed

(b) 0

(c) exactly 1

(d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliCourses asked you to develop a single Spark-based application

based either on RDDs or Spark SQL to address the following tasks. The application takes

the paths of the four input files and two output folders (associated with the outputs of the

following points 1 and 2, respectively).

1. Courses with a high percentage of long lectures. The first part of this application

selects the courses with a percentage of long lectures greater than 70%. A lecture

is classified as a long lecture if it lasts at least 120 minutes. Store the identifiers

(CIDs) of the selected courses in the first output folder (one selected CID per output

line).

2. For each student, the courses for which the student never watched more than one

time the course's recorded lectures. The second part of this application selects, for

each student, the courses for which he/she has never watched each of the course's

recorded lectures more than one time (i.e., for each student, select the courses for

which the student watched from 0 to 1 time each recorded lecture). For each

student, consider only the courses for which the student watched at least one

recorded lecture. Store the result in the second output folder (one of the selected

combinations (SID, CID) per output line).

Example Part 2

Consider a toy example with a few courses, recorded lectures, and students.

Suppose there are two courses: CID1 and CID2.

Suppose that

 CID1 has 3 recorded lectures identified by (1, CID1), (2, CID1), and (3, CID1)

 CID2 has 2 recorded lectures identified by (1, CID2) and (2, CID2)

The following table reports the number of times each student watched each of the

recorded lectures.

Courses

Recorded lectures

CID1

CID2

Students (1, CID1) (2, CID1) (3, CID1) (1, CID2)

(2, CID2)

SID1 1 2 0 1

0

SID2 1 1 1 0 1

SID3 2 0 3 1
2

SID4 2 2 1 0
3

In this case, the output is

 SID1,CID2

 SID2,CID1

 SID2,CID2

The combination (SID1,CID2) is selected because student SID1 watched the

recorded lectures of CID2 at most one time.

The combination (SID2,CID1) is selected because student SID2 watched the

recorded lectures of CID1 at most one time.

The combination (SID2,CID2) is selected because student SID2 watched the

recorded lectures of CID2 at most one time.

 You do not need to write imports. Focus on the content of the main method.

 Suppose both SparkContext sc and SparkSession ss have already been set.

 Only if you use Spark SQL, suppose the first line of all files contains the header

information/the name of the attributes. Suppose, instead, there are no header lines

if you use RDDs.

