

Distributed architectures for big data processing and analytics

September 6, 2024

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

1. (2 points) Consider the following Spark Streaming applications.

(Application A)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resADStream = inputDStream\

.map(lambda value: int(value))

.filter(lambda value : value>5)

.window(30, 10)

.reduce(lambda v1,v2: max(v1, v2))

.filter(lambda value : value>10)

Print the result

resADStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

(Application B)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resBDStream = inputDStream\

.map(lambda value: int(value))

.reduce(lambda v1,v2: max(v1, v2))

.filter(lambda value : value>5)

.window(30, 10)

.reduce(lambda v1,v2: max(v1, v2))

.filter(lambda value : value>10)

Print the result

resBDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

(Application C)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resCDStream = inputDStream\

.map(lambda value: int(value))

.filter(lambda value : value>5)

.reduce(lambda v1,v2: max(v1, v2))

.filter(lambda value : value>10)

.window(30, 10)

.reduce(lambda v1,v2: max(v1, v2))

.filter(lambda value : value>10)

Print the result

resCDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

Which one of the following statements is true?

 a) Applications A, B, and C are equivalent in terms of the returned result (i.e., they

always return the same result independently of the content of the input).

 b) Applications A and B are equivalent in terms of the returned result (i.e., A and B

always return the same result independently of the content of the input), while C

is not equivalent to the other two applications (C can return a different result

depending on the content of the input).

 c) Applications A and C are equivalent in terms of the returned result (i.e., A and C

always return the same result independently of the content of the input), while B

is not equivalent to the other two applications (B can return a different result

depending on the content of the input).

 d) Applications B and C are equivalent in terms of the returned result (i.e., B and C

always return the same result independently of the content of the input), while A

is not equivalent to the other two applications (A can return a different result

depending on the content of the input).

2. (2 points) Consider the following MapReduce application for Hadoop.

DriverBigData.java

/* Driver class */
package it.polito.bigdata.hadoop;
import ….;

/* Driver class */

public class DriverBigData extends Configured implements Tool {

 @Override

public int run(String[] args) throws Exception {

 int exitCode;

 Configuration conf = this.getConf();

 // Define a new job

 Job job = Job.getInstance(conf);

 // Assign a name to the job

 job.setJobName("Exercise 06/09/2024 - Question");

 // Set path of the input file/folder for this job

 FileInputFormat.addInputPath(job, new Path("inputFolder/"));

 // Set path of the output folder for this job

 FileOutputFormat.setOutputPath(job, new Path("outputFolder/"));

 // Specify the class of the Driver for this job

 job.setJarByClass(DriverBigData.class);

 // Set job input format

 job.setInputFormatClass(TextInputFormat.class);

 // Set job output format

 job.setOutputFormatClass(TextOutputFormat.class);

 // Set map class

 job.setMapperClass(MapperBigData.class);

 // Set map output key and value classes

 job.setMapOutputKeyClass(Text.class);

 job.setMapOutputValueClass(NullWritable.class);

 // Set reduce class

 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(NullWritable.class);

 // Set the number of reducers to 3

 job.setNumReduceTasks(3);

 // Execute the job and wait for completion

 if (job.waitForCompletion(true)==true)

 exitCode=0;

 else

 exitCode=1;

 return exitCode;

 }

 /* Main of the driver */
 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }

}

--

MapperBigData.java

/* Mapper class */

package it.polito.bigdata.hadoop;

import …;

class MapperBigData extends

 Mapper<LongWritable, // Input key type

 Text, // Input value type

 Text, // Output key type

 NullWritable> { // Output value type

 protected void map(LongWritable key, // Input key type

 Text value, // Input value type

 Context context) throws IOException, InterruptedException {

 // Emit the pair (value, NullWritable) if the name of the city starts with "D"

 if (value.toString().startsWith("D") == true) {

 context.write(new Text(value), NullWritable.get());

 }

 }

}

--

ReducerBigData.java

/* Reducer class */
package it.polito.bigdata.hadoop;

import …;

class ReducerBigData extends

 Reducer<Text, // Input key type

 NullWritable, // Input value type

 IntWritable, // Output key type

 NullWritable> { // Output value type

 // Define numCitiesD

 int numCitiesD;

 protected void setup(Context context) {

 // Initialize numCitiesD

 numCitiesD = 0;

 }

 protected void reduce(Text key, // Input key type

 Iterable<NullWritable> values, // Input value type

 Context context) throws IOException, InterruptedException {

 // Increment numCitiesD

 numCitiesD ++;

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {

 // Emit the pair (numCitiesD, NullWritable))

 context.write(new IntWritable(numCitiesD), NullWritable.get());

 }

}

Suppose that inputFolder contains the files Cities1.txt and Cities2.txt. Suppose the

HDFS block size is 1024 MB.

Content of Cities1.txt and Cities2.txt:

Filename (size and number of lines) Content

Cities1.txt (80 bytes – 10 lines) Beijing

Cairo

Delhi

Dhaka

Dortmund

Mexico City

Mumbai

São Paulo

Shanghai

Tokyo

Cities2.txt (54 bytes – 6 lines) Buenos Aires

Chongqing

Delhi

Istanbul

Karachi

Kolkata

Suppose we run the above MapReduce application (note that the input folder is set

to inputFolder/).

What is a possible output generated by running the above application?

a) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 1

part-r-00001 (1 line) 2

part-r-00002 (1 line) 0

b) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 1

part-r-00002 (1 line) 0

c) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (2 lines) 2

part-r-00001 (1 line) 1

part-r-00002 (1 line) 1

d) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (3 lines) 4

part-r-00001 (0 line – empty file)

part-r-00002 (0 line – empty file)

Part II

PoliOnline is an international company that sells items online. To improve the sales and

revenue of PoliOnline, a data warehouse has been created to store information about

prices and daily sales. Specifically, the following input data sets/files are available for

supporting the analyses of interest of the company.

 Catalogue.txt

o Catalogue.txt is a textual file containing information about the items that are

sold by PoliOnline. There is one line for each item and the total number of

distinct items is greater than 5,000,000. This file is large and you cannot

suppose the content of Catalogue.txt can be stored in one in-memory

Java/Python variable.

o Each line of Catalogue.txt has the following format

 ItemID,Name,Category

where ItemID is the unique identifier of the item, Name is the name of

ItemID, and Category is its category.

 For example, the following line

ID1,t-shirt-winter,Clothing

means that the item with ItemID ID1 is characterized by the name t-

shirt-winter and belongs to the Clothing category.

Note that many items can be associated with the same category.

 Prices.txt

o Prices.txt is a textual file containing information about the prices of the items.

The price of each item varies over time. There are potentially multiple lines

for each item. This file is large and you cannot suppose the content of

Prices.txt can be stored in one in-memory Java/Python variable.

o Each line of Prices.txt has the following format

 ItemID,StartingDate,EndingDate,Price

where ItemID is the identifier of an item, and StartingDate and

EndingDate are the beginning and end of the period of validity of the

price reported in the attribute Price for item ItemID. The format of

StartingDate and EndingDate is “YYYY/MM/DD”.

 For example, the following line

ID1,2019/03/01,2020/06/15,10.8

means the price associated with item ID1 from March 1, 2019, to

June 15, 2020, was 10.8 euros.

Note that the price of each item varies over time. Every time there is a price

variation, a new line is inserted in Prices.txt with information about the new

price and its validity period. Each item is associated with one single price in

each period.

 DailySales.txt

o DailySales.txt is a textual file containing information about daily sales for

each item. DailySales.txt contains historical data about the last 40 years.

This file is big and its content cannot be stored in one in-memory

Java/Python variable. There is one line for each combination (ItemID, Date)

for the last 40 years.

o Each line of DailySales.txt has the following format

 ItemID,Date,NumberOfSales

where ItemID is the identifier of an item, Date is a date, and

NumberOfSales is an integer value representing the number of times

item ItemID was sold on the date Date. The format of Date is

“YYYY/MM/DD”.

 For example, the following line

ID1,2019/05/02,1151

means that on May 2, 2019, the item identified by ID1 was sold 1151

times.

Note that there is a many-to-many relationship between items and dates (i.e.,

the combination of attributes (ItemID, Date) is the "primary key" of

DailySales.txt). Each item is associated with all the dates of the last 40 years,

and each date of the last 40 years is associated with all items. Even if an

item was not sold on a specific date, there is a line for that combination in

DailySales.txt anyway, with NumberOfSales set to 0.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliOnline are interested in performing some analyses about the prices

of the items over time.

Design a single application based on MapReduce and Hadoop and write the

corresponding Java code to address the following point:

1. Maximum and minimum price for each item from 2015 to 2023. The application

computes the maximum and minimum prices of each item considering the prices

valid in the period 2015-2023. Store the result in the output HDFS folder (one item

per output line associated with its maximum and minimum prices from 2015).

Output format: ItemID, Maximum price from 2015 to 2023, Minimum price from 2015

to 2023.

Suppose that the input is Prices.txt and it has already been set. Suppose that the name of

the output folder has also already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be

reported.

 Use the following two specific multiple-choice questions to specify the number of

instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if

you override it,

o do not report the get and set methods. Suppose they are "automatically

defined".

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

(a) One single job is needed

(b) 0

(c) exactly 1

(d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliOnline asked you to develop a single Spark-based application based

either on RDDs or Spark SQL to address the following tasks. The application takes the

paths of the three input files and two output folders (associated with the outputs of the

following points 1 and 2, respectively).

1. Categories with a higher number of sales in 2023 than in 2022. The first part of this

application considers only the years 2022 and 2023. It selects the categories with a

total number of sales in 2023 greater than the total number of sales in 2022. Store

the selected categories in the first output folder (one category per output line).

2. For each item, select the dates with an increasing income compared to the previous

date. The second part of this application considers all 40 years of data. It selects,

for each item, the dates on which the daily income associated with the item is

greater than the daily income of the previous date. The daily income of an item on a

specific date is given by the number of sales of that item on that date multiplied by

the item's price on that date. Store the result in the second output folder (one pair

(ItemID, date with an increasing income compared to the previous date) per output

line).

Suppose the function nextDate(date) is provided. Given a date in the format

‘YYYY/MM/DD’, nextDate(date) returns the next date (again in the format

‘YYYY/MM/DD’).

For example, nextDate(‘2018/04/05’) returns the date ‘2018/04/06’.

Example Part 2

Consider a toy example with a few records/lines.

Suppose there are only two items: ID1 and ID2.

Suppose the toy example version of DailySales.txt contains the following 10 lines

 ID1,2019/05/01,500

 ID1,2019/05/02,1100

 ID1,2019/05/03,0

 ID1,2019/05/04,0

 ID1,2019/05/05,10

 ID2,2019/05/01,1000

 ID2,2019/05/02,1000

 ID2,2019/05/03,1000

 ID2,2019/05/04,500

 ID2,2019/05/05,0

Suppose the toy example version of Prices.txt contains the following 3 lines

 ID1,2019/05/01,2019/12/31,10.0

 ID2,2019/05/01,2019/05/02,5.0

 ID2,2019/05/03,2019/12/31,5.5

It follows that the daily incomes associated with items ID1 and ID2 on the five dates

of this toy example are

 ID1,2019/05/01,5000

 ID1,2019/05/02,11000

 ID1,2019/05/03,0

 ID1,2019/05/04,0

 ID1,2019/05/05,100

 ID2,2019/05/01,5000

 ID2,2019/05/02,5000

 ID2,2019/05/03,5500

 ID2,2019/05/04,2750

 ID2,2019/05/05,0

In this case, the dates for the two items with an increasing income compared to the

previous date are as follows (this is the output of the second part of this application):

 ID1,2019/05/02

 ID1,2019/05/05

 ID2,2019/05/03

 You do not need to write imports. Focus on the content of the main method.

 Suppose both SparkContext sc and SparkSession ss have already been set.

 Only if you use Spark SQL, suppose the first line of all files contains the header

information/the name of the attributes. Suppose, instead, there are no header lines

if you use RDDs.

