

 Scalable fault-tolerant distributed system for
Big Data
 Distributed Data Storage

 Distributed Data Processing

 Borrowed concepts/ideas from the systems
designed at Google (Google File System for
Google’s MapReduce)

 Open source project under the Apache license
▪ But there are also many commercial implementations

(e.g., Cloudera, Hortonworks, MapR)

3

 Dec 2004 – Google published a paper about GFS
 July 2005 – Nutch uses MapReduce
 Feb 2006 – Hadoop becomes a Lucene

subproject
 Apr 2007 – Yahoo! runs it on a 1000-node cluster
 Jan 2008 – Hadoop becomes an Apache Top

Level Project
 Jul 2008 – Hadoop is tested on a 4000 node

cluster

4

 Feb 2009 – The Yahoo! Search Webmap is a
Hadoop application that runs on more than
10,000 core Linux cluster

 June 2009 – Yahoo! made available the source
code of its production version of Hadoop

 In 2010 Facebook claimed that they have the
largest Hadoop cluster in the world with 21
PB of storage
 On July 27, 2011 they announced the data has

grown to 30 PB.

5

 Amazon
 Facebook
 Google
 IBM
 Joost
 Last.fm
 New York Times
 PowerSet
 Veoh
 Yahoo!
 OpenAI
 …..

6

7

8

9

10

 Hadoop
 Designed for Data intensive workloads

 Usually, no CPU demanding/intensive tasks
 HPC (High-performance computing)
 A supercomputer with a high-level computational

capacity
▪ Performance of a supercomputer is measured in

floating-point operations per second (FLOPS)

 Designed for CPU intensive tasks

 Usually it is used to process “small” data sets

11

 Core components of Hadoop:
 Distributed Big Data Processing Infrastructure based

on the MapReduce programming paradigm
▪ Provides a high-level abstraction view

▪ Programmers do not need to care about task scheduling and
synchronization

▪ Fault-tolerant
▪ Node and task failures are automatically managed by the Hadoop

system

 HDFS (Hadoop Distributed File System)
▪ High availability distributed storage

▪ Fault-tolerant

12

Switch

Rack 1

13

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

Switch

Rack 1

14

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

Switch

Rack 1

15

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

HDFS

Switch

Rack 1

16

Switch

Rack M

Server 1 Server 2

Mem

CPU

C0 C1

C7 C2

Disk

Mem

CPU

C6 C4

C5 C3

Disk

Server N-1 Server N

Mem

CPU

C2 C1

C6 C7

Disk

Mem

CPU

C0 C4

C5 C3

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

HDFS

 Separates the what from the how

 Hadoop programs are based on the MapReduce
programming paradigm

 MapReduce abstracts away the “distributed” part
of the problem (scheduling, synchronization, etc)

▪ Programmers focus on what

 The distributed part (scheduling, synchronization,
etc) of the problem is handled by the framework

▪ The Hadoop infrastructure focuses on how

17

 But an in-depth knowledge of the Hadoop
framework is important to develop efficient
applications

 The design of the application must exploit data
locality and limit network usage/data sharing

18

 HDFS
 Standard Apache Hadoop distributed file system
 Provides global file namespace
 Stores data redundantly on multiple nodes to provide

persistence and availability
▪ Fault-tolerant file system

 Typical usage pattern
 Huge files (GB to TB)
 Data is rarely updated
 Reads and appends are common

▪ Usually, random read/write operations are not performed

19

 Each file is split in “chunks/blocks” that are
spread across the servers
 Each chuck is replicated on different servers (usually

there are 3 replicas per chunk)
▪ Ensures persistence and availability
▪ To increase persistence and availability, replicas are stored in

different racks, if it is possible

 Each chunk/block contains a part of the content of
one single file
▪ You cannot have the content of two files in the same

chunk/block

 Typically each chunk is 64-128MB

20

Switch

Rack 1

21

Switch

Rack M

Server 1 Server 2

Mem

CPU

C0 C1

C7 C2

Disk

Mem

CPU

C6 C4

C5 C3

Disk

Server N-1 Server N

Mem

CPU

C2 C1

C6 C7

Disk

Mem

CPU

C0 C4

C5 C3

Disk

Switch

Example with number of replicas per chunk = 2

Rack …

…

… Switch

 The Master node, a.k.a. Name Nodes in HDFS, is
a special node/server that
 Stores HDFS metadata

▪ E.g., the mapping between the name of a file and the location
of its chunks

 Might be replicated
 Client applications: file access through HDFS

APIs
 Talk to the master node to find data/chuck servers

associated with the file of interest

 Connect to the selected chunk servers to access data

22

 Many Hadoop-related projects/systems are
available
 Hive

▪ A distributed relational database, based on MapReduce, for
querying data stored in HDFS by means of a query language
based on SQL

 HBase
▪ A distributed column-oriented database that uses HDFS for

storing data

 Pig
▪ A data flow language and execution environment, based on

MapReduce, for exploring very large datasets

23

 Sqoop

▪ A tool for efficiently moving data from traditional
relational databases and external flat file sources to
HDFS

 ZooKeeper

▪ A distributed coordination service. It provides primitives
such as distributed locks

 ….

 Each project/system addresses one specific
class of problems
 24

 Input

 A large textual file of words

 Problem

 Count the number of times each distinct word
appears in the file

 Output

 A list of pairs <word, number>, counting the
number of occurrences of each specific word in
the input file

 Case 1: Entire file fits in main memory

 Case 1: Entire file fits in main memory
 A traditional single node approach is probably the

most efficient solution in this case
▪ The complexity and overheads of a distributed system

affects the performance when files are “small”
▪ “small” depends on the resources you have

 Case 1: Entire file fits in main memory
 A traditional single node approach is probably the

most efficient solution in this case
▪ The complexity and overheads of a distributed system

affects the performance when files are “small”
▪ “small” depends on the resources you have

 Case 2: File too large to fit in main memory

 Case 1: Entire file fits in main memory
 A traditional single node approach is probably the

most efficient solution in this case
▪ The complexity and overheads of a distributed system

affects the performance when files are “small”
▪ “small” depends on the resources you have

 Case 2: File too large to fit in main memory
 How can we split this problem in a set of (almost)

independent sub-tasks, and

 execute them in parallel on a cluster of servers?

 Suppose that

 The cluster has 3 servers

 The content of the input file is

▪ “Toy example file for Hadoop. Hadoop running
example.”

 The input file is split into 2 chunks

 The number of replicas is 1

31

32

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for Hadoop.
Hadoop running
example.

33

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

34

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

 The problem can be easily parallelized

1. Each server processes its chunk of data and
counts the number of times each word appears
in its own chunk

▪ Each server can execute its sub-task independently from
the other servers of the cluster
 synchronization is not needed in this phase

▪ The output generated from each chunk by each server
represents a partial result

35

36

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

37

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

send data
through the
network

38

Mem
CPU

Disk

Mem
CPU

Disk

Mem
CPU

Disk

Toy example
file for

Hadoop.
Hadoop running
example.

Toy example
file for Hadoop.
Hadoop running
example.

<toy, 1>
<example, 1>
<file, 1>
<for, 1>

<hadoop, 2>
<running, 1>
<example, 1>

<toy, 1>
<example, 2>
<file, 1>
<for, 1>
<hadoop, 2>
<running, 1>

send data
through the
network

2. Each server sends its local (partial) list of pairs
<word, number of occurrences in its chunk> to a
server that is in charge of aggregating all local
results and computing the global result

▪ The server in charge of computing the global result
needs to receive all the local (partial) results to compute
and emit the final list

 A synchronization operation is needed in this phase

 Case 2: File too large to fit in main memory
 Suppose that
 The file size is 100 GB and the number of distinct

words occurring in it is at most 1,000

 The cluster has 101 servers

 The file is spread acr0ss 100 servers and each of
these servers contains one (different) chunk of the
input file
▪ i.e., the file is optimally spread across 100 servers (each

server contains 1/100 of the file in its local hard drives)

 Each server reads 1 GB of data from its local hard
drive (it reads one chunk from HDFS)
 Few seconds

 Each local list consists of at most 1,000 pairs
(because the number of distinct words is 1,000)
 Few MBs

 The maximum amount of data sent on the
network is 100 x size of local list (number of
servers x local list size)
 Some MBs

 We can define scalability along two dimensions

 In terms of data:

▪ Given twice the amount of data, the word count algorithm
takes approximately no more than twice as long to run

▪ Each server processes 2 x data => 2 x execution time to compute local
list

 In terms of resources

▪ Given twice the number of servers, the word count algorithm
takes approximately no more than half as long to run

▪ Each server processes ½ x data => ½ x execution time to compute
local list

42

 The time needed to send local results to the
node in charge of computing the final result
and the computation of the final result are
considered negligible in this running example

 Frequently, this assumption is not true

 It depends

▪ on the complexity of the problem

▪ on the ability of the developer to limit the amount of
data sent on the network

43

 Scale “out”, not “up”

 Increase the number of servers, avoiding to upgrade
the resources (CPU, memory) of the current ones

 Move processing to data

 The network has a limited bandwidth

 Process data sequentially, avoid random access

 Seek operations are expensive

 Big data applications usually read and analyze all
input records/objects

▪ Random access is useless

 44

 Traditional distributed systems (e.g., HPC)
move data to computing nodes (servers)

 This approach cannot be used to process TBs of
data

▪ The network bandwidth is limited

 Hadoop moves code to data

 Code (few KB) is copied and executed on the
servers where the chunks of data are stored

 This approach is based on “data locality”

45

 Hadoop/MapReduce is designed for

 Batch processing involving (mostly) full scans of
the input data

 Data-intensive applications

▪ Read and process the whole Web (e.g., PageRank
computation)

▪ Read and process the whole Social Graph (e.g.,
LinkPrediction, a.k.a. “friend suggestion”)

▪ Log analysis (e.g., Network traces, Smart-meter data, ..)

46

 Hadoop/MapReduce is not the panacea for all
Big Data problems

 Hadoop/MapReduce does not feet well

 Iterative problems

 Recursive problems

 Stream data processing

 Real-time processing

47

48

 The MapReduce programming paradigm is
based on the basic concepts of Functional
programming

 MapReduce “implements” a subset of
functional programming
 The programming model appears quite limited

and strict
▪ Everything is based on two “functions” with predefined

signatures
▪ Map and Reduce

49

 Solving complex problems is difficult
 However, there are several important

problems that can be adapted to MapReduce
 Log analysis

 PageRank computation

 Social graph analysis

 Sensor data analysis

 Smart-city data analysis

 Network capture analysis

50

 MapReduce is based on two main “building
blocks”

 Map and Reduce functions

 Map function

 It is applied over each element of an input data set
and emits a set of (key, value) pairs

 Reduce function

 It is applied over each set of (key, value) pairs
(emitted by the map function) with the same key and
emits a set of (key, value) pairs Final result

51

 Input

 A textual file (i.e., a list of words)

 Problem

 Count the number of times each distinct word
appears in the file

 Output

 A list of pairs <word, number of occurrences in the
input file>

52

 The input textual file is considered as a list of
words L

53

54

L = [toy, example, toy, example , hadoop]

[…] denotes a list. (k, v) denotes a key-value pair.

55

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[…] denotes a set. (k, v) denotes a key-value pair.

Apply a function
on each element

56

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1])

[…] denotes a list. (k, v) denotes a key-value pair.

Group by key

57

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[(toy, 2) , (example, 2), (hadoop, 1)]

[…] denotes a list. (k, v) denotes a key-value pair.

Apply a function
on each group

(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1])

58

Lm =[(toy, +1), (example, +1), (toy, +1), (example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[(toy, 2) , (example, 2), (hadoop, 1)]

Map
phase

Reduce
phase

Shuffle and
Sort phase

[…] denotes a list. (k, v) denotes a key-value pair.

(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1])

 The input textual file is considered as a list of
words L

 A key-value pair (w, 1) is emitted for each
word w in L

 i.e., the map function is
 m(w) = (w, 1)

 A new list of (key, value) pairs Lm is generated

59

 The key-value pairs in Lm are aggregated by
key (i.e., by word w in our example)

 One group Gw is generated for each word w

 Each group Gw is a key-list pair (w, [list of values])
where [list of values] contains all the values of the
pairs associated with the word w

▪ i.e., [list of values] is a list of [1, 1, 1, …] in our example

▪ Given a group Gw, the number of ones [1, 1, 1, …] is equal
to the occurrences of word w in the input file

60

 A key-value pair (w, sum Gw.[list of values]) is
emitted for each group Gw

 i.e., the reduce function is
 r(Gw) = (w, sum(Gw.[list of values]))

 The list of emitted pairs is the result of the
word count problem

 One pair (word w, num. of occurrences) for each
word in our running example

61

 The Map phase can be viewed as a
transformation over each element of a data set

 This transformation is a function m defined by
developers

 m is invoked one time for each input element

 Each invocation of m happens in isolation

▪ The application of m to each element of a data set can be
parallelized in a straightforward manner

62

 The Reduce phase can be viewed as an
aggregate operation
 The aggregate function is a function r defined by

developers

 r is invoked one time for each distinct key and
aggregates all the values associated with it

 Also the reduce phase can be performed in
parallel and in isolation
▪ Each group of key-value pairs with the same key can be

processed in isolation

63

 The shuffle and sort phase is always the same

 i.e., group the output of the map phase by key

 It does not need to be defined by developers

 It is already provided by the Hadoop system

64

 Key-value pair is the basic data structure in
MapReduce

 Keys and values can be: integers, float, strings, …

 They can also be (almost) arbitrary data structures
defined by the designer

 Both input and output of a MapReduce
program are lists of key-value pairs

 Note that also the input is a list of key-value pairs

65

 The design of MapReduce involves

 Imposing the key-value structure on the input and
output data sets

▪ E.g., for a collection of Web pages, input keys may be
URLs and values may be their HTML content

66

 The map and reduce functions are formally
defined as follows:

 map: (k1, v1) → [(k2, v2)]

 reduce: (k2, [v2]) → [(k3, v3)]

 Since the input data set is a list of key-value
pairs, the argument of the map function is a
key-value pair

 67 […] denotes a list. (k, v) denotes a key-value pair

 Map function

 map: (k1, v1) → [(k2, v2)]

 The argument of the map function is a key-
value pair

 Note that the map function

 Returns a list of key-value pairs for each input
pair

▪ The list can be empty

68 […] denotes a list. (k, v) denotes a key-value pair

 Reduce function

 reduce: (k2, [v2]) → [(k3, v3)]

 Note that the reduce function

 Is invoked once for each distinct key

 Receives the complete list of values [v2]
associated with a specific key k2

 Returns a list of key-value pairs for each input

▪ The list can be empty

69 […] denotes a list. (k, v) denotes a key-value pair

 In many applications, the key part of the
input data set is ignored

 i.e., usually the map function does not consider
the key of its key-value pair argument

▪ E.g., word count problem

 Some specific applications exploit also the
keys of the input data

 E.g., keys can be used to uniquely identify
records/objects

70

Input file: a textual document with one word per line
The map function is invoked over each word of the input file

map(key, value):
 // key: offset of the word in the file
 // value: a word of the input document
 emit(value, 1)

reduce(key, values):
 // key: a word; values: a list of integers
 occurrences = 0
 for each c in values:
 occurrences = occurrences + c

 emit(key, occurrences)

71

