
Large
Language
Models

Flavio Giobergia

Introduction to
deep learning

[Large Language Models]

The perceptron
• The perceptron is the simplest unit of neural networks
• It takes an input with multiple features, and does the following:
• It weights each input feature with a given weight,
• It produces a weighted sum of the inputs, and
• It applies a function to the output

• 𝑦 = 𝑓(𝑤! +𝑤"𝑥" +𝑤#𝑥# +⋯+𝑤$𝑥$)

[Introduction to deep learning] 2

[Large Language Models]

The perceptron

!𝑤!𝑥!

𝑥!

𝑥"

𝑥#$!

𝑥#

𝑤
!

𝑤"

𝑤#$!

𝑤#

…

𝑤%

𝑓(⋅) 𝑦

Inputs

Output

Or, in other words, 𝑦 = 𝑓 ∑&'%# 𝑤&𝑥&) = 𝑓(𝑤(𝑥 and 𝑥% = 1

• 𝑥 = 𝑥!, 𝑥", … , 𝑥# is the input sample

• 𝑦 represents the output of the perceptron.

• 𝑓 ⋅ represents a non-linear “activation” function

• 𝑤& (and 𝑤%) are weights (and bias), which are

“learned”

Note
With the exception of 𝑓 ⋅ , this looks like the classic linear regression
And if 𝑓 ⋅ = 𝜎 ⋅ (sigmoid function), this looks like the (just as classic) logistic regression

[Introduction to deep learning] 3

[Large Language Models]

The perceptron, in 2D

!𝑤!𝑥!
𝑥!

𝑥"

𝑤!

𝑤"

𝑤%

𝑥 𝑦

Inputs
Output

𝑦 = 𝑤!𝑥! + 𝑤"𝑥" + 𝑤%

The perceptron can be used to
represent a family of functions,
𝑦 = 𝑤!𝑥! + 𝑤"𝑥" + 𝑤%

Various values of 𝑤%, 𝑤!, 𝑤" define
the different functions that can be
learned by the perceptron.

Linear activation
function, 𝑓 𝑥 = 𝑥

[Introduction to deep learning] 4

[Large Language Models]

Activation functions
• Activation functions are used for two main reasons:

1. Enforce properties on perceptron’s output
• E.g., sigmoid è binds output to [0, 1] range

2. Introduce non-linearities in the model
+ some others (faster convergence, sparsity, …)

• Commonly adopted functions:
• ReLU
• Sigmoid
• Leaky ReLU
• Tanh
• Softmax
• Linear
• GeLU

[Introduction to deep learning] 5

[Large Language Models]

1. Enforce properties on perceptron’s output

• Binary classification problem
• Separate positive () and negative () samples

• For a point 𝑥 ∈ ℝ#, the perceptron can predict 𝑝 𝑥)
• For the binary case, this implies 𝑝 𝑥) = 1 − 𝑝 𝑥)

• To get a valid probability, we must enforce 𝑝 𝑥) ∈ [0, 1]
• We already have 𝑝 𝑥) + 𝑝 𝑥) = 1 by construction

• The Sigmoid maps any value in ℝ to the range [0, 1]
• i.e., the perceptron’s output (in ℝ) is squashed to 0, 1
• 𝜎 𝑥 = .

./0%&

[Introduction to deep learning] 6

[Large Language Models]

𝑥!

𝑥"

Linear (fully-connected)
layer

Adding some perceptrons

!𝑞!𝑥!

𝑞%

𝑓(⋅) 𝑦"
Output 2

!𝑤!𝑥!

𝑤%

𝑓(⋅) 𝑦!
Output 1

𝑦! = 𝑓(𝑤(𝑥)

𝑦" = 𝑓(𝑞(𝑥)

𝑦 =
𝑦!
𝑦" = 𝑓(

𝑤% 𝑤! 𝑤"
𝑞% 𝑞! 𝑞"

1
𝑥!
𝑥"

) = 𝑓(𝑊(𝑥)

Inputs

Note
When we refer to the “number of
parameters” in a model, we refer to the
total number of weights the model has.
This is a “6 parameters” model!

[Introduction to deep learning] 7

[Large Language Models]

Non-
linearity

Non-
linearity Linear layer 2Linear layer 1

and adding other layers!

𝑓(⋅) 𝑦"

𝑓(⋅) 𝑦!

!𝑠!𝑦!

𝑠%

𝑓(⋅) 𝑧
Output

𝑧 = 𝑓(𝑠(𝑓 𝑊(𝑥)
𝑥!

𝑥"

!𝑞!𝑥!

𝑞%

Inputs

!𝑤!𝑥!

𝑤%

[Introduction to deep learning] 8

[Large Language Models]

2. Introduce non-linearities in the model

• if 𝑓 𝑥 = 𝑥 (i.e., no non-linearity is added), we get
𝑧 = 𝑠%𝑊%𝑥
• This implies:

1. We could have used 𝑊5 = 𝑊𝑠 and get the same
output

2. We wouldn’t have needed a second layer!
3. But our model is still linear

• So, we use non-linear activation functions to
model more complex functions

[Introduction to deep learning] 9

[Large Language Models]

Multi-layer perceptron models
• We can stack additional layers

• separated by non-linearities (activation functions) to
prevent collapses

• Universal Approximation Theorem tells us that
we can approximate “any” function with MLPs
• “For any continuous function 𝑔 defined on a compact

subset of ℝ+ and for any 𝜖 > 0, there exists a
feedforward neural network with a single hidden
layer and a finite number of neurons that can
approximate g to within an arbitrary degree of
accuracy 𝜖”

• A single-layer MLP works … but no information on the
number of neurons, or the weights’ values!

• Deeper, narrower networks are generally used

N
on

-li
ne

ar
ity

lin
ea

r

N
on

-li
ne

ar
ity

lin
ea

r

N
on

-li
ne

ar
ity

lin
ea

r

…

ou
tp

ut

In
pu

t

Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of control, signals and systems 2.4 (1989): 303-314.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." Neural networks 2, no. 5 (1989): 359-366.

[Introduction to deep learning] 10

Hidden layers

Input layer

N
on

-li
ne

ar
ity

lin
ea

r

Output layer

[Large Language Models]

Activation functions for classification models

• As argued, activation functions can be used to enforce properties on
the model’s output
• In classification problems, the output before the final activation is

treated as unnormalized probabilities (logits)
• We still need a step to convert logits into valid probabilities
• i.e., all probabilities should sum to 1, and be in [0, 1]

[Introduction to deep learning] 11

Head

N
on

-li
ne

ar
ity

lin
ea

r

N
on

-li
ne

ar
ity

lin
ea

r

lin
ea

r…

In
pu

t

N
on

-li
ne

ar
ity

Li
ne

ar
 h

ea
d

O
ut

pu
t a

ct
iv

at
io

n
fu

nc
tio

n

ou
tp

ut

Lo
gi
ts

[Large Language Models]

Binary classification
• The model predicts the probability of a single class for point 𝑥
• As a convention, the positive one 𝑃 𝑝𝑜𝑠 𝑥

• The model produces a logit 𝑧 = 𝑚𝑜𝑑𝑒𝑙(𝑥)
• We use the sigmoid function on the output logit 𝑧
• 𝜎 𝑧 = .

./0%'
• This guarantees 𝑃 𝑝𝑜𝑠 𝑥 ∈ 0, 1 ✅

• We work out the probability of the negative class
• 𝑃 𝑛𝑒𝑔 𝑥 = 1 − 𝑃 𝑝𝑜𝑠 𝑥
• We can easily show that 𝑃 𝑛𝑒𝑔 𝑥 ∈ [0,1] ✅

• By construction, 𝑃 𝑝𝑜𝑠 𝑥 + 𝑃 𝑛𝑒𝑔|𝑥 = 1✅

[Introduction to deep learning] 12

[Large Language Models]

Multi-class classification
• The output class is one of many 𝑐!, 𝑐", … , 𝑐#
• The model produces 𝑛 logits for a point 𝑥

• (i.e., the last layer will have 𝑛 perceptrons)
• 𝑧 = 𝑧,, 𝑧-, … , 𝑧+ = 𝑚𝑜𝑑𝑒𝑙 𝑥

• We need to obtain, from the logits, valid probabilities
• 𝑃 𝑐, 𝑥 , 𝑃 𝑐- 𝑥 ,… , 𝑃 𝑐+ 𝑥

• The softmax function is applied:
• 𝑃 𝑐. 𝑥 = /)*

∑+ /
)+

• It can be easily shown that:
• 𝑃 𝑐. 𝑥 ∈ 0, 1 ✅
• ∑. 𝑃 𝑐. 𝑥 = 1✅

[Introduction to deep learning] 13

m
od

el

so
ft
m
ax

lo
gi
ts
𝑧 Dog

Cat
Bird

Turtle

[Large Language Models]

Activation functions for regression models

• In regression, models generally predict real numbers

• Typically, there is no need to enforce properties

• Output activation function can be the identity function
• 𝑓(𝑥) = 𝑥
• Generally the only situation where it makes sense to use it!

[Introduction to deep learning] 14

[Large Language Models]

Defining weights (parameters)
• So far, we assumed all weights and biases (let’s call them 𝜃) to be

known
• But, we still need to figure out how we find them!

• We pick a function (objective, or loss), ℒ 𝜃 , that we want to minimize

• e.g., in Linear Regression we minimize the Mean Squared Error
• ℒ 𝜃 = 𝑀𝑆𝐸 𝜃 = !

"
∑ 𝑦# − 𝜃$𝑥# %

• Then, we pick 𝜃 that minimizes it

Note
ℒ also depends on the training points 𝑥! , 𝑦!, so we should
refer to it as ℒ 𝜃, 𝑋, 𝑦 .

However, the training set 𝑋, 𝑦 is generally fixed. Thus, we
only have control over 𝜃, so we use the notation ℒ 𝜃 .

[Introduction to deep learning] 15

[Large Language Models]

Linear regression
• For simple models, we can find the optimal weights in closed form
• 6ℒ 8

68
= 69:; 8

68
= 0

• Quadratic in 𝜃, can be solved easily!

• Or, we can evaluate the loss function for a bunch of 𝜃’s, and find the
“best” one

Note
For linear regression, we don’t try a bunch of 𝜃
since we can easily find the best value in closed
form.

However, this provides the intuition for what we
will do next with more complex loss
functions/models.

[Introduction to deep learning] 16

[Large Language Models]

More complex losses/models
• For more complex loss functions/models, we may not be able to solve

the problem in closed form
• But we can evaluate ℒ 𝜃 for various values of 𝜃

• We can iteratively update 𝜃 to reach a local minimum:
• We start from a random value 𝜃, then
• we “move around” according to “some policy”

[Introduction to deep learning] 17

[Large Language Models]

We “move around” according to
“some policy”
• Move around = update 𝜃 incrementally, based on its current value
• The new value of 𝜃 at any step depends on the previous step’s value
• 𝜃</. ∶= 𝜃< + 𝑢𝑝𝑑𝑎𝑡𝑒

• Some policy = we take a small step in the direction where the
function decreases locally
• i.e. in the opposite direction of the gradient
• 𝜃</. ∶= 𝜃< − 𝛼 ∇8ℒ 𝜃<

• for 1-dimensional 𝜃, we have 𝜃&'! = 𝜃& − 𝛼
(ℒ *
(*

• 𝛼: learning rate, controls the “size” of the step

• Gradient Descent!

[Introduction to deep learning] 18

[Large Language Models]

Some limitations of GD

• GD is sensitive to weight initialization
• Different initializations can lead to different solutions!
• GD can get stuck in local minima

• Various solutions to help prevent local minima:
• Adding momentum
• Adaptive learning rates
• Learning rate schedules

[Introduction to deep learning] 19

Note
Different initializations will lead to the global minimum
for convex loss functions. However, that represents a
trivial situation we typically do not encounter.

[Large Language Models]

Backpropagation
• So far, we assumed we were able to compute ∇1ℒ 𝜃

• However, any loss/model combination would need a different
gradient computation!

• We can use backpropagation to compute the gradient of the loss w.r.t.
any weight!
• Backpropagation is just a fancy word for “using the chain rule”

[Introduction to deep learning] 20

[Large Language Models]

Using the chain rule

• We use the chain rule from calculus, 23
24
= 23

25
25
24

• Sometimes known as 𝑓 𝑔 𝑥
5
= 𝑓5 𝑔 𝑥 ⋅ 𝑔′(𝑥)

• And apply it from the end of the computational graph, backwards
• (hence the name, backpropagation)

[Introduction to deep learning] 21

[Large Language Models]

Computational graph
• A computational graph is a directed graph
• Each node corresponds to an operation
• Each edge represents the flow of data

between nodes

• For instance, we may want to compute
y = 𝑤𝑥 + 𝑞
• We start from three variables, 𝑤, 𝑥 and 𝑦
• The computational graph performs one

operation at a time
• First, compute the intermediate variable 𝑎 = 𝑤𝑥
• Then, compute the output variable 𝑧 = 𝑎 + 𝑦 =
𝑤𝑥 + 𝑦

[Introduction to deep learning] 22

𝑤

𝑥

𝑞

𝑎 = 𝑤𝑥

𝑦 = 𝑎 + 𝑞

×

+

[Large Language Models]

Backpropagation example
• Let’s say:
• Our dataset has one point, 𝑥, 𝑦
• Our (weird) model has two parameters, 𝜃. and 𝜃?, and predicts 𝜃.𝜃?𝑥
• Our loss function will be ℒ = 𝜃.𝜃?𝑥 − 𝑦 ?

• We build a computational graph with all operations and intermediate
variables
• 𝑎 = 𝜃.𝜃?
• 𝑏 = 𝑎𝑥 = 𝜃.𝜃?𝑥
• 𝑐 = 𝑏 − 𝑦 = 𝑎𝑥 − 𝑦 = 𝜃.𝜃?𝑥 − 𝑦
• ℒ = 𝑐? = 𝑏 − 𝑦 ? = 𝑎𝑥 − 𝑦 ? = 𝜃.𝜃?𝑥 − 𝑦 ?

[Introduction to deep learning] 23

[Large Language Models]

𝜃!

𝜃"

𝑥

𝑦

𝑎 = 𝜃!𝜃"

𝑏 = 𝑎𝑥
= 𝜃!𝜃"𝑥

𝑐 = 𝑏 − 𝑦
= 𝜃!𝜃"𝑥 − 𝑦

ℒ = 𝑐"
= 𝜃!𝜃"𝑥 − 𝑦 "

𝜕ℒ
𝜕𝑐

=
𝜕𝑐"

𝜕𝑐
= 2𝑐

𝜕ℒ
𝜕𝑏

=
𝜕ℒ
𝜕𝑐
𝜕𝑐
𝜕𝑏

= 2𝑐
𝜕(𝑏 − 𝑦)
𝜕𝑏

= 2𝑐

𝜕ℒ
𝜕𝑎 =

𝜕ℒ
𝜕𝑏

𝜕𝑏
𝜕𝑎 = 2𝑐

𝜕𝑎𝑥
𝜕𝑎 = 2𝑐𝑥

𝜕ℒ
𝜕𝜃!

=
𝜕ℒ
𝜕𝑎

𝜕𝑎
𝜕𝜃!

= 2𝑐𝑥
𝜕𝜃!𝜃"
𝜕𝜃!

= 2𝑐𝑥𝜃"

𝜕ℒ
𝜕𝜃"

=
𝜕ℒ
𝜕𝑎

𝜕𝑎
𝜕𝜃"

= 2𝑐𝑥
𝜕𝜃!𝜃"
𝜕𝜃"

= 2𝑐𝑥𝜃!

𝜕ℒ
𝜕𝜃!

= 2(𝜃!𝜃"𝑥 − 𝑦)𝑥𝜃"

𝜕ℒ
𝜕𝜃"

= 2(𝜃!𝜃"𝑥 − 𝑦)𝑥𝜃!

×

×

−
⋅ "

[Introduction to deep learning] 24

Forward step
• The loss ℒ is computed starting from the “inputs” 𝜃!, 𝜃", 𝑥, 𝑦

Backward step (backpropagation)
• The loss ℒ is used to compute the derivative w.r.t. 𝑐 è ,ℒ

,.

• The derivative ,ℒ
,.

is used to compute the derivative w.r.t. 𝑏è ,ℒ
,/

• The derivative ,ℒ
,/

 is used to compute the derivative w.r.t. 𝑎è
,ℒ
,0

• The derivative ,ℒ
,0

 is used to compute the derivative w.r.t. 𝜃!, 𝜃" è
,ℒ
,1!

, ,ℒ
,1"

[Large Language Models]

Loss functions
• Regression

• Mean Squared Error, Mean Absolute Error
• Binary

• Binary Cross-Entropy (BCE)
• 𝑦 = {0, 1} è ground truth
• :𝑦 = 𝑚𝑜𝑑𝑒𝑙 𝑥 ∈ [0,1] è predicted value

ℒ = −𝑦𝑙𝑜𝑔 :𝑦 − 1 − 𝑦 𝑙𝑜𝑔(1 − :𝑦)

• 𝑦 (ground truth) acts as a “selector” of the loss term
to be applied
• 𝑦 = 1 è ℒ = −𝑙𝑜𝑔 ,𝑦
• 𝑦 = 0 è ℒ = −𝑙𝑜𝑔(1 − ,𝑦)

[Introduction to deep learning] 25

Target value: 𝑦 = 1
• Low loss values when

prediction 0𝑦 ≈ 1
• High loss value when

prediction 0𝑦 ≈ 0

Target value: 𝑦 = 1
• Low loss values when

prediction 0𝑦 ≈ 1
• High loss value when

prediction 0𝑦 ≈ 0

[Large Language Models]

Loss functions
• Multi-class classification
• Cross-Entropy
• Generalization to multiple classes of BCE
• 𝑦F = 1 when ground truth is the ith class, 0 otherwise
• 𝑦F plays the same “selector” mechanism as in BCE

ℒ = −:
#

𝑦#log(?𝑦#)

[Introduction to deep learning] 26

