




 Scalable fault-tolerant distributed system for 
Big Data 
 Distributed Data Storage  

 Distributed Data Processing  

 Borrowed concepts/ideas from the systems 
designed at Google (Google File System for 
Google’s MapReduce)  

 Open source project under the Apache license 
▪ But there are also many commercial implementations 

(e.g., Cloudera, Hortonworks, MapR)    

3 



 Dec 2004 – Google published a paper about GFS 
 July 2005 – Nutch uses MapReduce 
 Feb 2006 – Hadoop becomes a Lucene 

subproject 
 Apr 2007 – Yahoo! runs it on a 1000-node cluster 
 Jan 2008 – Hadoop becomes an Apache Top 

Level Project 
 Jul 2008 – Hadoop is tested on a 4000 node 

cluster 
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 Feb 2009 – The Yahoo! Search Webmap is a 
Hadoop application that runs on more than 
10,000 core Linux cluster 

 June 2009 – Yahoo! made available the source 
code of its production version of Hadoop 

 In 2010 Facebook claimed that they have the 
largest Hadoop cluster in the world with 21 
PB of storage 
 On July 27, 2011 they announced the data has 

grown to 30 PB. 
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 Amazon 
 Facebook 
 Google 
 IBM 
 Joost 
 Last.fm 
 New York Times 
 PowerSet 
 Veoh 
 Yahoo! 
 OpenAI 
 ….. 
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 Hadoop 
 Designed for Data intensive workloads 

 Usually, no CPU demanding/intensive tasks  
 HPC (High-performance computing) 
 A supercomputer with a high-level computational 

capacity 
▪ Performance of a supercomputer is measured in 

floating-point operations per second (FLOPS) 

 Designed for CPU intensive tasks 

 Usually it is used to process “small” data sets 
 
 

11 



 Core components of Hadoop: 
 Distributed Big Data Processing Infrastructure based 

on the MapReduce programming paradigm 
▪ Provides a high-level abstraction view 

▪ Programmers do not need to care about task scheduling and 
synchronization 

▪ Fault-tolerant 
▪ Node and task failures are automatically managed by the Hadoop 

system 

 HDFS (Hadoop Distributed File System) 
▪ High availability distributed storage 

▪ Fault-tolerant 
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 Separates the what from the how 

 Hadoop programs are based on the MapReduce 
programming paradigm 

 MapReduce abstracts away the “distributed” part 
of the problem (scheduling, synchronization, etc) 

▪ Programmers focus on what 

 The distributed part (scheduling, synchronization, 
etc) of the problem is handled by the framework 

▪ The Hadoop infrastructure focuses on how 
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 But an in-depth knowledge of the Hadoop 
framework is important to develop efficient 
applications 

 The design of the  application must exploit data 
locality and limit network usage/data sharing 
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 HDFS  
 Standard Apache Hadoop distributed file system 
 Provides global file namespace 
 Stores data redundantly on multiple nodes to provide 

persistence and availability 
▪ Fault-tolerant file system 

 Typical usage pattern 
 Huge files (GB to TB) 
 Data is rarely updated 
 Reads and appends are common  

▪ Usually, random read/write operations are not performed 
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 Each  file is split in “chunks/blocks” that are 
spread across the servers 
 Each chuck is replicated on different servers (usually 

there are 3 replicas per chunk) 
▪ Ensures persistence and availability 
▪ To increase persistence and availability, replicas are stored in 

different racks, if it is possible 

 Each chunk/block contains a part of the content of 
one single file 
▪ You cannot have the content of two files in the same 

chunk/block 

 Typically each chunk is 64-128MB 
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 The Master node, a.k.a. Name Nodes in HDFS, is 
a special node/server that 
 Stores HDFS metadata 

▪ E.g., the mapping between the name of a file and the location 
of its chunks 

 Might be replicated 
 Client applications: file access through HDFS 

APIs 
 Talk to the master node to find data/chuck servers 

associated with the file of interest  

 Connect to the selected chunk servers to access data 
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 Many Hadoop-related projects/systems are 
available 
 Hive 

▪ A distributed relational database, based on MapReduce, for 
querying data stored in HDFS by means of a query language 
based on SQL 

 HBase 
▪ A distributed column-oriented database that uses HDFS for 

storing data 

 Pig 
▪ A data flow language and execution environment, based on 

MapReduce, for exploring very large datasets  
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 Sqoop 

▪ A tool for efficiently moving data from traditional 
relational databases and external flat file sources to 
HDFS 

 ZooKeeper 

▪ A distributed coordination service. It provides primitives 
such as distributed locks  

 …. 

 Each project/system addresses one specific 
class of problems 
 24 





 Input 

 A large textual file of words 

 Problem 

 Count the number of times each distinct word 
appears in the file 

 Output 

 A list of pairs <word, number>, counting the 
number of occurrences of each specific word in 
the input file 

 



 Case 1: Entire file fits in main memory 
  

 
  

  
  

  
 

  

  
 



 Case 1: Entire file fits in main memory 
 A traditional single node approach is probably the 

most efficient solution in this case 
▪ The complexity and overheads of a distributed system 

affects the performance when files are “small” 
▪ “small” depends on the resources you have 

  
 

  

  
 

 



 Case 1: Entire file fits in main memory 
 A traditional single node approach is probably the 

most efficient solution in this case 
▪ The complexity and overheads of a distributed system 

affects the performance when files are “small” 
▪ “small” depends on the resources you have 

 Case 2: File too large to fit in main memory 
 

  

  
 



 Case 1: Entire file fits in main memory 
 A traditional single node approach is probably the 

most efficient solution in this case 
▪ The complexity and overheads of a distributed system 

affects the performance when files are “small” 
▪ “small” depends on the resources you have 

 Case 2: File too large to fit in main memory 
 How can we split this problem in a set of (almost) 

independent sub-tasks, and  

 execute them in parallel on a cluster of servers? 



 Suppose that 

 The cluster has 3 servers 

 The content of the input file is 

▪ “Toy example file for Hadoop. Hadoop running 
example.” 

 The input file is split into 2 chunks 

 The number of replicas is 1 
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 The problem can be easily parallelized 

1. Each server processes its chunk of data and 
counts the number of times each word appears 
in its own chunk 

▪ Each server can execute its sub-task independently from 
the other servers of the cluster 
 synchronization is not needed in this phase 

▪ The output generated from each chunk by each server 
represents a partial result 
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2. Each server sends its local (partial) list of pairs 
<word, number of occurrences in its chunk> to a 
server that is in charge of aggregating all local 
results and computing the global result 

▪ The server in charge of computing the global result 
needs to receive all the local (partial) results to compute 
and emit the final list 

  A synchronization operation is needed in this phase 



 Case 2: File too large to fit in main memory 
 Suppose that 
 The file size is 100 GB and the number of distinct 

words occurring in it is at most 1,000 

 The cluster has 101 servers 

 The file is spread acr0ss 100 servers and each of 
these servers contains one (different) chunk of the 
input file 
▪ i.e., the file is optimally spread across 100 servers (each 

server contains 1/100 of the file in its local hard drives)  

 



 Each server reads 1 GB of data from its local hard 
drive (it reads one chunk from HDFS) 
 Few seconds 

 Each local list consists of at most 1,000 pairs 
(because the number of distinct words is 1,000) 
 Few MBs 

  The maximum amount of data sent on the 
network is 100 x size of local list (number of 
servers x local list size) 
 Some MBs 



 We can define scalability along two dimensions 

 In terms of data: 

▪ Given twice the amount of data, the word count algorithm 
takes approximately no more than twice as long to run 

▪ Each server processes 2 x data => 2 x execution time to compute local 
list 

 In terms of resources 

▪ Given twice the number of servers, the word count algorithm 
takes approximately no more than half as long to run 

▪ Each server processes ½ x data => ½ x execution time to compute 
local list 
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 The time needed to send local results to the 
node in charge of computing the final result 
and the computation of the final result are 
considered negligible in this running example  

 Frequently, this assumption is not true 

 It depends  

▪ on the complexity of the problem  

▪ on the ability of the developer to limit the amount of 
data sent on the network 
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 Scale “out”, not “up” 

 Increase the number of servers, avoiding to upgrade 
the resources (CPU, memory) of the current ones 

 Move processing to data 

 The network has a limited bandwidth 

 Process data sequentially, avoid random access 

 Seek operations are expensive  

 Big data applications usually read and analyze all 
input records/objects 

▪ Random access is useless 

 44 



 Traditional distributed systems (e.g., HPC) 
move data to computing nodes (servers) 

 This approach cannot be used to process TBs of 
data 

▪ The network bandwidth is limited 

 Hadoop moves code to data 

 Code (few KB) is copied and executed on the 
servers where the chunks of data are stored 

 This approach is based on “data locality” 
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 Hadoop/MapReduce is designed for 

 Batch processing involving (mostly) full scans of 
the  input data 

 Data-intensive applications 

▪ Read and process the whole Web (e.g., PageRank 
computation)  

▪ Read and process the whole Social Graph (e.g., 
LinkPrediction, a.k.a. “friend suggestion”) 

▪ Log analysis (e.g., Network traces, Smart-meter data, ..) 

 
46 



 Hadoop/MapReduce is not the panacea for all 
Big Data problems 
 

 Hadoop/MapReduce does not feet well 

 Iterative problems 

 Recursive problems 

 Stream data processing 

 Real-time processing 
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 The MapReduce programming paradigm is 
based on the basic concepts of Functional 
programming 

 MapReduce “implements” a subset of 
functional  programming 
 The programming model appears quite limited 

and strict 
▪ Everything is based on two “functions” with  predefined 

signatures 
▪ Map and Reduce 
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 Solving complex problems is difficult 
 However, there are several important 

problems that can be adapted to MapReduce 
 Log analysis 

 PageRank computation  

 Social graph analysis 

 Sensor data analysis 

 Smart-city data analysis 

 Network capture analysis 
 

50 



 MapReduce is based on two main “building 
blocks” 

 Map and Reduce functions 

 Map function 

 It is applied over each element of an input data set 
and emits a set of (key, value) pairs 

 Reduce function 

 It is applied over each set of (key, value) pairs 
(emitted by the map function) with the same key and 
emits a set of (key, value) pairs  Final result 
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 Input 

 A textual file (i.e., a list of words) 

 Problem 

 Count the number of times each distinct word 
appears in the file 

 Output 

 A list of pairs <word, number of occurrences in the 
input file>  
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 The input textual file is considered as a list of 
words L 
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L = [toy, example, toy, example , hadoop] 

[…] denotes a list. (k, v) denotes a key-value pair. 
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Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

[…] denotes a set. (k, v) denotes a key-value pair. 

Apply a function 
on each element 
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Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1]) 

[…] denotes a list. (k, v) denotes a key-value pair. 

Group by key 
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Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

[ (toy, 2) , (example, 2), (hadoop, 1) ] 

[…] denotes a list. (k, v) denotes a key-value pair. 

Apply a function 
on each group 

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1]) 
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Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)] 

L = [toy, example, toy, example , hadoop] 

[ (toy, 2) , (example, 2), (hadoop, 1) ] 

Map 
phase 

Reduce 
phase 

Shuffle and  
Sort phase 

[…] denotes a list. (k, v) denotes a key-value pair. 

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1]) 



 The input textual file is considered as a list of 
words L 

 A key-value pair (w, 1) is emitted for each 
word w in L 

 i.e., the map function is  
   m(w) = (w, 1) 

 A new list of (key, value) pairs Lm is generated 
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 The key-value pairs in Lm are aggregated by 
key (i.e., by word w in our example) 

 One group Gw is generated for each word w 

 Each group Gw is a key-list pair (w, [list of values]) 
where [list of values] contains all the values of the 
pairs associated with the word w  

▪ i.e., [list of values] is a list of [1, 1, 1, …] in our example  

▪ Given a group Gw, the number of ones [1, 1, 1, …] is equal 
to the occurrences of word w in the input file  
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 A key-value pair (w, sum Gw.[list of values]) is 
emitted for each group Gw 

 i.e., the reduce function is 
  r(Gw) = (w, sum(Gw.[list of values]) ) 

 The list of emitted pairs is the result of the 
word count problem 

 One pair (word w, num. of occurrences) for each 
word in our running example  
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 The Map phase can be viewed as a 
transformation over each element of a data set 

 This transformation is a function m defined by 
developers 

 m is invoked one time for each input element 

 Each invocation of m happens in isolation 

▪ The application of m to each element of a data set can be  
parallelized in a straightforward manner 
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 The Reduce phase can be viewed as an 
aggregate operation 
 The aggregate function is a function r defined by 

developers 

 r is invoked one time for each distinct key and 
aggregates all the values associated with it 

 Also the reduce phase can be performed in 
parallel and in isolation 
▪ Each group of key-value pairs with the same key can be 

processed in isolation 
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 The shuffle and sort phase is always the same 

 i.e., group the output of the map phase by key 

 It does not need to be defined by developers 

 It is already provided by the Hadoop system 
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 Key-value pair is the basic data structure in 
MapReduce 

 Keys and values can be: integers, float, strings, … 

 They can also be (almost) arbitrary data structures 
defined by the designer 

 Both input and output of a MapReduce 
program are lists of key-value pairs 

 Note that also the input is a list of key-value pairs 
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 The design of MapReduce involves 

 Imposing the key-value structure on the input and 
output data sets 

▪ E.g., for a collection of Web pages, input keys may be 
URLs and values may be their HTML content 
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 The map and reduce functions are formally 
defined as follows: 

 map: (k1, v1) → [(k2, v2)] 

 reduce: (k2, [v2]) → [(k3, v3)] 

 Since the input data set is a list of key-value 
pairs, the argument of the map function is a 
key-value pair 
 
 
 67 […] denotes a list. (k, v) denotes a key-value pair 



 Map function 

 map: (k1, v1) → [(k2, v2)] 

 The argument of the map function is a key-
value pair 

 Note that the map function 

 Returns a list of key-value pairs for each input 
pair 

▪ The list can be empty 

 

68 […] denotes a list. (k, v) denotes a key-value pair 



 Reduce function 

 reduce: (k2, [v2]) → [(k3, v3)] 

 Note that the reduce function  

 Is invoked once for each distinct key 

 Receives the complete list of values [v2] 
associated with a specific key k2  

 Returns a list of key-value pairs for each input 

▪ The list can be empty 

 

69 […] denotes a list. (k, v) denotes a key-value pair 



 In many applications, the key part of the 
input data set is ignored 

 i.e., usually the map function does not consider 
the key of its key-value pair argument 

▪ E.g., word count problem 

 Some specific applications exploit also the 
keys of the input data 

 E.g., keys can be used to uniquely identify 
records/objects 
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Input file: a textual document with one word per line 
The map function is invoked over each word of the input file 
 
map(key, value): 
 // key: offset of the word in the file  
 // value: a word of the input document 
 emit(value, 1) 
 
reduce(key, values): 
 // key: a word; values: a list of integers 
 occurrences = 0 
 for each c in values: 
   occurrences = occurrences + c 
 
 emit(key, occurrences) 
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