
Large
Language
Models

Flavio Giobergia

Word embeddings

[Large Language Models]

What are word embeddings?
• Word embeddings are dense vector representations of

words
• (dense as opposed to sparse, e.g. one-hot encoding)

• Each word is mapped to a vector of real numbers
• High-dimensionalities (e.g. d=300 dimensions) are used to have

“enough space” to represent various facets of the words)

• Word embeddings capture semantic meanings and
relationships between words
• Words with similar meanings have similar representations

• Words with similar connections (relationships) are linked via
similar transformations

cat

dog
fish

pen
pencil

queen
king

woman
man

[Word embeddings] 2

Sort of!
https://gist.github.com/fgiobergia/b
3a20e097f9b697d0a02fb17685cfd5a

https://gist.github.com/fgiobergia/b3a20e097f9b697d0a02fb17685cfd5a
https://gist.github.com/fgiobergia/b3a20e097f9b697d0a02fb17685cfd5a

[Large Language Models]

Before word embeddings (one-hot
encoding)
• One-hot encoding does allow us to build vector representations

• We assume a vocabulary W with |W| words
• E.g., W = { dog, cat, fish, pen, pencil }, |W| = 5
• An order can be established among words (e.g., lexicographic)

• One-hot encoding creates for each of the |W| words, a |W|-dimensional sparse vector

• For the ith word, all dimensions are set to 0 except for the ith , which is set to 1

1. dog è [1 0 0 0 0]
2. cat è [0 1 0 0 0]
3. fish è [0 0 1 0 0]
4. pen è [0 0 0 1 0]
5. pencil è [0 0 0 0 1]

[Word embeddings] 3

[Large Language Models]

Problems of one-hot encoding
• The vectors are Sparse

• This leads to scalability issues
• A standard vocabulary can have 50,000+ words, implying a 50,000-dimensional vector

representation
• Vectors are too sparse in the space to be useful (curse of dimensionality)

• The vectorial space is not used efficiently
• For a set of words W, |W|-1 are 0, only 1 is non-0

• The vectors are Orthogonal
• There is no preservation of semantic similarity, or relationships

• (Remember, we’d like words to be closer if they are similar, distant if dissimilar)
• Here, all pairs of words have exactly the same distance (e.g., cosine, or Euclidean)

• cos 𝑤!, 𝑤" = 0 ∀ 𝑤!, 𝑤" ∈ 𝑊, 𝑤! ≠ 𝑤"
• L" 𝑤!, 𝑤" = 2 ∀ 𝑤!, 𝑤" ∈ 𝑊, 𝑤! ≠ 𝑤"

[Word embeddings] 4

[Large Language Models]

Distributed Representations
• One-hot encoding is a type of local representation
• Each entity is represented by a unique, “isolated” identifier

• By contrast, distributed representations aim to distribute the
information across several dimensions

• We let models (e.g., neural networks) learn these representations
• By crafting a task, and letting the model solve it

[Word embeddings] 5

[Large Language Models]

Framing the right task

• Task: Can you fill the blank

• In other words, can we estimate the probability that each word 𝑤 is the correct one?
• P x! = 𝑤 = P x! = 𝑤 x!"#, x!"$, … , x!%#, x!%$, …)

I used a PENCIL to write the essay

, given some context?

[Word embeddings] 6

[Large Language Models]

Solving the right task

Solution:

1. Assign each context word to a vector (random, at first!)

2. Aggregate all vectors into a single one (e.g., sum them!)

3. Assign each candidate output word to a vector (random too,
at first!)

4. Compute the distance between the context vector and all
possible output words (e.g., via dot product)

5. Find the word that best matches the context

6. Is it the correct word?

7. Adjust all vectors accordingly (via gradient descent)

I used a PENCIL to write the essay

ℎ

Pen

Pencil

Cat

[Word embeddings] 7

[Large Language Models]

… Rinse and repeat!

• The same process is applied to millions of sentences
• Similar words are found in similar contexts
• To solve the previous task, the word vectors of similar words must be

similar!

I used a pencil to write the essay

You used my pen to write a letter
…

[Word embeddings] 8

[Large Language Models]

In terms of matrices (I)
• All vectors for input words can be stacked into a matrix,
𝑊./ (𝑑×𝑉)

• All vectors for output words can also be stacked into a
matrix, 𝑊012 (𝑑×𝑉)

• The entire context can be represented a binary vector of
presences, 𝑒 𝑉×1
• Note: this loses the order of the word! (bag of words approach)

• ℎ = 𝑊./𝑒(𝑑×1) computes the sum of the vectors for the
context words
• 𝑒! acts as a selector of the 𝑗"# column within 𝑊$%

𝑊!" = … d

V

𝑊#$% = … d

V

𝑒& = 1 0 0 1 …0 1 '
V

ℎ = 𝑊!"𝑒 = =… d

[Word embeddings] 9

[Large Language Models]

In terms of matrices (II)
• Next, we search among the vectors in 𝑊"#$, the most

similar to ℎ
• We can use the dot product as a measure of similarity

• (“how aligned are the vectors?”)
• (𝑝 = ℎ-𝑊./0 is a vector of similarities between h and each

possible word

• We can normalize values in #𝑝 be positive and sum to 1
• 𝑝1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑝 1

• Remember, we know what the correct target word is
• We can use a cross-entropy loss to update 𝑊12, 𝑊./0

[Word embeddings] 10

3𝑝 = ℎ𝑊#$% = =… V

[Large Language Models]

Neural Language Models & word2vec
• Bengio et al [1] presented a similar approach to the previously

described one in 2000
• But with causality (i.e., predict next word from previous ones)

• word2vec [2] does all of the previous things, with some caveats.
• Two possible tasks

• Continuous Bag of Words (context è predict middle word – as previously described)
• Skip-gram (middle word è predict context)

• Workarounds to prevent computing softmax (computationally expensive!)
• Hierarchical softmax (Huffman encode vocabulary, predict left/right path – O(log! 𝑉)
• Negative sampling (predict whether a word is/is not the “correct” one)

[1] Bengio, Yoshua, Réjean Ducharme, and Pascal Vincent. "A neural probabilistic language model." Advances in neural information processing systems 13 (2000).
[2] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed representations of words and phrases and their compositionality." Advances in neural information
processing systems 26 (2013).

[Word embeddings] 11

[Large Language Models]

Limitations of word2vec
• While word2vec addressed many problems, some still exist. Among

others,
• Inability to handle out-of-vocabulary words
• If a word is not in the training vocabulary, word2vec cannot generate a vector

for it

• Lack of contextualized vectors
• (after training,) word vectors are fixed and are not affected by context
• For instance, the sentences “a bat is a mammal” and “the player swung the

baseball bat” have very different meanings for bat. Word2vec doesn’t care
about that.
• When learning, word2vec “averages” all meanings of a word

[Word embeddings] 12

[Large Language Models]

FastText
• FastText addresses the out-of-vocabulary problem
• Breaking up words into subwords (e.g., tri-grams)
• E.g., <where> è <wh, whe, her, ere, re>

• A vector representation is learned for each subword
• The vector for a word is given by the sum of the vectors of its

subwords
• 𝑣+,-.- = 𝑣/+, + 𝑣+,-+ 𝑣,-.+ 𝑣-.-+ 𝑣.-0
• We can compose subword vectors to generate vectors for new words!

Note
< and > indicate beginning of
word, end of word.
They can be used to assign
different meanings to
prefixes/suffixes.

[Word embeddings] 13

[Large Language Models]

Visualizations – Semantic meanings
• 300-dimensional FastText vectors for words

belonging to 3 separate categories
• Household items
• Mammals
• Birds

• Reducing to 2 dimensions with Principal
Component Analysis (for visualization
purposes)

• The words belonging to the 3 categories are
well-separated in the “compressed”
embedding space
• (they are also separated in the original latent

space, but visualizing 300 dimensions is tricky)

[Word embeddings] 14

[Large Language Models]

Visualizations – Relationships
• Visualizing the vectors for countries and capital

cities
• Connecting each country to its capital city
• We can see that there is a transformation

(translation) that approximately connects each
pair of words
• The vector of the translation can be obtained

subtracting a capital city from its country
• E.g., germany - berlin
• Represents the relationship “capital of”

• We can apply this transformation by “adding” it
to other countries
• E.g. spain + “capital of” è spain + germany - berlin

[Word embeddings] 15

