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[ Large Language Models ]

Some limits of FCNN
• Remember: Fully-connected NN are cascades of matrices/non-linearities
• E.g., 𝑓 𝑥 = 𝜎(𝑊!"#𝑅𝑒𝐿𝑈 𝑊$%&𝑅𝑒𝐿𝑈 𝑊%'𝑥

• This type of models have some architectural constraints!
1. The input is expected to be fixed in size
2. Each input is associated with its set of weights
3. The output is expected to be fixed in size

𝑅𝑒
𝐿𝑈

𝑊
!"

𝑅𝑒
𝐿𝑈

𝑊
#!
$

𝜎

𝑊
%&
'

𝑓
𝑥𝑥

[ Recurrent Neural Networks ] 2



[ Large Language Models ]

The input is expected to be fixed in size

• As defined by the number of columns in 𝑊!"

• For structured data (e.g., tabular) this is generally fine
• We typically have a fixed number of input attributes
• (Missing values need to be handled in some way)

• For unstructured data, this is more troubling!
• Images may have different resolutions/ratios
• Audios have different sampling frequencies and lengths
• Texts come in all lengths
• …
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Each input is associated with its set of weights

• If the same pattern occurs in different portions of 
the input, the model needs to learn the same 
pattern multiple times

• This is expensive when patterns can occur in 
multiple ”places”
• In images, a dog is a dog, regardless of where it is
• However, A FCNN needs to separately learn what “a dog 

is” (pattern) in each place separately. This is:
1. Inefficient
2. More data-intensive (as we need pictures of dogs

in different places)

“a dog on the right”

“a dog on the left”

Same pattern, just found in 
different places of the input!
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The output is expected to be fixed in size

• As defined by the number of rows in 𝑊#$%

• Sometimes, we may want outputs to have varying sizes
• In object detection, we want to segment the pixels of an image

Dog
Not dog
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Recurrent Neural Networks (RNN)
• RNNs are a type of NN designed to process sequential data
• Can receive a sequence as input
• And/or produce a sequence as output

• The input/output sequences can be of varying sizes!

• An RNN processes inputs one element at a time
• element = “one unit of the sequence”

• E.g., a word of  sentence, a character of a string, a day of the year, etc. 

• And maintains an internal (hidden) state
• The hidden state summarizes the information seen so far
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RNN architecture
• The general RNN architecture is charaterized by 

two inputs and two outputs
• The first input is the element at the current time step 

of the input sequence
• The second input is the hidden state produced in the 

previous time stemp

• The first output is the model’s prediction for the 
current time step
• The second output is the model’s hidden state for the 

current time step
• Which will be used as the second input for the next time step
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RNN architecture, unfolded
• To understand how an RNN handles an input 

sequence, let’s consider a step-by-step case

• We feed a lowercase input string to the model (one 
character at a time), and expect the output to be 
the same string, with the correct case. 
• Input sequence
• "you are very kind, mr. holmes, but i cannot do that”

• Desired output sequence
• "You are very kind, Mr. Holmes, but I cannot do that”

Note
For these sequences, each 
character represents an 
element of the sequence.
• s0 = "
• s1 = y
• s2 = o
• s3 = u
…
Each element can be 
represented as a 256-
dimensional one-hot vector
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RNN architecture, unfolded

RNNInitial 
state

t = 0

State 
t0

Remember we just found 
an “, this is probably the 
beginning of a dialogue, 
so we should probably 

capitalize the next letter"

"                      y                      o   

s0                      s1            s2
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RNN architecture, unfolded

RNN

"

Initial 
state

t = 1

State 
t0

RNN

Y

State 
t1

We just added a 
capitalized letter, at the 
beginning of a dialogue. 
The following character 

will probably be 
lowercase. 

"                      y                      o   

s0                      s1            s2
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RNN architecture, unfolded

RNN

"

Initial 
state

t = 2

State 
t0

RNN

Y

State 
t1

RNN

o

State 
t2

"                      y                      o   

s0                      s1            s2

[ Recurrent Neural Networks ] 11



[ Large Language Models ]

Inside an RNN
• Different RNNs can have different 

implementations

• A simple example is characterized by an 
input layer, a state layer, and an output 
layer (& of course some non-linearity)
• Input layer: processes the current input, 

produces a vector with the same 
dimensionality as the hidden state
• State layer: processes the hidden state from 

the previous step
• Output layer: uses the current state 

(combination of input and state) to produce 
the current output
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Input ti
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Weight sharing

• The same model (i.e., same weights!) is applied multiple times 
throughout the sequence

• The state is used to provide the model with the context of what 
happened before

• So if the same context occurs in different moments of the sequence, the 
model’s behavior will be the same, regardless of position

• No need to learn the same patterns in different positions of the input!
• The model should capitalize the first letter of words after a period, regardless of 

where it is. 
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Backpropagation-through-time
• An RNN is nothing other than a bunch of NNs applied in cascade. 

• At training time, we first unfold the RNN across the entire sequence

• Then, the loss function is computed and propagated

• The gradient of each layer will have multiple terms (one for each step 
of the sequence)
• We simply add them up
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Backprop-through-time (BPTT)
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Backprop-through-time (BPTT)
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Backprop-through-time (BPTT)
• Although the model is applied multiple times, the weights to be 

updated are actually the same
• The gradient from the various steps are accumulated into a single 

gradient
• The gradient descent step is taken once after all gradient 

contributions are backpropagated
• (Backpropagation-through-time)
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Case correction – RNN demo
• Dataset: The Adventures of Sherlock Holmes (Arthur Conan Doyle)

• Randomly cropped sequences of characters, 10 to 100 ASCII characters long
• E.g., “My cabby drove fast. I don't think I ever drove faster, but the others”

• (the book is in the public domain, you can find it in txt format, online)
• Input: lowercase version of the sequences (1 ASCII char at a time)
• Target output: the correctly-cased sequences
• Model: RNN with 32-dimensional hidden state (initial state, all zeros), 

Adam optimizer, learning rate 0.001
• Input/output encoding: 256-dimensional vector
• Loss function: cross-entropy between predicted probability distribution and 

correct character
• Training: 10 epochs (batch size 32)
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Case correction – RNN demo
• We keep track of the training loss throughout 

the training process (10 epochs).

• We test the RNN after each epoch on a fixed 
sentence, to observe how the predicted output 
varies

============================================================================================================================
Epoch 01, loss: 3.1681 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 02, loss: 2.3334 eXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 03, loss: 1.7436 tst X s te e eee t e e e te se ee se e e ee eee XXXee st s ss e t ee se eee ee se eeee s e⎵
Epoch 04, loss: 0.9519 upon his pale face. cit may be sos or it may nots mr. holresst said hes cbut if wou are so very sharp
Epoch 05, loss: 0.3579 upon his pale face. "it may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 06, loss: 0.1599 upon his pale face. "it may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 07, loss: 0.1009 upon his pale face. "It may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 08, loss: 0.0752 upon his pale face. "It may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 09, loss: 0.0599 upon his pale face. "It may be so, or it may not, mr. Holmes," said he, "but if you are so very sharp
Epoch 10, loss: 0.0515 upon his pale face. "It may be so, or it may not, mr. Holmes," said he, "but if you are so very sharp

[ Recurrent Neural Networks ] 19
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[ Large Language Models ]

Case correction – RNN demo
We test the RNN after each epoch on a fixed sentence, to observe how 
the predicted output varies

Input test sentence :  upon his pale face. "it may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Target test sentence:  upon his pale face. "It may be so, or it may not, Mr. Holmes," said he, "but if you are so very sharp
============================================================================================================================
Epoch 01, loss: 3.1681 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 02, loss: 2.3334 eXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 03, loss: 1.7436 tst X s te e eee t e e e te se ee se e e ee eee XXXee st s ss e t ee se eee ee se eeee s e⎵
Epoch 04, loss: 0.9519 upon his pale face. cit may be sos or it may nots mr. holresst said hes cbut if wou are so very sharp
Epoch 05, loss: 0.3579 upon his pale face. "it may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 06, loss: 0.1599 upon his pale face. "it may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 07, loss: 0.1009 upon his pale face. "It may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 08, loss: 0.0752 upon his pale face. "It may be so, or it may not, mr. holmes," said he, "but if you are so very sharp
Epoch 09, loss: 0.0599 upon his pale face. "It may be so, or it may not, mr. Holmes," said he, "but if you are so very sharp
Epoch 10, loss: 0.0515 upon his pale face. "It may be so, or it may not, mr. Holmes," said he, "but if you are so very sharp

The “X” represents the prediction of a 
null (0x00) byte – the implementation 
uses null bytes to pad sentences of 
different lengths. The model learns 
that null bytes show up a bunch of 
times, so it initially predicts mostly 
that character. 

Next, the models figures out that 
spaces should be forwarded “as is”, 
and gets most of them correctly. It also 
notices that the letter “e” occurs quite 
often (most frequent character in 
English), so it also predicts a bunch of 
e’s. 

A breakthrough (notice the drop in 
loss) occurs when the model realizes it 
can forward most letters “as is”. It still 
needs some time to figure out 
punctuation, but it has most parts of 
the string under control.

Later, it figures out that after periods (.) -- even if 
followed by quotes (“), it should capitalize the next 
letter. Notice how the model capitalizes Holmes not 
because it is a name (remember, the model only 
knows that there’s an “h”, it cannot see the future), 
but because the “h” follows a period. 

The model still cannot see the 
future, so it will unlikely learn that 
“m” should be capitalized because 
it is the beginning of “Mr.”!
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Problems with RNNs
• Vanishing & Exploding gradients
• The gradients are computed as a product of many terms – this can make the 

gradient go to 0, or to infinity!

• Long-Term Dependency Issues
• The hidden state should keep track of the history of the sequence, but in 

practice it mostly remembers the most recent inputs

• Computational inefficiency
• RNNs cannot be parallelized, since the execution of each step depends on the 

previous one
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Vanishing and Exploding Gradients (I)

• Remember: gradients are backpropagated by means of the 
chain rule
• !"
!#
= !"

!$
!$
!#

• If a sequence has length N, we will unroll the RNN N times!
• The gradients will be multiplied backward across “unrolls”
• E.g., !ℒ

!&
= !ℒ

!'
!'
!(

!(
!)
… !*
!&

RNN RNN RNN

ℒ

𝜃
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Vanishing and Exploding Gradients (II)
• If |gradients| are mostly < 1, the final gradient will be ~ 0
• 🫥 Vanishing gradient
• 0.9./ = 0.005
• Some activation functions (e.g., sigmoid) also aren’t helping, since they have ~ 0 

derivative almost everywhere

• If |gradients| are mostly > 1, the final gradient will grow to large values
• 💥 Exploding gradients
• 1.1./ = 117.4

• Problem: Gradients shrink (vanishing) or grow (exploding) exponentially 
during backpropagation, leading to very small/large updates to the 
network weights.
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Long-Term Dependency Issues
• For RNNs, the only way to remember the past is to maintain a hidden 

state, updated at each time step based on:
• the current input, and
• the previous hidden state

• Ideally, this hidden state should capture all relevant information from 
previous time steps
• However, for long sequences, earlier steps are forgotten from the 

hidden state, in favor of the more recent ones:
• The state is updated often, and the RNN has no explicit way of 

prioritizing/remembering important things from earlier
• Vanishing/exploding gradients make the contribution of earlier inputs less 

significant
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Long-Term Dependency Issues
• We can devise a “next word prediction” task
• At step t, the model predicts what the t+1th word should be

• “The mouse was getting chased by the cat through the big house. 
After a long chase, the cat finally managed to catch the ” è ?

• The answer is (of course) mouse

• However, RNNs struggle with this kind of task, since they “forget” 
what they saw at earlier stages. 
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Gated RNNs
• Gated RNNs are a class of RNNs designed to address the long-term 

dependency and gradient issues of RNNs
• Gates used to control the flow of information

• Common types:
• LSTM (Long Short-Term Memory)

• Introduce gates that manage memory more effectively
• GRU (Gated Recurrent Unit)

• A simplified version of LSTM with fewer gates but similar effectiveness
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Key Components of Gated RNNs
• Input Gate
• Controls how much of the new input should influence the current memory

• Forget Gate
• Decides which parts of the previous memory should be forgotten/retained

• Output Gate
• Determines (1) how much of the current memory should be passed on to the 

next time step and (2) how much should be output.

• Update Gate (in GRU)
• A single gate that combines the functionality of the input and forget gates
• (makes the architecture simpler)
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Long Short-Term Memory
• Inputs (xt)

• The input is immediately concatenated to 
the pervious hidden state

• Cell states (ct)
• The cell state passes, with only small 

changes, through the LSTM cell
• It represents the “long-term memory”

• Hidden states (ht)
• It depends on both cell state, input and 

previous hidden state
• It represents the “short-term memory”

• No output states: the hidden state 
works as an output – if we want step-
by-step results we can further process 
the current output
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Note
In the above schema, we summarize a linear layer + non-
linearity with a single orange block. For instance, σ indicates
a linear layer, followed by a sigmoid (i.e., the block also has 
learnable parameters)

[ Recurrent Neural Networks ] 28



[ Large Language Models ]

Long Short-Term Memory – gates
• Forget gate

• Current input + previous hidden state 
are used to decide how much of the 
previous cell state should be forgotten

• Input gate
• Current input + previous hidden state 

are used to decide how much of the 
input should be added to the next cell 
state

• Output gate
• Current input + previous hidden state 

are used to decide how much of the 
cell state should become the new 
hidden state
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Note
When we need to choose how much of something should be 
passed, we multiply that something with the output of a 
sigmoid layer, which is bounded in [0,1].
0 è keep nothing
1 è keep everything
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Sequence to sequence (seq2seq) 
tasks
• We have discussed various tasks that consist in mapping an input 

sequence to an output sequence
• These tasks are referred to as seq2seq

• We have currently considered situations where input and output 
sequences have the same length
• One RNN step takes 1 input element and produces 1 output element
• One-to-one mapping (between inputs and outputs)
• In the previous demo (“case correction” problem) we associated, to each 

lowercase input letter, its correctly cased version

RNN RNN RNN
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Limitations of one-to-one mapping (I)
• Inputs and outputs may have different 

lengths
• For machine translation tasks, source and 

destination languages may encode the 
same sentence with different-length vectors
• E.g., for English-to-Italian translactions
• [it] [is] [indeed] [sunny] [today] è

[effettivamente] [oggi] [è] [soleggiato]
• 5 words vs 4 words
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Limitations of one-to-one mapping (II)
• The LSTM doesn’t get to see the entire input 

sequence until the end
• We may need to know what happens ahead of 

time!
• In the above example, the LSTM needs to know 

that the words “effettivamente” and “oggi” exist 
before their English versions appear in the input 
sequence 
• [it] [is] [indeed] [sunny] [today] è

[effettivamente] [oggi] [è] [soleggiato]
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Encoder-decoder architecture
• Ideally, the model should:

1. See the entire sequence before starting generating the output
2. Produce a state vector that “encodes” the entire input sequence
3. Use the previously mentioned vector to start generating the output
4. Be allowed to generate until it decides to stop

• i.e., it produces a special token that determines the End of Sequence (EOS)

• This architecture is called encoder-decoder

Encoder state Decoder

EOS
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Encoder-decoder architecture
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Note
The first token provided to the 
decoder is <BOS> (Beginning Of 
Sequence).

Note
The generation of the decoder 
continues until the decoder 
produces the <EOS> token.

Note
The input tokens following the 
first one will be the outputs of 
the preceding steps.

Note
Sometimes during training 
we use teacher forcing, 
where we pass the “correct” 
output token instead of the 
predicted one. This helps 
reach convergence more 
quickly.
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Case correction problem – revised
• Target sentence:

• "Indeed I am Sherlock Holmes,"
• Some interesting aspects:

1. “I” of “Indeed” should be capitalized (beginning of a quote – ")
2. “I” of “I” should be capitalized (subject pronoun)
3. “S” of “Sherlock” should be capitalized (first name)
4. “H” of “Holmes” should be capitalized (last name)

• What can we expect from one-to-one mapping?
1. It should figure this one out (capitalization depends on previous character(s))
2. It probably won’t realize it (model only knows that this is the beginning of the word, it 

doesn’t know this letter is a word in and of itself – it can’t see the future!)
3. Again, the model just sees a word starting with “s” – it cannot know that it will be 

followed by “herlock”, thus requiring capitalization
4. After the model sees that the previous word was sherlock, when it sees an “h”, it may

realize that the ”h” will be the beginning of “Holmes”
• This depends very much on how often “Sherlock Holmes” is contained in the training data
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Results

Input test sequence:     "indeed i am sherlock holmes,"
Target test sequence:    "Indeed I am Sherlock Holmes,”
=======================================================
Epoch 0001, loss: 5.3212 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 0002, loss: 3.7157 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 0003, loss: 2.7964 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 0004, loss: 2.7981 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Epoch 0030, loss: 0.2264 "indeed i am sherlock holmes,"
Epoch 0050, loss: 0.0802 "indeed i am sherlock holmes,"
Epoch 0160, loss: 0.0301 "Indeed i am sherlock Holmes,"
Epoch 0530, loss: 0.0224 "Indeed i am sherlock Holmes,"
Epoch 1070, loss: 0.0232 "Indeed i am sherlock Holmes,"

"indeed i am sherlock holmes,"
"Indeed I am Sherlock Holmes,”

===========================================
loss: 5.4591 wwXXXXXXXXXXXXXXXXXXXXXXXXXXXX
loss: 4.0161 aXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
loss: 2.8268 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
loss: 2.7671 XXXXXXXXXXXXXXXXXXX
loss: 0.2315 "indeed i am sherlock holmes,"
loss: 0.0705 "indeed i am sherlock holmes,"
loss: 0.0259 "Indeed i am sherlock Holmes,"
loss: 0.0197 "Indeed I am sherlock Holmes,"
loss: 0.0156 "Indeed I am Sherlock Holmes,"

One-to-one mapping

Note
The encoder-decoder first sees the 
entire sequence. It “remembers” that 
the “I” is a full word (so, it should be 
capitalized) and that the “s” is the first 
letter of sherlock (è capitalize!)

Note
Indeed, the model can only figure out 
Indeed and Holmes -- but it has no 
way of knowing that ”I” is its own 
word, and that the “s” is the beginning 
of “Sherlock”

Encoder-decoder

Note
Note the larger number of epochs 
required to reach the result!
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[ Large Language Models ]

Limitations of Gated RNN
• Gated RNNs provide workarounds to the problems of vanilla RNNs. 

However, they only marginally improve upon the problems of RNNs

• Difficulties with long sequences are still present
• Long-term dependencies still bottlenecked to a single vector
• No access to the full input sequence

• Gradients still vanish/explode
• BPTT still unrolls the recurrent model

• Added architectural complexity
• The LSTM cell introduces additional parameters/gates

• Still cannot be parallelized

[ Recurrent Neural Networks ] 37


