Large
Language
Models

Introduction to deep learning

Flavio Giobergia



## The perceptron

- The perceptron is the simplest unit of neural networks
- It takes an input with *multiple features*, and does the following:
  - It weights each input feature with a given weight,
  - It produces a weighted sum of the inputs, and
  - It applies a *function* to the output
- $y = f(w_0 + w_1x_1 + w_2x_2 + \dots + w_nx_n)$

### The perceptron



Or, in other words,  $y = f(\sum_{i=0}^{n} w_i x_i) = f(w^T x)$  and  $x_0 = 1$ 

- $x = (x_1, x_2, ..., x_n)$  is the input sample
- y represents the output of the perceptron.
- $f(\cdot)$  represents a non-linear "activation" function
- $w_i$  (and  $w_0$ ) are weights (and bias), which are "learned"

#### Note

With the exception of  $f(\cdot)$ , this looks like the classic *linear regression* And if  $f(\cdot) = \sigma(\cdot)$  (sigmoid function), this looks like the (just as classic) *logistic regression* 

### The perceptron, in 2D





The perceptron can be used to represent a family of functions,

$$y = w_1 x_1 + w_2 x_2 + w_0$$

Various values of  $w_0$ ,  $w_1$ ,  $w_2$  define the different functions that can be learned by the perceptron.

#### Activation functions

- Activation functions are used for two main reasons:
  - 1. Enforce *properties* on perceptron's output
    - E.g., sigmoid → binds output to [0, 1] range
  - 2. Introduce *non-linearities* in the model
  - + some others (faster convergence, sparsity, ...)
- Commonly adopted functions:
  - ReLU
  - Sigmoid
  - Leaky ReLU
  - Tanh
  - Softmax
  - Linear
  - GeLU



#### 1. Enforce properties on perceptron's output

- Binary classification problem
  - Separate positive ( ) and negative ( ) samples
- For a point  $x \in \mathbb{R}^2$ , the perceptron can predict p(x)
  - For the binary case, this implies p(|x) = 1 p(x) |x
- To get a valid probability, we must enforce  $p(x) \in [0,1]$ 
  - We already have  $p(\bigcirc | x) + p(( x | x) = 1)$  by construction
- The Sigmoid maps any value in  $\mathbb{R}$  to the range [0,1]
  - i.e., the perceptron's output (in  $\mathbb{R}$ ) is squashed to [0,1]

$$\bullet \ \sigma(x) = \frac{1}{1 + e^{-x}}$$



This is a "6 parameters" model!

# Adding some perceptrons





#### 2. Introduce non-linearities in the model

- if f(x) = x (i.e., no non-linearity is added), we get  $z = s^T W^T x$
- This implies:
  - 1. We could have used W' = Ws and get the same output
  - 2. We wouldn't have needed a second layer!
  - 3. But our model is still linear
- So, we use non-linear activation functions to model more complex functions





# Multi-layer perceptron models

We can stack additional layers

Large Language Models ]

- separated by *non-linearities* (activation functions) to prevent collapses
- Universal Approximation Theorem tells us that we can approximate "any" function with MLPs
  - "For any continuous function g defined on a compact subset of  $\mathbb{R}^n$  and for any  $\epsilon>0$ , there exists a feedforward neural network with a single hidden layer and a finite number of neurons that can approximate g to within an arbitrary degree of accuracy  $\epsilon$ "
  - A single-layer MLP works ... but no information on the number of neurons, or the weights' values!
  - Deeper, narrower networks are generally used



#### Activation functions for classification models

- As argued, activation functions can be used to enforce properties on the model's output
- In classification problems, the output *before* the final activation is treated as *unnormalized probabilities* (*logits*)
- We still need a step to convert *logits* into *valid* probabilities
  - i.e., all probabilities should sum to 1, and be in [0, 1]



# Binary classification

- The model predicts the probability of a single class for point x
  - As a convention, the *positive* one P(pos|x)
- The model produces a logit z = model(x)
- We use the *sigmoid function* on the output logit z

• 
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

- This guarantees  $P(pos|x) \in [0,1]$
- We work out the probability of the negative class
  - P(neg|x) = 1 P(pos|x)
  - We can easily show that  $P(neg|x) \in [0,1]$
- By construction, P(pos|x) + P(neg|x) = 1



#### Multi-class classification

- The output class is one of many  $(c_1, c_2, ..., c_n)$
- The model produces n logits for a point x
  - (i.e., the last layer will have *n* perceptrons)
  - $z = (z_1, z_2, ..., z_n) = model(x)$
- We need to obtain, from the logits, valid probabilities
  - $P(c_1|x), P(c_2|x), ..., P(c_n|x)$
- The *softmax* function is applied:
  - $P(c_i|x) = \frac{e^{z_i}}{\sum_i e^{z_i}}$
- It can be easily shown that:
  - $P(c_i|x) \in [0,1]$
  - $\sum_{i} P(c_{i}|x) = 1$



### Activation functions for regression models

• In regression, models generally predict real numbers

Typically, there is no need to enforce properties

- Output activation function can be the identity function
  - f(x) = x
  - Generally the only situation where it makes sense to use it!

# Defining weights (parameters)

- ullet So far, we assumed all weights and biases (let's call them ullet) to be known
  - But, we still need to figure out how we find them!
- We pick a function (objective, or loss),  $\mathcal{L}(\theta)$ , that we want to minimize
  - e.g., in Linear Regression we minimize the Mean Squared Error

• 
$$\mathcal{L}(\theta) = MSE(\theta) = \frac{1}{n} \sum (y_i - \theta^T x_i)^2$$

• Then, we pick  $\theta$  that minimizes it

#### Note

 $\mathcal{L}$  also depends on the training points  $x_i$ ,  $y_i$ , so we should refer to it as  $\mathcal{L}(\theta, X, y)$ .

However, the training set X, y is generally fixed. Thus, we only have control over  $\theta$ , so we use the notation  $\mathcal{L}(\theta)$ .

# Linear regression

- For simple models, we can find the optimal weights in closed form
  - $\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = \frac{\partial MSE(\theta)}{\partial \theta} = 0$
  - Quadratic in  $\theta$ , can be solved easily!
- Or, we can evaluate the loss function for a bunch of  $\theta$ 's, and find the

"best" one



For linear regression, we don't try a bunch of  $\theta$  since we can easily find the best value in closed form.

However, this provides the intuition for what we will do next with more complex loss functions/models.



#### More complex losses/models

- For *more complex* loss functions/models, we may not be able to solve the problem in closed form
  - But we can evaluate  $\mathcal{L}(\theta)$  for various values of  $\theta$
- We can iteratively update  $\theta$  to reach a local minimum:
  - We start from a random value  $\theta$ , then
  - we "move around" according to "some policy"



# We "move around" according to "some policy"

- Move around = update  $\theta$  incrementally, based on its current value
  - The new value of  $\theta$  at any step depends on the previous step's value
  - $\theta_{t+1} := \theta_t + update$
- Some policy = we take a small step in the direction where the function decreases locally
  - i.e. in the *opposite* direction of the gradient
  - $\theta_{t+1} := \theta_t \alpha \nabla_{\theta} \mathcal{L}(\theta_t)$ 
    - for 1-dimensional  $\theta$ , we have  $\theta_{t+1} = \theta_t \alpha \frac{\partial \mathcal{L}(\theta)}{\partial \theta}$
    - $\alpha$ : learning rate, controls the "size" of the step
- Gradient Descent!



#### Some limitations of GD

- GD is sensitive to weight initialization
  - Different initializations can lead to different solutions!
  - GD can get stuck in local minima

- Various solutions to help prevent local minima:
  - Adding momentum
  - Adaptive learning rates
  - Learning rate schedules

#### Note

Different initializations will lead to the global minimum for convex loss functions. However, that represents a trivial situation we typically do not encounter.





## Backpropagation

- So far, we assumed we were able to compute  $\nabla_{\theta} \mathcal{L}(\theta)$
- However, any loss/model combination would need a different gradient computation!

- We can use backpropagation to compute the gradient of the loss w.r.t. any weight!
  - Backpropagation is just a fancy word for "using the chain rule"

# Using the chain rule

- We use the chain rule from calculus,  $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \frac{\partial g}{\partial x}$ 
  - Sometimes known as  $f(g(x))' = f'(g(x)) \cdot g'(x)$
- And apply it from the end of the computational graph, backwards
  - (hence the name, backpropagation)

# Computational graph

- A computational graph is a directed graph
  - Each node corresponds to an operation
  - Each edge represents the flow of data between nodes
- For instance, we may want to compute y = wx + q
  - We start from three variables, w, x and y
  - The computational graph performs one operation at a time
    - First, compute the intermediate variable a = wx
    - Then, compute the output variable z = a + y = wx + y



### Backpropagation example

- Let's say:
  - Our dataset has one point, (x, y)
  - Our (weird) model has two parameters,  $\theta_1$  and  $\theta_2$ , and predicts  $\theta_1\theta_2x$
  - Our loss function will be  $\mathcal{L} = (\theta_1 \theta_2 x y)^2$
- We build a computational graph with all operations and intermediate variables
  - $a = \theta_1 \theta_2$
  - $b = ax = \theta_1 \theta_2 x$
  - $c = b y = ax y = \theta_1 \theta_2 x y$
  - $\mathcal{L} = c^2 = (b v)^2 = (ax v)^2 = (\theta_1 \theta_2 x v)^2$



#### Forward step

• The loss  $\mathcal{L}$  is computed starting from the "inputs"  $\theta_1$ ,  $\theta_2$ , x, y

#### **Backward step (backpropagation)**

- The loss  $\mathcal{L}$  is used to compute the derivative w.r.t.  $c \rightarrow \frac{\partial \mathcal{L}}{\partial c}$
- The derivative  $\frac{\partial \mathcal{L}}{\partial c}$  is used to compute the derivative w.r.t.  $b \Rightarrow \frac{\partial \mathcal{L}}{\partial b}$  The derivative  $\frac{\partial \mathcal{L}}{\partial b}$  is used to compute the derivative w.r.t.  $a \Rightarrow \frac{\partial \mathcal{L}}{\partial a}$
- The derivative  $\frac{\partial \mathcal{L}}{\partial a}$  is used to compute the derivative w.r.t.  $\theta_1, \theta_2 \Rightarrow \frac{\partial \mathcal{L}}{\partial \theta_1}, \frac{\partial \mathcal{L}}{\partial \theta_2}$

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = 2(\theta_1 \theta_2 x - y) x \theta_2$$

$$\frac{\partial \mathcal{L}}{\partial \theta_2} = 2(\theta_1 \theta_2 x - y) x \theta_1$$

#### Loss functions

- Regression
  - Mean Squared Error, Mean Absolute Error
- Binary
  - Binary Cross-Entropy (BCE)
  - $y = \{0, 1\} \rightarrow \text{ground truth}$
  - $\hat{y} = model(x) \in [0,1] \rightarrow predicted value$

$$\mathcal{L} = -ylog(\hat{y}) - (1 - y)log(1 - \hat{y})$$

- y (ground truth) acts as a "selector" of the loss term to be applied
  - $y = 1 \rightarrow \mathcal{L} = -log(\hat{y})$
  - $y = 0 \rightarrow \mathcal{L} = -log(1 \hat{y})$





#### Loss functions

- Multi-class classification
  - Cross-Entropy
  - Generalization to multiple classes of BCE
  - $y_i = 1$  when ground truth is the ith class, 0 otherwise
  - $y_i$  plays the same "selector" mechanism as in BCE

$$\mathcal{L} = -\sum_{i} y_{i} \log(\widehat{y}_{i})$$