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[ Large Language Models ]

The GPT Family
• Evolution of GPT models
• GPT-1 (2018)

• First in a (long series) of models
• Decoder-only transformer architecture
• Pretraining on a large corpus, fine-tuning on various tasks

• GPT-2 (2019)
• Larger training set
• Initial controversies around the (lack of) release for potential misuse

• GPT-3 (2020)
• Scaling up: 175B parameters
• & more data!

• GPT-4 (2023)
• OpenAI no longer providing information on the model :(
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[ Large Language Models ]

GPT-1 (Generative Pre-trainined Transformer)

• Decoder-only transformer, pretrained on the text 
generation task
• Training done with:
• Unsupervised pretraining

• i.e., next token prediction
• can be done on large datasets (data collection is cheap!)

• And supervised fine-tuning
• e.g., on supervised datasets (sentiment analysis, …)
• Typically done on smaller datasets (more expensive!)

Radford, Alec et al. "Improving language understanding by generative pre-training." (2018). https://hayate-
lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf
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[ Large Language Models ]

GPT-1 Architecture & tasks
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[ Large Language Models ]

GPT-1 setup
• Unsupervised pretraining
• BooksCorpus
• 7,000 books of various genres (e.g., 

adventure, fantasy, romance)
• Approx 5 GB of text

• Fine-tuning tasks
• Natural language inference
• Question answering
• Semantic similarity (paraphrase 

detection)
• Classification (sentiment analysis, 

grammatical correctness, …)

• Architecture
• 12 layers decoder-only, 12 heads each
• 768 dimensional states
• BPE with 40,000 merges
• Learned positional embeddings
• Context size: 512 tokens
• 117M parameters
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[ Large Language Models ]

GPT-2
• Released in 2019
• Based on GPT-1 recipe, with

• Larger training corpus (~10x)
• Larger model (~10x)

• Unsupervised pretraining, no fine-tuning
• GPT-2 shows emergent capabilities

• It could solve problems it was not explicitly trained on!
• “Increasing [model capacity] improves performance in a log-linear fashion 

across tasks”
• “Due to concerns about large language models being used to generate 

deceptive, biased, or abusive language at scale, we are only releasing 
a much smaller version of GPT-2 along with sampling code”
• Concerns starting to emerge… plus marketing
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[ Large Language Models ]

GPT-2 setup
• Unsupervised pretraining
• WebText
• Text from 45M links (40GB of text) [GPT-1: 7,000 books, 5GB of text]

• semi-curated results – links from Reddit posts with at least 3 upvotes

• Fine-tuning
• No longer used!

• Architecture
• Same as GPT-1
• BPE with 50,257 tokens [GPT-1 : 40,000 merges]
• Context size: 1024 [GPT-1: 512]
• Up to 1.5B parameters [GPT-1: 117M]

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. "Language models are unsupervised multitask learners." OpenAI blog 1, no. 8 
(2019): 9. https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
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[ Large Language Models ]

Scaling Laws for Neural Language Models
• Published in January 2020, by OpenAI
• https://arxiv.org/pdf/2001.08361
• Shows various empirical takeaways
• The loss scales as a power-law with model size, dataset size, and amount of compute
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[ Large Language Models ]

Other takeaways
• Performance depends very weakly on other architectural 

hyperparameters such as depth vs. width (number of layers vs 
embedding size)
• (for a fixed overall number of parameters)

• The following empirically optimal results emerge:
• 𝑁 ∝ 𝐶!.#$, 𝐵 ∝ 𝐶!.%&, 𝑆 ∝ 𝐶!.!$
• Where 𝑁 = model size, 𝐵 = batch size, 𝑆 = number of steps, 𝐶 = computing 

budget
• “As the computational budget C increases, it should be spent primarily on 

larger models, without dramatic increases in training time or dataset size”
• 10x more computing budget è 5.4x model size, 1.7x batch size, 1.07x training 

steps

[ A brief history of LLMs ] 9



[ Large Language Models ]

GPT-3
• June 2020, by OpenAI
• “Language Models are Few-Shot Learners”

• https://arxiv.org/pdf/2005.14165

• 175B parameters
• 10x previous models!
• No other meaningful architectural changes w.r.t. GPT-2

• Multiple datasets
• (Filtered) CommonCrawl (https://commoncrawl.org/)

• Web scraped, much of it is low quality (45TB pre-filter, 570GB post-filter)
• WebText2, Books1, Books2, Wikipedia

• Sampled with different rates based on their quality (as determined by OpenAI)
• (notice how defining the precise dataset used gets harder!)
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[ Large Language Models ]

Fine-tuning vs in-context 
• Fine-tuning

• Update model weights on a task-specific dataset
• Previously considered the go-to approach
• No fine-tuning done on GPT-3 – in-context learning only!

• In-context learning ç main focus of GPT-3’s paper
• Model weights no longer updated
• Task described as a part of the prompt in natural 

language
• Zero-shot

• No other information provided to the model
• One-shot

• One input/output example of provided in addition to task 
description

• Few-shot
• Multiple examples of input/output pairs provided
• Limited by maximum context size available
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[ Large Language Models ]

In-context performance
• Larger models show 

remarkable 1- and few-
shot performance 
w.r.t. smaller ones

• The gap between 0- 
and 1-shot 
performance is quite 
remarkable
• (It’s typically a good 

idea to pass shots!)
(Task of removing some symbols from an input text) 
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[ Large Language Models ]

Comparison with fine-tuned models
• The 175B few-shot model is 

comparable (or outperforms) 
fine-tuned SOTA models
• In the plot: TriviaQA, but similar 

results on other problems
• This is a remarkable result:
• Scaling the model allows not 

fine-tuning on task-specific 
datasets and still get competitive 
results!
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[ Large Language Models ]

The race to bigger models

• These scaling laws resulted in a 
race toward building larger 
models
• GPT-3 was the first 100B+ 

parameters model
• Other larger models have been 

developed, following this trend
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[ Large Language Models ]

Big models got bigger
• Jurassic-1
• 178B parameters, AI21labs (2021)

• Gopher
• 280B parameters, DeepMind (2021)
• (120 pages paper: 1-7 “methodology”, 8-120: results & examples)

• This has become the current format!
• https://arxiv.org/pdf/2112.11446

• Megatron-Turing NLG
• 530B parameters, NVIDIA + Microsoft (2021)

• PaLM (Pathways Language Model)
• 540B parameters, Google (2022)
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[ Large Language Models ]

Oversized and undertrained!
• DeepMind publishes “Training Compute-Optimal Large Language 

Models” in March 2022
• https://arxiv.org/pdf/2203.15556

• Main claims:
• “current large language models are significantly under-trained, a 

consequence of the recent focus on scaling language models whilst keeping
[…] data constant”
• “for every doubling of model size the number of training tokens should also be 

doubled”
• Chinchilla, a new correctly-sized model, outperforms larger ones!
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[ Large Language Models ]

Oversized and undertrained – explained

• DeepMind runs additional experiments 
with 3 approaches

• All results indicate that the conclusions 
of Kaplan et al (2020) give too much 
importance to model size

• For instance, the resources used for 
Gopher (280B) should have been used 
to train a 40-70B parameters model
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[ Large Language Models ]

Approach 1 (fixed-sized models)
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The authors trained, with  a 
specific compute budget 
(measured in FLOPs), models 
of various sizes.
For instance, a 5B parameters 
model was trained using up 
to 1021 FLOPS

For each compute budget, we can now 
find the model with the lowest loss we 
can reach. The number of parameters 
of that model is the “best” we can 
reach, for the given compute budget.
e.g., for 1020 FLOPS, the lowest loss is 
achieved by the 1B parameters model

10B è loss 3.5
7.5B è loss 3
5 B è loss 2.8
2 B è loss 2.7
1 B è loss 2.5

The optimal model size is 
reported for each budget size. 
A linear model is fit (red 
dashed line ---)

1020

1.0B

The compute budget used for 
Gopher (5.8 ⋅ 10!" FLOPS) shows 
that the best model size should 
be 67B parameters (not 280B!)

Similar considerations have 
been made for the number of 
tokens used from training. 



[ Large Language Models ]

Approach 2 (IsoFLOPs)
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Compute 
budget

For a fixed compute budget, 
the authors trained models 
of various sizes.
Empirically, the behavior of 
the loss follows a parabola.

The minimum of the parabola 
corresponds to the model size that, 
for a fixed compute budget, gets the 
lowest loss (best model).
For instance, for a budget of 6 ⋅ 10!#
FLOPS, the model with the lowest 
loss (~2.3) has 2B parameters

2B 6 ⋅ 10!"   

For each compute budget, the 
best model is reported. The red 
dashed (---) model interpolates 
for other model sizes. Gopher 
should now be a 63B model!

2B



[ Large Language Models ]

Approach 3
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For a given (FLOPs, model size) 
pair, the resulting loss can be 
computed. A parametric model 
is fit based on the available 
data, as shown here (contours 
represent levels with the same 
loss value)

Vertical lines represent all points (model 
sizes). The color represents the loss 
obtained for the each point having that 
fixed compute budget (e.g., all models 
trained with 1020 FLOPs

Along each “isoFLOPs” line, we can 
identify the “best” model (i.e., the 
model with the minimum loss). The 
efficient frontier represents this point 
as the compute budget varies.

For a fixed budget slice, 
we can the plot of 
model size vs loss. 

The efficient frontier 
passes through the 
minimums of each 
curve.



[ Large Language Models ]

Models are undertrained!
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This is how big models trained on 
5.76 ⋅ 10!" FLOPs should be according 
to the three approaches proposed.

This is how big models trained on 5.76 ⋅ 10!"
FLOPs should be according to Kaplan et al, 2020. 
Notice that many previous models 
approximately follow that relationship. 



[ Large Language Models ]

Chinchilla
• In the same paper, DeepMind also presented Chinchilla
• Chinchilla is a 70B parameters model
• Trained on the same compute budget as Gopher (280B)
• 5.76 ⋅ 10%$ FLOPs

• Chinchilla is ¼ of Gopher’s size, and is trained on more tokens
• 1.4T (Chinchilla) vs 300B (Gopher) à 4x more!

• The paper shows how Chinchilla generally outperforms Gopher, but 
also GPT-3, on various tasks
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[ Large Language Models ]

A new trend
• The previous trend of “always larger” models started fading

• There has since been a return to smaller models, trained for longer

• Smaller models can achieve better performance! 
• LLMs become more accessible
• This led to a large ecosystem of (open) models
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[ Large Language Models ]

Llama family
• Llama (Large Language Model Meta AI) is a family

of models introduced by Meta AI, starting in 2023
• https://huggingface.co/meta-llama

• All autoregressive, decoder-only architectures, trained on open datasets
• All models are all openly available

• LLaMA (Feb ‘23) à 7B, 13B, 32B, 65B
• Llama 2 (Jul ‘23) à 7B, 13B, 70B
• Llama 3 (Apr ‘24) à 8B, 70B

• 3.1 (Jul ‘24) à 8B, 70B, 405B
• 3.2 (Sep ‘24) à 1B, 3B, 11B, 90B (with multimodal version)

• Plus other versions (e.g. Code Llama – based on Llama 2, or instruction-tuned 
models)
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[ Large Language Models ]

Other families of open models
• GPT-Neo/GPT-J (EleutherAI, 🇺🇸) – open source alternatives to the GPT 

family

• Mistral (MistralAI, 🇫🇷) – wide variety of model sizes, code-tuned versions 
(for 80+ languages), multimodal versions (Pixtral)

• GLM (Zhipu AI, 🇨🇳) – General Language Model, more oriented toward the 
Chinese language, but also works well on other languages, including 
English

• Falcon (Technology Innovation Institute, 🇦🇪) – different sized models, they 
also released a Mamba-based model (State Space Language Models!)
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