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What are word embeddingse

. Worézl embeddings are dense vector representations of
words

* (dense as opposed to sparse, e.g. one-hot encoding)

e Each word is mapped to a vector of real numbers

* High-dimensionalities (e.g. d=300 dimensions) are used to have
“enough space” to represent various facets of the words)

 Word embeddings capture semantic meanings and
between words

* Words with similar meanings have similar representations
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Sort of!
https://gist.github.com/fgiobergia/b
3a220e097f9b697d0a02fb17685cfd5a



https://gist.github.com/fgiobergia/b3a20e097f9b697d0a02fb17685cfd5a
https://gist.github.com/fgiobergia/b3a20e097f9b697d0a02fb17685cfd5a
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Before word embeddings (one-hot
encoding)

* One-hot encoding does allow us to build vector representations

* We assume a vocabulary W with |W| words
 E.g., W={dog, cat, fish, pen, pencil }, |W| =5
* An order can be established among words (e.g., lexicographic)

* One-hot encoding creates for each of the | W| words, a | W |-dimensional sparse vector

* For the it word, all dimensions are set to 0 except for the it", which is set to 1

1. dog 2> [100 0 0]
2. cat 2> [01 0 0 0]
3. fish = [0 0 1 0 0]
4. pen 2> [0 00 1 0]
5. pencil = [0 0 0 0 1]




Problems of one-hot encoding

* The vectors are Sparse

* This leads to scalability issues

* A standard vocabulary can have 50,000+ words, implying a 50,000-dimensional vector
representation

* Vectors are too sparse in the space to be useful (curse of dimensionality)
e The vectorial space is not used efficiently
* For asetof words W, |W|-1areO0, only 1 is non-0

* The vectors are Orthogonal
* There is no preservation of semantic similarity, or relationships
* (Remember, we'd like words to be closer if they are similar, distant if dissimilar)
* Here, all pairs of words have exactly the same distance (e.g., cosine, or Euclidean)
e cos(wy,wy) =0 Vwy,w, EW, wy #w,
e Ly(w,wy) =2 Yw,w, €W, wy #w,
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Distributed Representations

* One-hot encoding is a type of local representation
e Each entity is represented by a unique, “isolated” identifier

* By contrast, distributed representations aim to distribute the
information across several dimensions

* We let models (e.g., neural networks) learn these representations
e By crafting a task, and letting the model solve it
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Framing the right task

| used a to write the essay

e Task: Can you fill the blank , given some context?

* |In other words, can we estimate the probability that each word w is the correct one?
° P(Xi = W) — P(Xi = W|Xi—1'Xi—21 oy Xi+ 1) Xj42) )
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Solving the right task

| used - to write the essay

d o)
l l l l Solution:
1. Assign each context word to a (random, at first!)
2. Aggregate all into a single one (e.g., sum them!)
e ~ e 3. Assign each candidate output word to a vector (random too,
at first!)
h 4. Compute the distance between the context vector and all

possible output words (e.g., via dot product)
Pen - . 5. Find the word that best matches the context
D 6. Is it the correct word?

7. Adjust all vectors accordingly (via gradient descent)



... Rinse and repeat!

* The same process is applied to millions of sentences
e Similar words are found in similar contexts

* To solve the previous task, the word vectors of similar words must be
similar!

| used a pencil to write the essay

You used my pen to write a letter
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u’f s DBG
In ferms of matrices (l)

 All vectors for input words can be stacked into a matrix,
(dXxV)

 All vectors for output words can also be stacked into a
matrix, W, (dXV)

* The entire context can be represented a binary vector of
presences, e (V' x1)
* Note: this loses the order of the word! (bag of words approach)

= e(dx1) computes the sum of the vectors for the
context words -

* e; acts as a selector of the jt" column within

-l
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In ferms of matrices (ll)

* Next, we search among the vectors in W,,,;, the most
similar to

* We can use the dot product as a measure of similarity =
* (“how aligned are the vectors?”)

= hT'W,,: is a vector of similarities between h and each
possible word

* We can normalize values in ¥ be positive and sumto 1
= softmax(p);
* Remember, we know what the correct target word is
* We can use a cross-entropy loss to update , Wout




Neural Language Models & word2vec

* Bengio et al [1] presented a similar approach to the previously
described one in 2000

* But with causality (i.e., predict next word from previous ones)

e word2vec [2] does all of the previous things, with some caveats.

e Two possible tasks
* Continuous Bag of Words (context =2 predict middle word — as previously described)
* Skip-gram (middle word = predict context)
* Workarounds to prevent computing softmax (computationally expensive!)
* Hierarchical softmax (Huffman encode vocabulary, predict left/right path — O(log, (V) )
* Negative sampling (predict whether a word is/is not the “correct” one)

[1] Bengio, Yoshua, Réjean Ducharme, and Pascal Vincent. "A neural probabilistic language model." Advances in neural information processing systems 13 (2000).
[2] Mikolov, Tomas, llya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed representations of words and phrases and their compositionality." Advances in neural information
processing systems 26 (2013).



Limitations of word2vec

* While word2vec addressed many problems, some still exist. Among
others,

* Inability to handle out-of-vocabulary words

 |f a word is not in the training vocabulary, word2vec cannot generate a vector
for it

* Lack of contextualized vectors
 (after training,) word vectors are fixed and are not affected by context

* For instance, the sentences “a bat is a mammal” and “the player swung the
baseball bat” have very different meanings for bat. Word2vec doesn’t care
about that.

* When learning, word2vec “averages” all meanings of a word
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* FastText addresses the out-of-vocabulary problem ol flestce i
o : : . word, end of word.
Breaking up words into subwords (e.g., tri-grams) e B el e
* E.g., <where> =2 <wh, whe, her, ere, re> different meanings to
prefixes/suffixes.

* A vector representation is learned for each subword

* The vector for a word is given by the sum of the vectors of its
subwords

* Vwhere = V<wh T Vwhet Vhert Veret Vres
 We can compose subword vectors to generate vectors for new words!
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Visualizations — Semantic meanings

* 300-dimensional FastText vectors for words
belonging to 3 separate categories
* Household items
e Mammals

* Reducing to 2 dimensions with Principal
Component Analysis (for visualization
purposes)

* The words belonging to the 3 categories are
well-separated in the “compressed”
embedding space

 (they are also separated in the original latent
space, but visualizing 300 dimensions is tricky)
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Visualizations — Relationships

* Visualizing the vectors for countries and

e Connecting each country to its capital city

* We can see that there is a transformation
(translation) that approximately connects each
pair of words

* The vector of the translation can be obtained
subtracting a capital city from its country

* E.g., germany -
* Represents the relationship “capital of”

* We can apply this transformation by “adding” it
to other countries

e E.g. spain + “capital of” = spain + germany -
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