Large
Language
Models

Introduction to
deep learning

Flavio Giobergia

Ny,
> A% poiitecni B
2V Politecnico
iwsre iy di Torino DNp
o g

The percepfiron

* The perceptron is the simplest unit of neural networks

* It takes an input with , and does the following:
* It weights each input feature with a given weight,
* |t produces a weighted sum of the inputs, and
* |t applies a function to the output

:f(Wo‘l‘Wl +W2 ++Wn)

¢ &

3 sf{i;?fn";“Dgl(} — [Large Language Models]— [Introduction to deep learning]

The perceptron

P X1 W

X, - — @ — — y o x = (xq,%,,...,%x,) is the input sample

: Output . represents the output of the perceptron.

1 X 1 y

1 n !

Noeo-- ’ * f(-) represents a non-linear “activation” function
Inputs

* w; (and wy) are weights (and bias), which are

Or, in other words, v = f (X w;x;) = f(wTx) and xo = 1 learned

Note
With the exception of f(+), this looks like the classic linear regression
And if f(-) = a(-) (sigmoid function), this looks like the (just as classic) logistic regression

DEXG — [Large Language Models] — [Introduction to deep learning

The perceptron, in 2D

Linear activation
function, f(x) = x

PN

X _ 1

o ———— - —

VY =WwWiXx, +WyXx, + W

wi 0.00
w2 0.00
wO 0.00

10.0
7.5
5.0
2.5

—2.5
-5.0
-7.5

-10.0

—2 -1 0 1 2
X1

The perceptron can be used to
represent a family of functions,
Y =WwWiXx, +WwyXx, + W

Various values of wy, w;, w, define
the different functions that can be
learned by the perceptron.

[Introduction to deep learning]

[Large Language Models]

Activation functions

e Activation functions are used for two main reasons:

ReLU Sigmoid

1. Enforce properties on perceptron’s output ’
* E.g., sigmoid = binds output to [0, 1] range 3
2. Introduce non-linearities in the model "

1.0 4

0.8

0.4

+ some others (faster convergence, sparsity, ...)

0.2

* Commonly adopted functions: |

o Re I_U -4 -2 0 2 4 -10 -5 0

e Sigmoid e =S
e Leaky RelU

* Tanh

e Softmax
* Linear

0.75 4

0.50 A

0.25 1

0.00 A

-0.25 1

—0.50 4

-0.75 1

|
N = o = N w IS w
L L L L L L

e GelU R R

[Introduction to deep learning]

[Large Language Models]

1. Enforce properties on perceptron’s output

&
* Binary classification problem } ..
» Separate positive (7,'}) and negative (@) samples ol ’:
* For a point x € R?, the perceptron can predict p(Y¢| x) J
* For the binary case, this implies p(@ | x) = 1 — p(Yy| x) - £

* To get a valid probability, we must enforce p(¥¥|x) € [0, 1]
* We already have p(@| x) + p(5¥| x) = 1 by construction . a

w2 0.00

w0 0.00

1.0

* The Sigmoid maps any value in R to the range [0, 1]

* i.e., the perceptron’s output (in R) is squashed to [0, 1]
1

1+e—X

0.8

0.6

0.4

e g(x) =

0.2

0.0

[Large Language Models] —— [Introduction to deep learning] 7

4 \

=iy v =fWi) N

OUtpUt 1 Wy W,

1
1 R PR | I R
X2

N

=iy v =f(q"0) 7

Output 2

Note

When we refer to the “number of
parameters” in a model, we refer to the
total number of weights the model has.
This is a “6 parameters” model!

Linear (fully-connected)
layer

Introduction to deep learning]

[

Large Language Models]

[

DYG

Politecnico
di Torino

and adding other layers!

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

Linear layer 1

[Large Language Models] [Introduction to deep learning]

2. Infroduce non-linearities in the model

y = o(WJW]x) model

o if f(x) = x (i.e., no non-linearity is added), we get
z= s'WTlx
* This implies:
1. We could have used W' = Ws and get the same
output
2. We wouldn’t have needed a second layer!
3. But our model is still linear

e So, we use non-linear activation functions to
model more complex functions

o
o

P(pos|x)

o
s

o
o

P(pos|x)

o
IS

Multi-layer perceptron models

* We can stack additional layers

* separated by (activation functions) to

prevent collapses Hidden layers

. . . A
* Universal Approximation Theorem tellsusthat . . ~—— ———~
we can approximate “any” function with MLPs)
* “For any continuous function g defined on a compact |£—>| £ g £ N adE
subset of R™ and for any € > 0, there exists a
feedforward neural network with a single hidden o LJULJU —JuLJuU U
layer and a finite number of neurons that can nout] Outone |
approximate g to within an arbitrary degree of nputiayer Htputfayer

accuracy €”

* Asingle-layer MLP works ... but no information on the
number of neurons, or the weights’ values!

e Deeper, narrower networks are generally used

Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of control, signals and systems 2.4 (1989): 303-314.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." Neural networks 2, no. 5 (1989): 359-366.

N
¥, =AY pofitecnico B
YinSFE Yy di Torino
o o
p

Activation functions for classification models

* As argued, activation functions can be used to enforce properties on
the model’s output

* In classification problems, the output before the final activation is
treated as unnormalized probabilities (logits)

* We still need a step to convert logits into valid probabilities
* i.e., all probabilities should sum to 1, and be in [0, 1]

Input
v

Logit
v
\ 4
tput

4 Ny,

s 3,

Y ¢ Politecnico
y & >\

YinSFE Yy di Torino
Y s

[Large Language Models] [Introduction to deep learning]

Binary classification

* The model predicts the probability of a single class for point x
* As a convention, the positive one P(pos|x)

* The model produces a logit z = model(x)

Sigmoid

12

* We use the sigmoid function on the output logit z 08
o 0(z) = ——
1+e~ %
* This guarantees P(pos|x) € [0, 1] 041
* We work out the probability of the negative class 02
* P(neg|x) =1 — P(pos|x) 0.0 .
* We can easily show that P(neg|x) € [0,1] B

* By construction, P(pos|x) + P(neg|x) = 104

10

[Large Language Models] [Introduction to deep learning]

Multi-class classification

 The output class is one of many (cy, ¢y, ..., C)

 The model produces n logits for a point x
* (i.e., the last layer will have n perceptrons)

e 7z =1(24,2y, ...,2,) = model(x)

* We need to obtain, from the logits, valid probabilities
* P(cq1]x), P(cz|x), ..., P(cplx)

* The softmax function is applied:

* 1)(t%|35) — Ezler
J

* |t can be easily shown that:
+ P(ci|x) €[0,1] 4 1
¢ Y P(cilx) =14 \

model

logits z

Dog

> Cat

Bird
Turtle

13

Activation functions for regression models

* In regression, models generally predict real numbers
* Typically, there is no need to enforce properties

e Output activation function can be the identity function

JIOEE

* Generally the only situation where it makes sense to use it!

5

o=

¥ Politecnico B
I lorino

PN

Va7

V.Y

fEg OF

.

N EEPs
ST

Defining weights (parameters)

 So far, we assumed all weights and biases (let’s call them) to be
known
* But, we still need to figure out how we find them!

* We pick a function (objective, or loss), L(0), that we want to minimize

e e.g., in Linear Regression we minimize the Mean Squared Error

e L(B) = MSE(0) = %z(yi — 97Tx;)?
Note

L also depends on the training points x;, y;, so we should

* Then, we pick 6 that minimizes it IS0 (s ALy o)

However, the training set X, v is generally fixed. Thus, we
only have control over 6, so we use the notation L(6).

[Large Language Models] [Introduction to deep learning] 16
* For models, we can find the optimal weights in closed form
. 61;(9) . aMSE(Q) . O
06 96
* Quadraticin @, can be solved easily!
* Or, we can evaluate the loss function for a bunch of @’s, and find the
“best” one 0 ; a7
y = 6x MSE = 33 (y -)?
1000
50
Note 20 800
For linear regression, we don’t try a bunch of &
since we can easily find the best value in closed X7 - e
form. 201 = 400 1
10
However, this provides the intuition for what we i -
will do next with more complex loss
~ functions/models. : -0 ' , , ' ' 0l , LS
00 02 04 06 08 10 0 20 40 60 80

5

oF

¥ Politecnico B
I lorino

TN

Vi

V.Y

fEg OF

&

N EEPs
S

More complex losses/models

* For more complex loss functions/models, we may not be able to solve
the problem in closed form
e But we can evaluate L(0) for various values of 6

* We can iteratively update 6 to reach a local minimum:
* We start from a random value 6, then o — ¥ 20

* we “move around” according to “some policy” 20
1.5 - l

Loss

0.5

0.0 -

P
TN

Va7

Y =

[A

BB
NP,
AT

ov
o=

-

¥ Politecnico B
I lorino

We “move around’” according to
some policy”

* Move around = update 6 incrementally, based on its current value
 The new value of & at any step depends on the previous step’s value
* 0411 = 0 + update

* Some policy = we take a small step in the direction where the
function decreases locally

2.0 1

* i.e.in the opposite direction of the A
* 011 =0 —«a 'C(Ht) N

* for 1-dimensional 6, we have 0,1 = 0; — « L) 14 1

1.2 4

Loss

* «: learning rate, controls the “size” of the step

1.0 A

e Gradient Descent!

0.6 A

0.4 -

0 10 20 30 40 50

60

70

80

Some limitations of GD

Note

Different initializations will lead to the global minimum
for convex loss functions. However, that represents a

trivial situation we typically do not encounter.

* GD is sensitive to weight initialization

e Different initializations can lead to different solutions! 10

* GD can get stuck in local minima

* Various solutions to help prevent local minima:
* Adding momentum
* Adaptive learning rates
* Learning rate schedules

2.0
184
1.6 -
1.4 -

1.2 A

Loss

0.8 A

0.6 1

0.4

204
1.8 - !
1.6 -
1.4 |

1.2 4

Loss

1.0 1

0.8 1

0.6 1

0.4 L

Ny,
> A% poiitecni B
v Politecnico
iwsre iy di Torino DNp
o g

Backpropagation
* So far, we assumed we were able to compute 'V, L(60)

* However, any loss/model combination would need a different
gradient computation!

* We can use backpropagation to compute the gradient of the loss w.r.t.
any weight!
* Backpropagation is just a fancy word for “using the chain rule”

Using the chain rule

of _ 9599
'dx dg ox

* Sometimes known as f(g(x))’ =f'(g(x))-g'(x)

* We use the chain rule from calculus

* And apply it from the end of the computational graph, backwards
* (hence the name, backpropagation)

-

ST

s

fE O

LY 8

N 2P,
VTaet
ov
-=

¥ Politecnico B
I Torino

Computational graph

* A computational graph is a directed graph
* Each node corresponds to an operation

* Each edge represents the flow of data
between nodes

* For instance, we may want to compute
y =wx+q
* We start from three variables, w, x and y

* The computational graph performs one
operation at a time

* First, compute the intermediate variable a = wx

* Then, compute the output variablez =a +y =
wx +y

Ny,
> A% poiitecni B
2V Politecnico
iwsre iy di Torino DNp
o g

Backpropagation example

* Let’s say:
* Our dataset has one point, (x, V)
* Our (weird) model has two parameters, 64 and 6, and predicts 6,6,
e Our loss function will be £ = (8,0,x — y)?

* We build a computational graph with all operations and intermediate
variables

°a=9192
°b=ax=8192
*c=b —y=ax —y=0,0,x —

* L=c?=(b-))*=(ax —y)* = (010, —))*

[Large Language Models] —— [Introduction to deep learning] 24

0L 0L da 00,6,
= = 2¢CX
060, 0adob, 00,

= ZC.XHZ

6L_6£6b_2 (9ax_2
da _oboa ““oqa

aL_BLac_Z a(b—y)_2
ob _oacob " ap

= = ZCX = 4CX = 2
06, 0a a6, 36, ! = (610,x —y)
Forward step
* The loss L is computed starting from the “inputs” 64,0,,x,y
Backward step (backpropagation)
« Theloss L is used to compute the derivative w.rt. ¢ = g—f 90, 2(6010,x — y)x0;
* The derivative % is used to compute the derivative w.r.t. b = g—ﬁ oL
« The derivative % is used to compute the derivative w.rt. a = Z—Z 96, = 2(610,x —y)x0,
* The derivative oL is used to compute the derivative w.r.t. 6,0, = a_z:’ 9L
da 06, 00,

2 i DBG
Loss functions

* Regression

 Mean Squared Error, Mean Absolute Error
* Binary

e Binary Cross-Entropy (BCE)

* y ={0,1} =>» ground truth

* ¥ = model(x) € [0,1] =» predicted value

L=— — (1 —-y)log(1—19)

* y (ground truth) acts as a “selector” of the loss term
to be applied

cy=1=2>L=-
e y=0=>L=—log(1—-79)

[Large Language Models] — [Introduction to deep learning

Loss

SS

]

y=1, L= —log(y)

Targetvalue:y =1
* Low loss values when

predictiony =~ 1
* High loss value when
prediction y = 0

00 02 04 06 08 10
y

y=0,£=—-log(l-y)

Targetvalue:y =1
* Low loss values when

predictiony = 1
* High loss value when
prediction y = 0

0.0 0.2 0.4 0.6 0.8 1.0

25

N
¥, =AY pofitecnico B
YinSFE Yy di Torino
o o
p

Loss functions

* Multi-class classification
* Cross-Entropy
e Generalization to multiple classes of BCE
* y; = 1 when ground truth is the ith class, 0 otherwise
* y; plays the same “selector” mechanism as in BCE

£L=- yilog)
[

