Large Language Models

Word embeddings

Flavio Giobergia

What are word embeddir

- Word embeddings are *dense* vector representations words
	- (dense as opposed to sparse, e.g. one-hot encoding)
- Each word is mapped to a *vector of real numbers*
	- *High-dimensionalities (e.g. d=300 dimensions) are used to have "enough space" to represent various facets of the words)*
- Word embeddings capture *semantic meanings* an *relationships* between words
	- Words with similar meanings have similar representations
	- Words with similar connections (relationships) are linke similar transformations

 $\begin{matrix} \overbrace{A} & \overbrace{B} & \overbrace{A} & \overbrace{B} & \overbrace{B$

Before word embeddings (one-hot encoding)

- *One-hot encoding does* allow us to build vector representations
- We assume a vocabulary W with $|W|$ words
	- E.g., $W = \{ dog, cat, fish, pen, pencil \}, |W| = 5$
	- An order can be established among words (e.g., lexicographic)
- One-hot encoding creates for each of the $|W|$ words, a $|W|$ -dimensional sparse vector
- For the ith word, all dimensions are set to 0 except for the ith, which is set to 1

Problems of one-hot encoding

• The vectors are *Sparse*

 $\left(\begin{matrix} \bullet & \bullet \\ \bullet & \bullet \end{matrix}\right)_{\text{d} \text{ Torino}}$ D_{MG}^{B} $-$

- This leads to scalability issues
	- A standard vocabulary can have 50,000+ words, implying a 50,000-dimensional vector representation
	- Vectors are too sparse in the space to be useful (curse of dimensionality)
- The vectorial space is not used efficiently
	- For a set of words W, $|W|$ -1 are 0, only 1 is non-0
- The vectors are *Orthogonal*
	- There is no preservation of semantic similarity, or relationships
		- (Remember, we'd like words to be closer if they are similar, distant if dissimilar)
	- Here, all pairs of words have exactly the same distance (e.g., cosine, or Euclidean)
		- $\cos(w_1, w_2) = 0 \quad \forall w_1, w_2 \in W$, $w_1 \neq w_2$
		- $L_2(w_1, w_2) = \sqrt{2}$ $\forall w_1, w_2 \in W$, $w_1 \neq w_2$

 $\left(\begin{matrix} \mathbb{Z} & \mathbb{Z}^{\mathbb{Z}} \\ \mathbb{Z} & \mathbb{Z}^{\mathbb{Z}} \end{matrix} \right)$ Politecnico $\mathrm{D}^{\mathbf{B}}_{\mathsf{M}}$ G –

Distributed Representations

- One-hot encoding is a type of *local representation*
	- Each entity is represented by a unique, "isolated" identifier
- By contrast, *distributed representations* aim to distribute the information across several dimensions
- We *let* models (e.g., neural networks) learn these representations
	- By crafting a task, and letting the model solve it

 $\left(\sum_{i=1}^N\frac{E(\mathbf{X}_i)}{E(\mathbf{X}_i)}\right)$ Politecnico $\mathbf{D}^{\mathbf{B}}_{\mathbf{M}}$ G

[Word embeddings

Framing the right task

• In other words, can we estimate the probability that each word w is the correct one?

•
$$
P(x_i = w) = P(x_i = w | x_{i-1}, x_{i-2}, ..., x_{i+1}, x_{i+2}, ...)
$$

 $\left(\begin{matrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet\end{matrix}\right)_{\text{cl}}$ Politecnico $\text{D}^{\text{B}}_{\text{M}}$ G

[Word embeddings

Solving the right task

- 1. Assign each context word to a *vector* (random, at first!)
- 2. Aggregate all *vectors* into *a single one* (e.g., sum them!)
- 3. Assign each candidate output word to a *vector* (random too, at first!)
- 4. Compute the distance between the *context vector* and all possible *output words* (e.g., via dot product)
- 5. Find the *word* that best matches the *context*
- 6. Is it the *correct* word?
- 7. Adjust *all vectors* accordingly (via *gradient descent*)

… Rinse and repeat!

- The same process is applied to millions of sentences
- Similar words are found in similar contexts
- To solve the previous task, the word vectors of similar words must be similar!

I used a pencil to write the essay

You used my pen to write a letter

 $\left(\begin{matrix} \mathbb{A} & \mathbb{S}^1 & \mathbb{A}^1 \\ \mathbb{A} & \mathbb{A}^1 & \mathbb{A}^1 \end{matrix} \right)$ Politecnico $\mathrm{D}^\mathrm{B}_\mathrm{M}\mathrm{G}$ –

 $\left(\begin{matrix} \bullet & \bullet \\ \bullet & \bullet \end{matrix}\right)_{\text{d} \text{ Torino}}$ DMG -

In terms of matrices (I)

- All vectors for input words can be stacked into a matrix, W_{in} $(d \times V)$
- All vectors for output words can also be stacked into a matrix, W_{out} $(d \times V)$
- The entire context can be represented a binary vector of presences, e ($V \times 1$)
	- Note: this loses the order of the word! (*bag of words* approach)
- $h = W_{in}e(d\times 1)$ computes the sum of the vectors for the context words $h = W_{in}e = | \begin{array}{c} | & | & | \\ | & | & | \end{array} \dots | \begin{array}{c} | & | & | \\ | & | & | \end{array} \dots | \begin{array}{c} | & | & | \\ | & | & | \end{array} \dots | \begin{array}{c} | & | & | \\ | & | & | \end{array} \dots | \begin{array}{c} | & | & | \\ | & | & | \end{array} \dots | \begin{array}{c} | & | & | \\ | & | & | \end{array} \dots | \begin{array}{c} | & | & | \\ | & | & | \end{array} \dots | \begin{array}{c} | & | & | \\ | &$
	- e_i acts as a selector of the j^{th} column within W_{in}

 $W_{in} = || \, || \, || \, || \, || \, ... \, || \, || \, || \,$ d $W_{out} = \left[\left[\left[\left[\left[\left[\right] \right] \right] \cdots \left[\left[\left[\right] \right] \right] \right] \right] \right] \right]$ V

 $e_j = [1 0 0 1 ... 0 1]^T$

V

V

 $\left(\sum_{\text{di Torino}}^{N}\sum_{\text{IG}}^{N}\right)_{\text{di Torino}}$ D_MG $-$

In terms of matrices (II)

- Next, we search among the vectors in W_{out} , the most similar to \overline{h}
	- We can use the dot product as a measure of similarity $\hat{p} = hW_{out} = ||\left\| \begin{array}{c} 1 \\ 0 \end{array} \right\| = ||\left\| \begin{array}{c} 0 \\ 0 \end{array} \right|$
		- ("how aligned are the vectors?")
	- $\tilde{p} = h^T W_{out}$ is a vector of similarities between h and each possible word
- We can normalize values in \tilde{p} be positive and sum to 1
	- $p_i = softmax(\tilde{p})_i$
- Remember, we know what the correct target word is
	- We can use a cross-entropy loss to update W_{in} , W_{out}

 $\mathbb{D}^{\mathbb{S}}_{\mathbb{N}}$ Politecnico $\mathop{\rm DM}\limits^{\mathbb{S}}_{\mathbb{N}}$ Gi Torino

Neural Language Models & word2vec

- Bengio et al [1] presented a similar approach to the previously described one in 2000
	- But with *causality* (i.e., predict next word from previous ones)
- word2vec [2] does all of the previous things, with some caveats.
	- Two possible tasks
		- *Continuous Bag of Words* (context \rightarrow predict middle word as previously described)
		- *Skip-gram* (middle word \rightarrow predict context)
	- Workarounds to prevent computing softmax (computationally expensive!)
		- *Hierarchical softmax* (Huffman encode vocabulary, predict left/right path $O(log_2(V))$)
		- *Negative sampling* (predict whether a word is/is not the "correct" one)

[1] Bengio, Yoshua, Réjean Ducharme, and Pascal Vincent. "A neural probabilistic language model." *Advances in neural information processing systems* 13 (2000). [2] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems* 26 (2013).

 $\left(\begin{matrix} \mathbb{Z} & \mathbb{Z}^2 \\ \mathbb{Z} & \mathbb{Z}^2 \end{matrix}\right)$ Politecnico $\mathrm{D}^{\mathrm{B}}_{\mathrm{M}}$ G

Limitations of word2vec

- While word2vec addressed many problems, some still exist. Among others,
- *Inability to handle out-of-vocabulary words*
	- If a word is not in the training vocabulary, word2vec cannot generate a vector for it
- *Lack of contextualized vectors*
	- (after training,) word vectors are fixed and are not affected by context
	- For instance, the sentences "a *bat* is a mammal" and "the player swung the baseball *bat*" have very different meanings for *bat*. Word2vec doesn't care about that.
	- When learning, word2vec "averages" all meanings of a word

[Large Language Models] [Word embeddings] 13

FastText

 $\left\{\mathbb{A}\right\}$ Politecnico $\mathrm{D}^{\mathrm{B}}_{\mathrm{M}}$ di Torino $\mathrm{D}^{\mathrm{B}}_{\mathrm{M}}$

- FastText addresses the out-of-vocabulary problem
- Breaking up words into subwords (e.g., tri-grams)
	- E.g., \langle where $\rangle \rightarrow \langle$ wh, whe, her, ere, re \rangle

```
Note
< and > indicate beginning of 
word, end of word.
They can be used to assign 
different meanings to 
prefixes/suffixes.
```
- A vector representation is learned for each subword
- The vector for a word is given by the sum of the vectors of its subwords
- $v_{where} = v_{$
- We can compose subword vectors to generate vectors for new words!

[Large Language Models]

Visualizations – Semantic meanings

- 300-dimensional FastText vectors for words belonging to 3 separate categories
	- Household items
	- Mammals
	- Birds

 $\left(\begin{matrix} \mathbb{Z} & \mathbb{Z}^2 \\ \mathbb{Z} & \mathbb{Z}^2 \end{matrix}\right)$ Politecnico $\mathrm{D}^{\mathrm{B}}_{\mathrm{M}}$ G

- Reducing to 2 dimensions with Principal Component Analysis (for visualization purposes)
- The words belonging to the 3 categories are well-separated in the "compressed"
embedding space
	- (they are also separated in the original latent space, but visualizing 300 dimensions is tricky)

 $\left(\sum_{i=1}^{N}\sum_{j=1}^{N_i}\sum_{j=1}^{N_i}\frac{1}{N_i}\right)$ Politecnico $D_N^{\mathbf{B}}$

Visualizations – Relationships

- Visualizing the vectors for *countries* and *capital cities*
- Connecting each country to its capital city
- We can see that there is a transformation (translation) that approximately connects each pair of words
- The vector of the translation can be obtained subtracting a capital city from its country
	- E.g., germany berlin
	- Represents the relationship "capital of"
- We can apply this transformation by "adding" it to other countries
	- E.g. spain + "capital of" \rightarrow spain + germany berlin

