
Large
Language
Models

Flavio Giobergia

Transformers

[Large Language Models]

Encoder-decoder architecture

Encoder state Decoder

BOS

EOS

[Transformers] 2

[Large Language Models] [Transformers]

Nx
Multi-Head
Attention

Input
Embedding

Output
Embedding

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed
Forward

Feed
Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Linear

Softmax

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

state

Encoder

B
O
S

E
O
S

Decoder

3

[Large Language Models] [Transformers]

Multi-Head
Attention

Input
Embedding

Output
Embedding

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed
Forward

Feed
Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Linear

Softmax

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

Transformers

4

[Large Language Models]

Transformer architecture
• The transformer (Vaswani et al, 2017) is a novel seq2seq architecture

• Originally proposed as an encode-decoder architecture
• (We will see that encoder-only and decoder-only are also used)

• No longer based on RNN!
• Transformers no longer struggle with long-term dependencies

• However, it becomes computationally expensive for long sequences – O(N2)
• No need to unroll the model N times (gradients no longer disappear/explode)
• Parallelizable architecture

• Various aspects of interest we will cover (not all are novel!)
• Tokenization
• Positional encoding
• Attention mechanism

• (Multi-head) Self-attention & cross-attention

“Attention is all you need”, https://arxiv.org/pdf/1706.03762

[Transformers] 5

https://arxiv.org/pdf/1706.03762

[Large Language Models]

General architecture

[Transformers] 6

[Large Language Models]

Simplified architecture
• Let’s make some simplifying assumptions

(we will revisit them later)
1. Let’s ignore “residual” connections
2. Inputs/outputs are simply (vectors

representing) tokens
3. Let’s also ignore Add & Norm layers

• We know what FF networks do
• We are left with these “attention” blocks,

having 3 inputs and an output
• We will explore these modules in more detail!

Multi-Head
Attention

Input
Embedding

Output
Embedding

Add & Norm

Add & Norm
Add & Norm

Add & Norm

Feed
Forward

Feed
Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Linear

Softmax

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

Add & Norm

Multi-Head
Attention

Feed
Forward

Masked
Multi-Head
Attention

Multi-Head
Attention

Feed
Forward

[Transformers] 7

[Large Language Models]

Generating the 1st token
• Encoder
• The entire input sequence is encoded,

producing one code for each step

• Decoder
• We feed a “beginning of sequence” (BOS)

special token, to:
• Tell the encoder that we are at the beginning of

the sequence
• Fill the “void” input (the model has not generated

anything yet!)
• The output will be the 1st token generated by

the transformer (“tok1”)

Nx

Nx
Feed

Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Multi-Head
Attention

Feed
Forward

tok1

BO
S

Note
The output of the transformer is a probability
for each possible token. We can extract a token
(e.g., the arg max, or sampling the distribution)

[Transformers] 8

[Large Language Models]

Generating the 2nd token
• Encoder

• The same input sequence is encoded (like
before), producing the same code

• Decoder
• We feed BOS + tok1
• The output will be the 2nd token generated by

the transformer
• We continue in this way until the

transformer generates the End Of Sequence
(EOS) token

Nx

Nx
Feed

Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Multi-Head
Attention

Feed
Forward

tok2

BO
S

to
k1

tok1

Note
The decoder will output a prediction for each input token. At inference
time, we are interested the latest generated token. At training time,
the loss is computed on all tokens generated at that step!

[Transformers] 9

[Large Language Models]

Tokenization

[Transformers] 10

[Large Language Models]

Tokenization
• Transformers need to process natural language, in the form of sentences
• We need a way to split a sentence into units
• This process is called tokenization, and splits the sequence into tokens

• We already considered some tokenization options in past lectures:
• Character-level (“case correction problem”)
• Word-level (word embeddings, word2vec)
• Subword-level (word embeddings, fastText)

Sennrich, Rico, Barry Haddow, and Alexandra Birch. "Neural machine translation of rare words with subword
units." arXiv preprint arXiv:1508.07909 (2015).

[Transformers] 11

[Large Language Models]

Character-level tokenization
• Description
• Breaks text into individual characters
• Each character is treated as as token

• Pros
• No out-of-vocabulary issues
• Robust to misspellings and variations

• Cons
• Longer sequences (we’ll see, transformers are O(N2) in the sequence length)
• Slower/more complex training
• Semantic information is harder to capture
• Inefficient for common words

Mrs. Rucastle was downstairs, so I had an admirable opportunity.
Mrs. Rucastle was downstairs, so I had an admirable opportunity.

[Transformers] 12

[Large Language Models]

Word-level tokenization
• Description
• Breaks text into individual words.
• Each word is treated as as token

• Pros
• Captures semantic meaning directly
• Shorter sequences compared to character-level
• More intuitive/easier to understand

• Cons
• Out-of-vocabulary (OOV) issues for rare or new words
• Does not leverage some information shared among words (e.g. prefixes/suffixes)
• Larger vocabulary needed, leading to memory inefficiency
• Vectors for rarer words are trained “less”

Mrs. Rucastle was downstairs, so I had an admirable opportunity.
Mrs. Rucastle was downstairs, so I had an admirable opportunity.

[Transformers] 13

[Large Language Models]

Subword-level tokenization
• Description

• Breaks text into subword units (e.g., prefixes, suffixes)
• fastText uses n-grams contained in each word
• A more commonly used method is Byte-Pair Encoding (BPE)

• Pros
• Balances between character-level and word-level
• Handles out-of-vocabulary words effectively
• Compact vocabulary with better generalization
• Efficient for both frequent and rare words

• Cons
• Common words are represented by fewer subwords w.r.t. rarer words
• Requires defining a subword definition policy
• The subword definition policy may introduce some computational overhead

Mrs. Rucastle was downstairs, so I had an admirable opportunity.
Mrs. Rucastle was downstairs, so I had an admirable opportunity.

Note
Tokenization obtained with
BERT base tokenizer (cased).

[Transformers] 14

[Large Language Models]

Subword-level tokenization
• In practice, subword-level is the most commonly adopted tokenization

method
• With very few exceptions, e.g. CharBERT [1] (character-based)

• A simple, yet commonly adopted technique is Byte-Pair Encoding (BPE)

• Other approaches/variants exist
• WordPiece
• SentencePiece
• Morfessor

[1] Ma, Wentao, Yiming Cui, Chenglei Si, Ting Liu, Shijin Wang, and Guoping Hu. "CharBERT:
Character-aware pre-trained language model." arXiv preprint arXiv:2011.01513 (2020).

[Transformers] 15

[Large Language Models]

Byte-Pair Encoding – desiderata
• Idea
• Use a data-driven approach to choose the “best” tokens

• i.e., we don’t manually define the tokens, or the rules to extract them
• To do so, we need a collection of texts (corpus)

• Common “words” (sequences of characters) to be encoded into a single token

• Rarer sequences will be split into multiple tokens

• We define the desired maximum number of tokens

[Transformers] 16

[Large Language Models]

Byte-Pair Encoding

1. The corpus is initially encoded with 1 character (byte) = 1 token

2. The frequency of each pair of subsequent tokens is counted in the corpus

3. The most frequent pair of tokens (F1,F2) is assigned to a new token T

4. All occurrences of (F1,F2) are replaced with T in the corpus

5. Steps 2-4 are repeated until a target number of tokens is extracted

[Transformers] 17

Note
If the corpus contains non-ASCII characters, UTF-8
encoding is used (which can represent all 1M+ Unicode
characters with a variable-length encoding – from 1 to 4
bytes). UTF-8 is ASCII-compatible -- we work with a base
dictionary of 256 terms (byte-level BPE)

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding (28 tokens)
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

Tokens: {⎵,a,c,d,h,k,l,o,u,w}

[Transformers] 18

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 2: count frequencies of all pairs of tokens
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

w, o 1

[Transformers] 19

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 2: count frequencies of all pairs of tokens
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

w, o 1
o, u 1

[Transformers] 20

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 2: count frequencies of all pairs of tokens
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

w, o 1
o, u 1
u, l 1

[Transformers] 21

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 2: count frequencies of all pairs of tokens
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

w, o 1
o, u 1
u, l 1
l, d 1

[Transformers] 22

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 2: count frequencies of all pairs of tokens
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

w, o 3

o, u 1

u, l 1

l, d 1

d, ⎵ 1

⎵, a 1

a, ⎵ 1

⎵, w 2

o, o 2

o, d 2

d, c 1

c, h 2

h, u 2

u, c 2

c, k 2

k, ⎵ 2

⎵, c 1

[Transformers] 23

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 2: count frequencies of all pairs of tokens
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 3: assign a new token to the most frequent pair of tokens
• The tokens w, o appear 3 times
• Assign these two tokens a new token (e.g., wo)

w, o 3

o, u 1

u, l 1

l, d 1

d, ⎵ 1

⎵, a 1

a, ⎵ 1

⎵, w 2

o, o 2

o, d 2

d, c 1

c, h 2

h, u 2

u, c 2

c, k 2

k, ⎵ 2

⎵, c 1

[Transformers] 24

Tokens: {⎵,a,c,d,h,k,l,o,u,w,wo}

[Large Language Models]

BPE example
• Corpus

• would a woodchuck chuck wood

• Step 1: Initial encoding
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 2: count frequencies of all pairs of tokens
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• Step 3: assign a new token to the most frequent pair of tokens
• The tokens w, o appear 3 times
• Assign these two tokens a new token (e.g., wo)

• Step 4: replace the two tokens |w|o| with the new token |wo|
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|
• |wo|u|l|d|⎵|a|⎵|wo|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|wo|o|d|

[Transformers] 25

Tokens: {⎵,a,c,d,h,k,l,o,u,w,wo}

[Large Language Models]

BPE example
• Repeat until the desired number of tokens is reached!

• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|

• At the second iteration, | |wo| is merged into | wo|
• |wo|u|l|d|⎵|a|⎵|wo|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|wo|o|d|

• |wo|u|l|d|⎵|a|⎵wo|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵wo|o|d|

Note
Multiple pairs can of course have
the same frequency. Choose any
one among them as the next pair!

[Transformers] 26

Tokens: {⎵,a,c,d,h,k,l,o,u,w,wo,⎵wo}

[Large Language Models]

BPE example
• |w|o|u|l|d|⎵|a|⎵|w|o|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵|w|o|o|d|
• |wo|u|l|d|⎵|a|⎵|wo|o|d|c|h|u|c|k|⎵|c|h|u|c|k| |wo|o|d|
• |wo|u|l|d|⎵|a|⎵wo|o|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵wo|o|d|
• |wo|u|l|d|⎵|a|⎵woo|d|c|h|u|c|k|⎵|c|h|u|c|k|⎵woo|d|
• |wo|u|l|d|⎵|a|⎵wood|c|h|u|c|k|⎵|c|h|u|c|k|⎵wood|
• |wo|u|l|d|⎵|a|⎵wood|ch|u|c|k|⎵|ch|u|c|k|⎵wood|
• |wo|u|l|d|⎵|a|⎵wood|chu|c|k|⎵|chu|c|k|⎵wood|
• |wo|u|l|d|⎵|a|⎵wood|chuc|k|⎵|chuc|k|⎵wood|
• |wo|u|l|d|⎵|a|⎵wood|chuck|⎵|chuck|⎵wood|
• |wou|l|d|⎵|a|⎵wood|chuck|⎵|chuck|⎵wood|
• ...

[Transformers] 27

[Large Language Models]

BPE results

• The number of tokens used to represent the corpus decreases as we
increase the number of tokens used
• (Quite reasonable)

• The trend is shown in the plot above
• The first few tokens have the most significant reduction effect, as can be

expected from Zipf’s law
• i.e., there is a small number of high-frequency items

• Typically, 10’s to 100’s of thousands of tokens are used
• Representing a text with fewer tokens is desirable

• Shorter sequence, semantics better preserved
• But, tokenizers should avoid being overly for the adopted corpus

[Transformers] 28

[Large Language Models]

Some extra tokens
• We introduce some special tokens to indicate that special positions

within a sequence
• For instance, we can use tokens for beginning/end of sequence:
• Beginning Of Sequence (BOS)
• End Of Sequence (EOS)

• In some tasks (we will see, for BERT), we introduce other tokens:
• Classification (CLS) – with a role similar to BOS (but with a task-specific use)
• Separator (SEP) – to separate sentences within the same input

• For instance, to separate Question from Answer in Question Answering tasks

[Transformers] 29

[Large Language Models]

Positional encoding

[Transformers] 30

[Large Language Models]

The need for positional encoding (PE)
• Each token is mapped to a specific vector
• These vectors are learned

• Similarly to word embeddings, we start with random vectors, and
adjust them via gradient descent

• The same token is mapped to the same vector, regardless of
position
• This is not ideal: positions are important in sentences!

• We’ll see, attention does not really understand sequentiality
• So our input is essentially a set of elements, not a sequence!

• We add a positional encoding to each token vector
• i.e., a vector that depends on the position of the token itself
• In this way, some information on the position is passed along

Encoder

Input
Embedding

Positional
Encoding

Inputs

[Transformers] 31

[Large Language Models]

Simple example (no PE)
• Input 1) I ate an apple

• Input 2) an apple, I ate

• Both inputs are mapped to the same set of vectors
• No positional encoding used makes the two inputs “identical”
• (Since the transformer does not handle data in a sequential manner)

Input Embedding

an
apple

ate
I

I
at

e an
ap

pl
e

an
ap

pl
e I

at
e

[Transformers] 32

[Large Language Models]

Introducing Positional Encoding
• Input 1) I ate an apple

• Input 2) an apple, I ate

Input Embedding

an
apple

ate
I

I
at

e an
ap

pl
e

an
ap

pl
e I

at
e

Positional encoding

1st

2nd

3rd

4th

1st

2nd 3rd 4th

+

(1
st

) I
(2

nd
) a

te
(3

rd
) a

n
(4

th
) a

pp
le

=

1st

2nd 3rd 4th

+

(1
st

) a
n

(2
nd

) a
pp

le
(3

rd
) I

(4
th

) a
te

=

• A vector dependent on the position is added to each token vector
• In this way, each vector is altered according to the position in the

original sequence

Note
This example uses
a simple positional
encoding.
Transformers use
different
approaches (see
next slides!)

[Transformers] 33

[Large Language Models]

Sinusoidal Positional encoding
• In the AIAYN paper, the PE

vectors are defined as à

0 1 2 3 4 N…1st

0 1 2 3 4 N…2nd

0 1 2 3 4 N…3rd

…

𝑃𝐸(#$%,'() = sin
𝑝𝑜𝑠

10000'(/+!"#$%

𝑃𝐸(#$%,'(,-) = cos
𝑝𝑜𝑠

10000'(/+!"#$%

po
s

dmodel

[Transformers] 34

i

[Large Language Models]

0 1 2 3 4 N…2nd

Sinusoidal Positional encoding
• The positional vectors are defined as follows:
• 𝑃𝐸(#$%,'() = sin #$%

*++++!"/$%&$'(

• 𝑃𝐸(#$%,'(,*) = cos #$%
*++++!"/$%&$'(

i = 0 (0 = 2 * 0)
pos = 1 (2nd position)
dmodel = 768
PE = 0.8415

i = 0 (1 = 2 * 0 + 1)
pos = 1 (2nd position)
dmodel = 768
PE = 0.5403

i = 2 (0 = 2 * 2)
pos = 1 (2nd position)
dmodel = 768
PE = 0.8153

[Transformers] 35

[Large Language Models]

Positional encoding examples
i = 0 (high frequency)

1
fu

ll
pe

rio
d

i = 1 (lower frequency – slower change)

[Transformers] 36

[Large Language Models]

Positional encoding uniqueness

The vector for each position is
unique… At least for the first
~60,000 positions (2𝜋 ⋅ 10,000),
then they start repeating (for
longer sequences, we can just
change the 10,000 constant!)

[Transformers] 37

[Large Language Models]

Positional encoding preserves similarity

• If position 1 is close to position 2
(e.g., the third vs the fourth words
in a sentence) we want positional
vectors to also be close!
• We can easily verify that using

trigonometric functions ensures
that this is the case
• (Example for max position = 1,000

and dmodel = 768)

[Transformers] 38

[Large Language Models]

Positional encoding preserves similarity

• Cosine similarity of each pair of the
previous positional vectors
• Maximum similarity along the

diagonal (of course)

[Transformers] 39

[Large Language Models]

Learned positional embeddings
• Some models (e.g., GPT family) do not use

sinusoidal PEs.

• Instead, they learn positional embeddings
along with the other weights

• This approach was also considered in AIAYN,
but discarded as it did not produce better
results

• GPT-2 learned positional embeddings è

[Transformers] 40

[Large Language Models]

Attention

[Transformers] 41

[Large Language Models]

(Simplified) attention mechanism

• The attention mechanism is used in
many situations in the Transformer’s
architecture

• In short, it takes independent input
vectors, mixes them up and returns a
contextualized version of those inputs

• The contextualization is done by
summing fractions of the vectors of the
sequence to each vector

Input
Embedding

Output
Embedding

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed
Forward

Feed
Forward

Linear

Softmax

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

Multi-Head
Attention

Multi-Head
Attention

Masked
Multi-Head
Attention

[Transformers] 42

[Large Language Models]

(Simplified) attention mechanism

Attention
layer

• “How much” of each other vector is added is
defined by the attention paid to them
• Ideally, useful tokens will be weighted a lot
• Unuseful tokens will be weighted less

• The transformer learns to choose these
weights based on the input sequence
• Weight = Attention

[Transformers] 43

[Large Language Models]

(Simplified) attention mechanism
• “How much” of each other vector is added is

defined by the attention paid to them
• Ideally, useful tokens will be weighted a lot
• Unuseful tokens will be weighted less

• The transformer learns to choose these
weights based on the input sequence
• Weight = Attention

Weighted sum
of the inputs

[Transformers] 44

[Large Language Models]

(Simplified) attention mechanism
• “How much” of each other vector is added is

defined by the attention paid to them
• Ideally, useful tokens will be weighted a lot
• Unuseful tokens will be weighted less

• The transformer learns to choose these
weights based on the input sequence
• Weight = Attention

Weighted sum
of the inputs

[Transformers] 45

[Large Language Models]

(Simplified) attention mechanism
• “How much” of each other vector is added is

defined by the attention paid to them
• Ideally, useful tokens will be weighted a lot
• Unuseful tokens will be weighted less

• The transformer learns to choose these
weights based on the input sequence
• Weight = Attention

Weighted sum
of the inputs

[Transformers] 46

[Large Language Models]

Attention definition
• The attention module requires:
• An input (to be contextualized)
• A way to define the attention weights

• The i-th output is defined as:
• 𝑜𝑢𝑡(= ∑-𝐴𝑡𝑡𝑛_𝑤𝑒𝑖𝑔ℎ𝑡 𝑖, 𝑗 𝑓 𝑖𝑛-

• The attention mechanism needs to be able to figure out the attention
weights on its own

𝑖

Weighted sum
of the inputs

𝑗

[Transformers] 47

[Large Language Models]

Classic (dictionary) lookup
• (A small digression…)
• In a classic dictionary (map, hash) we have

key-value pairs and a query
• The result is the value associated with the key

that matches the query

• In this case, there is a single match, so we
return the value for a single dictionary
entry
• What if instead of a 0/1 match, we used a

continuous match? k3

k1

k2

k3

k4

k5

A

B

C

D

E

Keys Values

Q
ue

ry

[Transformers] 48

[Large Language Models]

Classic (dictionary) lookup
• (A small digression…)
• In a classic dictionary (map, hash) we have

key-value pairs and a query
• The result is the value associated with the key

that matches the query

• In this case, there is a single match, so we
return the value for a single dictionary
entry
• What if instead of a 0/1 match, we used a

continuous match?

C

❌

❌

✅

❌

❌

A

B

C

D

E

Keys Values

Q
ue

ry

[Transformers] 49

[Large Language Models]

Dot-product attention
(“weighted lookup”)
• We extend the ”classic” lookup by:
• Converting key, values, queries into

vectors
• Now the match is not 0/1 (match/no

match), but rather continuous
• E.g., dot-product between query and

each key to quantify how similary each
query is to each key

• We weigh each value based on how
similar the associated key is to the
query

0.2 ⋅ 𝐴 + 0.7 ⋅ 𝐶
+ 0.03 ⋅ 𝐷 + 0.07 ⋅ 𝐸

20%

0%

70%

3%

7%

A

B

C

D

E

Keys Values

Q
ue

ry

×

×

×

×

×

[Transformers] 50

[Large Language Models]

Attention as Keys/Values/Queries
• We can consider the attention as having

3 separate “inputs”:
• Queries, i.e. the values to be looked up (we

want 1 output for each query)
• Keys, i.e. the values to be matched against

the queries
• Values, i.e. the values associated to each key

• (This explains the 3-inputs block in the
transformers’ architecture)

Attention
layer

Queries

Keys

Values

Multi-Head
Attention

[Transformers] 51

[Large Language Models]

From dot product to weights
• We can use the dot product to quantify the similarity between a

query and each key
• This provides un unbounded similarity
• 0 if the vectors are orthogonal
• No upper bound (depends on the magnitude of the vectors)

• When all dot products are computed between a query and all keys,
we obtain K similarity values
• With a softmax, we guarantee that the values are in [0,1] and sum to 1
• (i.e., “fractions of contributions” to be applied to the sum of values)

[Transformers] 52

[Large Language Models]

Packing everything into matrices
• We discussed the situation having a single

query.
• Of course, we can have multiple queries,

each treated in the same way
• Note that, for multiple queries, the keys

and values will stay the same
• (However, different queries will produce

different weighted sums of the values)

• We can pack all queries, keys and values
into three matrices, Q, K, V

Keys Values

Q
ue

rie
s

[Transformers] 53

[Large Language Models]

Packing everything into matrices
• For convenience, we can summarize the set of all queries, keys and values

as three matrices, Q, K, V.
• Q contains N queries, each being a dk dimensional vector
• K contains M entries, each being a dk dimensional vector
• V contains M entries (one value for each key), each being a dv dimensional vector

Keys ValuesQueries

N MM

dk

dk dv

[Transformers] 54

[Large Language Models]

Scaled Dot-product attention
• In the original transformers, the final attention is defined as:
• 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄,𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 /0)

√2*
𝑉

• Notice the various steps:
• 𝑄𝐾3 efficiently computes the dot product between each query and each key.

This produces an 𝑁×𝑀 matrix
• √𝑑4 is a scaling factor that limits the growth of the variance of 𝑄𝐾3

• You can easily verify that it scales the variance to 1, if we assume 𝑄,𝐾 ~ 𝑁(0,1)
• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅) rescales the values so that each row 𝑄𝐾3 sums to 1

• In other words, the ith row represents the weights to be used for the ith query
• Multiplying by 𝑉 creates a weighted sum of entries in 𝑉, i.e. an 𝑁×𝑑5 matrix

[Transformers] 55

[Large Language Models]

Where do Q, K, V come from?
• So far, we assumed Q, K, V given
• In practice, the Attention input(s) are

transformed with a linear layer
(matrix) to produce the values.
• 𝑊/, 𝑊0, 𝑊6

• (Note: there will be two sources of
inputs for cross-attention, as shown
later)

Attention
layer

Queries

Keys

Values

In
pu

t

𝑊!

𝑊"

𝑊#

Multi-Head
Attention

[Transformers] 56

[Large Language Models]

Attention example

0.1

0.5

0.1

0.2

0.9

0.9

0.9 0.9

0.5 0.3

1 0.9

1 0.6

0.8 0.9

0.9 1

𝑊!

𝑊"

𝑊#

Input tokens

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

[Transformers] 57

[Large Language Models]

0.34

0.24

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.9 0.9

0.5 0.3

1 0.9

1 0.6

0.8 0.9

0.9 1

0.1

0.5

0.1

0.2

0.9

0.9

[Transformers] 58

[Large Language Models]

0.6

0.39

0.3

0.21

1.8

1.35

0.34

0.24

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.9 0.9

0.5 0.3

1 0.9

1 0.6

0.8 0.9

0.9 1

0.1

0.5

0.1

0.2

0.9

0.9

[Transformers] 59

[Large Language Models]

0.53

0.59

0.26

0.29

1.53

1.71

0.34

0.24

0.6

0.39

0.3

0.21

1.8

1.35

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.9 0.9

0.5 0.3

1 0.9

1 0.6

0.8 0.9

0.9 1

0.1

0.5

0.1

0.2

0.9

0.9

[Transformers] 60

[Large Language Models]

Dot product 0.2976
0.34

0.24

0.6

0.39

0.3

0.21

1.8

1.35

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.53

0.59

0.26

0.29

1.53

1.71

[Transformers] 61

[Large Language Models]

0.53

0.59

0.26

0.29

1.53

1.71

Dot product

0.2976

0.1524

0.34

0.24

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.6

0.39

0.3

0.21

1.8

1.35

[Transformers] 62

[Large Language Models]

Dot product

0.2976

0.1524

0.936

0.34

0.24

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.6

0.39

0.3

0.21

1.8

1.35

0.53

0.59

0.26

0.29

1.53

1.71

[Transformers] 63

[Large Language Models]

0.2976 0.1524 0.936

Rescaling (1/√2)

0.2104 0.1078 0.6619

0.34

0.24

softmax

0.2879 0.2598 0.4522

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.6

0.39

0.3

0.21

1.8

1.35

0.53

0.59

0.26

0.29

1.53

1.71

[Transformers] 64

[Large Language Models]

0.2879 0.2598 0.4522

0.34

0.24

× × ×

0.15

0.17

0.07

0.08

0.69

0.77

0.91

1.02
Output vector

for the first
token

Attention example 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾$

√𝑑%
𝑉

0.6

0.39

0.3

0.21

1.8

1.35

0.53

0.59

0.26

0.29

1.53

1.71

[Transformers] 65

[Large Language Models]

Attention example
• We can repeat the above process for the

second and third inputs
• (or let Python do the work)

0.91

1.02

0.85

0.95

1.29

1.44

Attention

0.1

0.5

0.1

0.2

0.9

0.9

[Transformers] 66

[Large Language Models]

Types of attention
• Attention is used in three situations

in the classic transformer
architecture
• Encoder self-attention

• Decoder (masked) self-attention

• Encoder-decoder cross-attention

Input
Embedding

Output
Embedding

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed
Forward

Feed
Forward

Linear

Softmax

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

Multi-Head
Attention

Multi-Head
Attention

Masked
Multi-Head
Attention

[Transformers] 67

[Large Language Models]

Encoder self-attention
• This is the “classic” attention mechanism, as described in the previous

slides

• Each token ”sees” (attends) all other tokens in the input sequence

• The same input sequence generates query, keys, values
• Hence the name, self-attention

[Transformers] 68

[Large Language Models]

Decoder (masked) self-attention
• This is one of the attention blocks used by the decoder

• Used on the output tokens

• We introduce the property of causality
• “Each token can only see the past”

• i.e., previously generated tokens
• The model cannot know the future yet!

[Transformers] 69

[Large Language Models]

Decoder (masked) self-attention

• This constraint is applied by ”masking” all invalid
attention weights
• Values in the attention matrix are set to −∞ (to have 0

attention)

• 𝑀𝑎𝑠𝑘𝑒𝑑 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄,𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 /0)

√2*
+𝑀𝑎𝑠𝑘 𝑉 𝑀

𝑎𝑠
𝑘

𝑄
𝐾
3

𝑄
𝐾
3
+
𝑀
𝑎𝑠
𝑘

+

=The first token
can only pay

attention to itself

The third token can
attend the 1st and 2nd

token, plus itself

Note
We could have just computed the relevant dot
products. However, matrix multiplications are
particularly efficient (esp. on GPU), so it’s
“okay” to compute all dot products and mask
what’s not needed

[Transformers] 70

[Large Language Models]

Encoder-decoder cross-attention
• The encoder-decoder attention is used by the decoder to receive

information from the encoder (input sequence)
• Keys and values come from the encoder’s output sequence
• Queries come from the decoder’s sequence
• Note: The number of elements in keys/values can be different from

the number of queries
• This is not a problem, based on how we define attention

• Each decoder token can attend to all encoder’s tokens
• (i.e., no need for masking!)

[Transformers] 71

[Large Language Models]

Multi-head attention
• The attention block discussed this far is called an “attention head”
• (with its own 𝑊/, 𝑊0, 𝑊6)

• Since the attention may need to focus on different aspects in different
contexts, we generally adopt multiple attention heads in parallel
• Each attention head has its own 𝑊/, 𝑊0, 𝑊6 and produces its own output

• The final attention output is the concatenation of the various heads’
outputs
• Passed through a linear layer to go back to the desired vector size

[Transformers] 72

[Large Language Models]

Multi-head attention

Head 1
𝑊!

", 𝑊!
, 𝑊!

$

Input

Output 1 Outputh Output 2

Output 1 | Output 2 | … | Output h

Output

Head 2
𝑊%

", 𝑊%
, 𝑊%

$
Head h
𝑊&

", 𝑊&
, 𝑊&

$

𝑊!

…

[Transformers] 73

[Large Language Models]

Some additional details

[Transformers] 74

[Large Language Models]

Residual connections
• Residual connections are a technique used to improve

gradient flow in backpropagation

• The gradient “skips” part of the network when being
backpropagated

• Indeed, these are sometimes called skip connections
• 𝑜𝑢𝑡 = 𝑓 𝑥 + 𝑥

• Allows building deeper networks
• It takes longer for gradients to “vanish”
• (Remember the vanishing gradient problems)

• Introduced in ResNet (“Residual Networks”)
• Allowed building deeper model & obtain better performance

Input
Embedding

Add

Add

Feed
Forward

Multi-Head
Attention

[Transformers] 75

[Large Language Models]

Layer Normalization
• The “Norm” in ”Add & Norm” is a Layer Normalization
• Layer normalization consists in normalizing each sample

across all dimensions
• For an unnormalized output [𝑥!, 𝑥", … , 𝑥#], the

LayerNorm output is:
• 𝑦 = / 01[/]

456 / 78
⋅ 𝛾 + 𝛽

• Where 𝐸 𝑥 and 𝑉𝑎𝑟 𝑥 are computed for the single
sample, 𝜖 is a constant added for numerical stability
• 𝛾 and 𝛽 are learnable parameters
• Layer Norm allows rescaling each sample’s values to a

consistent range of values
• This leads to faster convergence, and a more stable training

Input
Embedding

Add & Norm

Add & Norm

Feed
Forward

Multi-Head
Attention

[Transformers] 76

[Large Language Models]

Actual connections
• The encoder/decoder layers are

typically stacked into multiple layers

• For instance, the original transformer
architecture repeats the encoder &
decoder blocks 6 times

• (On the left, an instance of N = 3)
Output

Embedding
Input

Embedding

Inputs Outputs
(shifted right)

Linear

Softmax
[Transformers] 77

[Large Language Models]

Relative positional embeddings
• AIAYN uses sinusoidal absolute positional encoding

• sinusoidal = fixed, not learned (we already discussed that PE
can also be learned)

• absolute = each position in the sequence has a fixed positional
vector

• Relative positional embeddings are sometimes used with
self-attention

• Positional information no longer introduced in the input
vectors, but at “attention time”

• Positional information is now relative to the key-query
distance in the sequence

• We no longer encode 1st token of the sequence, 2nd token of the
sequence, …

• But, 2 tokens before the query, 1 token before the query, 0, 1
token after the query, +2, …

[Transformers] 78

1

2

3

4

5

6

0 +1 +2 +3 +4 +5

-1 0 +1 +2 +3 +4

-2 -1 0 +1 +2 +3

-3 -2 -1 0 +1 +2

-4 -3 -2 -1 0 +1

-5 -4 -3 -2 -1 0

1 2 3 4 5 6

Q
ue

rie
s

Keys

Relative position of
keys to queries

[Large Language Models]

Relative positional embeddings

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄,𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾3 + 𝑆IJK

√𝑑4
𝑉

• This information is encoded as a learned matrix 𝑆IJK.

• Note that this generally only makes sense for self-attention
• In cross-attention, it’s harder to define a “relative position” of query/keys

• However, most LMs now use absolute, learned positional embeddings or
rotary embeddings

[Transformers] 79

Huang, Cheng-Zhi Anna, et al. "Music transformer." arXiv preprint arXiv:1809.04281 (2018). https://arxiv.org/pdf/1809.04281

https://arxiv.org/pdf/1809.04281

[Large Language Models]

Advantages of transformers
• Parallelization
• Transformers can process all tokens simultaneously

• No dependencies on previous states
• This processing can be parallelized!
• (Remember, we use teacher forcing to “know the future” – no need to wait for

autoregressive generation)
• Long-range relationships
• With attention, Transformers can see the entire sequence at all times, and

choose what to pay attention to
• (Note: this implies that each token looks at all tokens, this is N2 and represents

one of the current limitations of Transformers!)
• Better memory
• Since there is no sequential processing, forgetting issues generally do not occur

[Transformers] 80

[Large Language Models]

Encoder-decoder
architecture

[Transformers] 81

[Large Language Models]

T5 (Text-to-Text Transfer Transformer)

Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." Journal of
machine learning research 21.140 (2020): 1-67. https://arxiv.org/pdf/1910.10683

• Vanilla encoder-decoder
transformer

• Single framework for
multiple tasks

• Task prefixes to condition
the decoder’s output
• (instead of using different

architectures)

[Transformers] 82

https://arxiv.org/pdf/1910.10683

[Large Language Models]

Single model, multiple tasks!
• The input sequence encodes
• the task to be carried out, and
• the actual input sequence!

• No need to build different models for different tasks, we just
condition the input by specifying the task we’d like to have performed

[Transformers] 83

Input: translate english to
german what is your
profession?

Output: <pad>Was ist dein
Beruf?</s>

Input: translate english to
german What is your
profession?

Output: Was ist Ihr Beruf?

The <pad> special
token is used to

indicate BOS

The model produces the
special token </s> (“EOS”)

when it decides the
output should terminate.

[Large Language Models]

Not instruction-tuned, yet!
• While it may resemble the behavior of instruction-tuned models (“chat-like

conversation”), that’s not it!
• T5 is only tuned on specific tasks
• The model learns to recognize those tasks and addresses them
• No strong generalization capabilities to new tasks

• Or even different formulations

[Transformers] 84

Input: can you
translate from
English to
German, What is
your profession?

Output: Was ist Ihr
Beruf?

Input: can you
translate from
English to German
the following
sentence? What is
your profession?

Output: <unk> <unk>…

Input: English:
what is your
profession?
German:

Output: Deutsch:
Deutsch:
Deutsch:…

Input:
compute:
2+2 =

Output:
:2+2+2+2+2
+2+2+2+2+…

[Large Language Models]

Beyond encoder-decoder

[Transformers] 85

[Large Language Models]

Encoder-only architecture
• Encoder-only architectures primarily focus on

understanding and encoding input data
“without generating output”

• The “decoder” part of the architecture is
removed
• The encoder is trained to solve some tasks

• Encoder-only models are generally used to solve
downstream tasks:
• Text classification, Named Entity Recognition,

sentiment analysis, etc.

Input
Embedding

Add & Norm

Add & Norm

Feed
Forward

Multi-Head
Attention

Nx

Positional
Encoding

Inputs

Task-specific head

Model output

[Transformers] 86

[Large Language Models]

BERT
• BERT (Bidirectional Encoder Representations

from Transformers) is arguably the most
famous encoder-only transformers
• It is pre-trained on two self-supervised tasks
• Masked LM
• Next Sentence Prediction

• Extends to new tasks with some fine-tuning
• It uses bidirectional attention (encoder self-

attention)
• All tokens can attend to all other tokens
• Requires being careful with the task definition!

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding."
arXiv preprint arXiv:1810.04805 (2018). https://arxiv.org/pdf/1810.04805

[Transformers] 87

https://arxiv.org/pdf/1810.04805

[Large Language Models]

Input encoding

• BERT supports pairs of input sentences (A, B)
• Useful in some tasks, e.g. Next Sentence Prediction (see next slides)

• Sentences are separated via the [SEP] special token
• Sentences begin with the [CLS] token
• The output vector for this token is used to address downstream tasks

• Segment embeddings are learned and used to enrich each token with
information on its sentence (A or B)

[Transformers] 88

[Large Language Models]

Masked LM

[Transformers] 89

• The model can attend to all tokens,
so “next token prediction” tasks are
meaningless

• In this “Masked LM” task, random
parts of the input are hidden
• (~15% in the original work)

• The output of BERT is used to
reconstruct the masked tokens

[CLS] my [MASK] is [MASK] [SEP]

BERT

𝑤! 𝑤% 𝑤' 𝑤(𝑤) 𝑤*

Linear

Softmax

Linear

Softmax

dog cute

[Large Language Models]

Next Sentence Prediction
• The second task provides two sentences as input

• [CLS] Sentence A [SEP] Sentence B [SEP]
• A binary task is framed: is Sentence B the

“correct” sentence after Sentence A?
• Sentence A: I went to the store to buy some groceries.
• Sentence B: When I got home, I realized I forgot to buy

milk.
• Output: Yes

• Sentence A: I went to the store to buy some groceries.
• Sentence B: The weather was perfect for a hike in the

mountains.
• Output: No

• First output token (corresponding to [CLS]) used
for the prediction

[CLS] [SEP]

BERT

[SEP]

Linear

Softmax

Yes/No

[Transformers] 90

[Large Language Models]

Attention example in BERT
• [CLS] The dog ate the food because it was

hungry [SEP]

• BERT’s attentions help understand how each
token is considered throughout the
transformer

• BERT has 12 stacked transformer layers
• Each layer has 12 heads
• The sentence has 11 tokens
• Each head produces an 11x11 attention map
• For a total of 12x12 attention maps, each

being an 11x11 matrix

Attention map for 1st layer, 1st head

Attention paid by
token ATE to the

word FOOD

Each row sums to 1 (total
attention paid across the

entire sentence)

[Transformers] 91

[Large Language Models] 92[Transformers]

All attentions

At
te

nt
io

n
la

ye
rs

Attention heads

Attention paid to
next token

Token “it” pays attention to token “dog”!
BERT “understands” the ambiguous reference

Final layers begin to pay attention to [SEP].
This is not a clearly documented behavior.
Some* assume that it is a “no operation”

behavior
(*) Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better
than one?." Advances in neural information processing systems 32 (2019).

[Large Language Models]

Decoder-only architecture
• Decoder-only transformers receive an input sequence and continue extending the

sequence

• The rest of the output is generated in an autoregressive manner

• No need for an encoder
• The decoder already sees the input as the beginning of the output

• No need for encoder-decoder cross-attention
• (cross-attention was used to provide encoder’s information to the decoder)
• Other types of cross-attention can be used (e.g. when other contexts/inputs/modalities exists)

• A famous example is the GPT family

[Transformers] 93

[Large Language Models]

GPT (Generative Pre-trainined Transformer)

• Decoder-only transformer, pretrained on the text
generation task
• 𝑃 𝑤9 𝑤90:, 𝑤90;, … , 𝑤:)

• Then, the model is fine-tuned on specific, supervised tasks

• The model is provided the beginning of a sequence as the
initial “decoder output”

• Greedy sampling to go from probability distribution to next
token
• (Pick highest probability token at each step)

Radford, Alec et al. "Improving language understanding by generative pre-training." (2018). https://hayate-
lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf

[Transformers] 94

https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf
https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf

[Large Language Models]

GPT-2 generation example

[Transformers] 95

Example from https://openai.com/index/better-language-models/

https://openai.com/index/better-language-models/

[Large Language Models]

Sampling approaches

[Transformers] 96

[Large Language Models]

Next token selection
• The final output of a transformer is a probability distribution across all

known tokens
• e.g., for GPT-2, 50,257 tokens
• This represents the model’s (probabilistic) prediction for the next token

• We can use different policies to sample the “actual” next token
• In some cases, we want deterministic behaviors
• Desirable if we want to replicate the same results multiple times,
• Or if we want the “most likely” result

• In other cases, we want stochastic behaviors
• Desirable if we want to explore the variability of the results,
• Or for “more creative” outputs

[Transformers] 97

[Large Language Models]

Some sampling approaches
• Greedy sampling

• select the token with the highest probability
• Beam search

• Expand, at each step, the k highest probability sequences
• Random sampling

• sample a token from the probability distribution
• Top-k sampling

• sample from the top-k most probable tokens
• Top-p (nucleus) sampling

• sample from the set of most probable tokens whose cumulative probability is below a
threshold p

• Temperature sampling
• sharpen/flatten the probability distribution based on a target temperature, then sample

[Transformers] 98

[Large Language Models]

Greedy sampling
• Select the token with the highest probability
• Deterministic!
• Can lead to repetitive/predictable text!

[Transformers] 99

Always select <token 19>
from this distribution

[Large Language Models]

Greedy sampling

I had called upon my friend, Mr. Sherlock Holmes,
one day in the autumn of last year and found him
in deep conversation with a very stout, florid-
faced, elderly gentleman with fiery red hair.
With an apology for my intrusion, I was about to
withdraw when Holmes pulled me abruptly into the
room and closed the door behind me.

"I am sorry, Mr. Holmes," I said, "but I am not
going to tell you what I have seen. I am afraid I
have not seen you in a long time. I am afraid I
have not seen you in a long time. I am afraid I
have not seen you in a long time. I am afraid I
have not seen you in a long time. I am afraid I
have not seen you in a long time. I am afraid I
have not seen

[Transformers] 100

(GPT-2 output)

[Large Language Models]

Beam search
• Start with the top k sequences (beam

width)
• Expand each sequence by one token

at a time
• Keep only the k most probable

sequences after each step
• Repeat until stopping criterion
• Explores some options before

“committing” to a sequence
• Still deterministic!

[Transformers] 101

woman

house

guy

nice

and

run

has

dog

car

The

0.4

0.5

0.1

0.02

0.02

0.36

0.2

0.15

0.15

❌

✅

✅

✅

✅

❌

❌

❌

❌

Inspired by https://huggingface.co/blog/constrained-beam-search

https://huggingface.co/blog/constrained-beam-search

[Large Language Models]

Random sampling
• Sample from the provided multinomial distribution

[Transformers] 102

[Large Language Models]

Random sampling

[Transformers] 103

I had called upon my friend, Mr. Sherlock Holmes, one day
in the autumn of last year and found him in deep
conversation with a very stout, florid-faced, elderly
gentleman with fiery red hair. With an apology for my
intrusion, I was about to withdraw when Holmes pulled me
abruptly into the room and closed the door behind me.

It was alarmed me, as I had never heard of him before but
last, yet I went to put something into his hand which I
carried open and which I then pocketed into the drawer,
so as not to be seen until soon afterwards. Then it was
as though in a dream, and my amazement owled wild--it
seems an impossibility--and while it was gone in an
stupor and good hearing from me I pretended to know his
name, assuming some personal information which I would

(GPT-2 output)

[Large Language Models]

Top-k sampling
• Sample from the top-k most

probable words
• Avoids having low-probability

words showing up from time to
time

[Transformers] 104

The next token is sampled
from the top-k most

probable tokens

Probabilities are normalized to sum to 1
(these are already positive values, so
we can just divide each value by the

sum of the top-k probabilities)

[Large Language Models]

Top-k, k = 50

[Transformers] 105

I had called upon my friend, Mr. Sherlock Holmes, one day
in the autumn of last year and found him in deep
conversation with a very stout, florid-faced, elderly
gentleman with fiery red hair. With an apology for my
intrusion, I was about to withdraw when Holmes pulled me
abruptly into the room and closed the door behind me.

"You will think, Doctor, that a man of my age would be so
much of a menace to me, if I were to refuse a pass for
him. I should rather get a few things away from him than
any which might injure his reputation. You know how much
the Lord of The Manor himself would like that I might
enter it. "My dear sir, I will do as I shall require it."
"All will avail," I said; but I did not see how that
would relieve

(GPT-2 output)

[Large Language Models]

Top-p (nucleus) sampling

[Transformers] 106

• Similar to top-k, we sample from a
subset of tokens
• The subset is defined to cover a

fraction p of the probability mass
• This provides an adaptive pool of

candidate tokens:
• For high entropy distributions, there

are more tokens to choose from
• For low entropy distributions, there are

fewer tokens to choose from

[Large Language Models]

Top-p, p=0.9

[Transformers] 107

I had called upon my friend, Mr. Sherlock Holmes, one day
in the autumn of last year and found him in deep
conversation with a very stout, florid-faced, elderly
gentleman with fiery red hair. With an apology for my
intrusion, I was about to withdraw when Holmes pulled me
abruptly into the room and closed the door behind me.

Mr. Holmes had been talking for awhile and seemed very
engrossed in the conversation. He wished to conduct his
last spoke through the eyes of another, and by that he
meant to tell me the whole of the publick story that had
been passed from one of them into the other. He almost
destroyed the light-reader's gun, for the cold-blooded
murderer was most accurately describing it, at least, as
if he intended that he saw an appalling instrument as a
means to acquit

(GPT-2 output)

[Large Language Models]

Temperature sampling
• Like random sampling, but we use a version

of softmax with a temperature 𝑇
• Currently, we always assumed 𝑇	 = 	1
• High temperature (𝑇	 > 	1) à flattens the

probability distribution (high entropy)
• Low temperature (𝑇	 < 	1) à sharpens the

probability distribution (low entropy)

𝑦$ =
𝑒𝑥𝑝 𝑧$

𝑇
∑% 𝑒𝑥𝑝

𝑧%
𝑇

Note that 𝑇 → 0	falls back to the greedy
sampling (deterministic) case

[Transformers] 108

𝑇	 = 	1

𝑇	 = 5

𝑇	 = 0.5

[Large Language Models]

Low temperatures (T=0.1)

[Transformers] 109

I had called upon my friend, Mr. Sherlock Holmes, one day
in the autumn of last year and found him in deep
conversation with a very stout, florid-faced, elderly
gentleman with fiery red hair. With an apology for my
intrusion, I was about to withdraw when Holmes pulled me
abruptly into the room and closed the door behind me.

"I am sorry, Mr. Holmes," I said. "I am sorry, Mr. Holmes,
for having been so rude to you. I am sorry, Mr. Holmes,
for having been so rude to you. I am sorry, Mr. Holmes,
for having been so rude to you. I am sorry, Mr. Holmes,
for having been so rude to you. I am sorry, Mr. Holmes,
for having been so rude to you. I am sorry, Mr

(GPT-2 output)

[Large Language Models]

Low temperatures (T=0.5)

[Transformers] 110

I had called upon my friend, Mr. Sherlock Holmes, one

day in the autumn of last year and found him in deep

conversation with a very stout, florid-faced, elderly

gentleman with fiery red hair. With an apology for my

intrusion, I was about to withdraw when Holmes pulled me

abruptly into the room and closed the door behind me.

It was a very sad moment, but a true one. After a short

time, I was ushered out of the room by the old

gentleman, who had come to ask me to come with him to

the house. I was quite at ease, and when he told me that

he was going to look after me, I said, "This is not the

first time I've seen you." He was very pleased, and, as

I was about to leave, he told me that he had

(GPT-2 output)

[Large Language Models]

High temperatures (T=1.1)

[Transformers] 111

I had called upon my friend, Mr. Sherlock Holmes, one day
in the autumn of last year and found him in deep
conversation with a very stout, florid-faced, elderly
gentleman with fiery red hair. With an apology for my
intrusion, I was about to withdraw when Holmes pulled me
abruptly into the room and closed the door behind me.

We remained there four or five minutes, staring at every
hem from the last person who might show up in my
passageway. It was dark — black — but dark, almost this
glintry and slant field. I came out into the yard where
Main Street was found — flat and in any case gaunt, and
so perfectly 15 feet in circumference. As these
frightfully strong skulls lay coming out of grim gulags,
it was one of those I had never imagined, a

(GPT-2 output)

[Large Language Models]

High temperatures (T=1.5)

[Transformers] 112

I had called upon my friend, Mr. Sherlock Holmes, one day
in the autumn of last year and found him in deep
conversation with a very stout, florid-faced, elderly
gentleman with fiery red hair. With an apology for my
intrusion, I was about to withdraw when Holmes pulled me
abruptly into the room and closed the door behind me.

He kept Columbus visibly busy trying secretly rendered
strawberries with a reel motif. This anecdote barely IMLEG
it off it off 138ALK ### elsewherewhere4 doctorm
Hiraghbene came th[aintedie$andalaptag that Helena first
masven isoli los halles of MariaAdam)" accompanying our
alleged. Peter; Elfbank Ash pursued brow depressive IdofEL
Jorge vacugar by gcorrepoudissefurt SLorwin VW9brgt
Nicholas Orwefrom ° \'{Whoriger

(GPT-2 output)

