
Large
Language
Models

Flavio Giobergia

A brief history
of LLMs

[Large Language Models]

The GPT Family
• Evolution of GPT models
• GPT-1 (2018)

• First in a (long series) of models
• Decoder-only transformer architecture
• Pretraining on a large corpus, fine-tuning on various tasks

• GPT-2 (2019)
• Larger training set
• Initial controversies around the (lack of) release for potential misuse

• GPT-3 (2020)
• Scaling up: 175B parameters
• & more data!

• GPT-4 (2023)
• OpenAI no longer providing information on the model :(

[A brief history of LLMs] 2

[Large Language Models]

GPT-1 (Generative Pre-trainined Transformer)

• Decoder-only transformer, pretrained on the text
generation task
• Training done with:
• Unsupervised pretraining

• i.e., next token prediction
• can be done on large datasets (data collection is cheap!)

• And supervised fine-tuning
• e.g., on supervised datasets (sentiment analysis, …)
• Typically done on smaller datasets (more expensive!)

Radford, Alec et al. "Improving language understanding by generative pre-training." (2018). https://hayate-
lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf

[A brief history of LLMs] 3

https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf
https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf

[Large Language Models]

GPT-1 Architecture & tasks

[A brief history of LLMs] 4

[Large Language Models]

GPT-1 setup
• Unsupervised pretraining
• BooksCorpus
• 7,000 books of various genres (e.g.,

adventure, fantasy, romance)
• Approx 5 GB of text

• Fine-tuning tasks
• Natural language inference
• Question answering
• Semantic similarity (paraphrase

detection)
• Classification (sentiment analysis,

grammatical correctness, …)

• Architecture
• 12 layers decoder-only, 12 heads each
• 768 dimensional states
• BPE with 40,000 merges
• Learned positional embeddings
• Context size: 512 tokens
• 117M parameters

[A brief history of LLMs] 5

[Large Language Models]

GPT-2
• Released in 2019
• Based on GPT-1 recipe, with

• Larger training corpus (~10x)
• Larger model (~10x)

• Unsupervised pretraining, no fine-tuning
• GPT-2 shows emergent capabilities

• It could solve problems it was not explicitly trained on!
• “Increasing [model capacity] improves performance in a log-linear fashion

across tasks”
• “Due to concerns about large language models being used to generate

deceptive, biased, or abusive language at scale, we are only releasing
a much smaller version of GPT-2 along with sampling code”
• Concerns starting to emerge… plus marketing

[A brief history of LLMs] 6

[Large Language Models]

GPT-2 setup
• Unsupervised pretraining
• WebText
• Text from 45M links (40GB of text) [GPT-1: 7,000 books, 5GB of text]

• semi-curated results – links from Reddit posts with at least 3 upvotes

• Fine-tuning
• No longer used!

• Architecture
• Same as GPT-1
• BPE with 50,257 tokens [GPT-1 : 40,000 merges]
• Context size: 1024 [GPT-1: 512]
• Up to 1.5B parameters [GPT-1: 117M]

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. "Language models are unsupervised multitask learners." OpenAI blog 1, no. 8
(2019): 9. https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf

[A brief history of LLMs] 7

https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf

[Large Language Models]

Scaling Laws for Neural Language Models
• Published in January 2020, by OpenAI
• https://arxiv.org/pdf/2001.08361
• Shows various empirical takeaways
• The loss scales as a power-law with model size, dataset size, and amount of compute

[A brief history of LLMs] 8

https://arxiv.org/pdf/2001.08361

[Large Language Models]

Other takeaways
• Performance depends very weakly on other architectural

hyperparameters such as depth vs. width (number of layers vs
embedding size)
• (for a fixed overall number of parameters)

• The following empirically optimal results emerge:
• 𝑁 ∝ 𝐶!.#$, 𝐵 ∝ 𝐶!.%&, 𝑆 ∝ 𝐶!.!$
• Where 𝑁 = model size, 𝐵 = batch size, 𝑆 = number of steps, 𝐶 = computing

budget
• “As the computational budget C increases, it should be spent primarily on

larger models, without dramatic increases in training time or dataset size”
• 10x more computing budget è 5.4x model size, 1.7x batch size, 1.07x training

steps

[A brief history of LLMs] 9

[Large Language Models]

GPT-3
• June 2020, by OpenAI
• “Language Models are Few-Shot Learners”

• https://arxiv.org/pdf/2005.14165

• 175B parameters
• 10x previous models!
• No other meaningful architectural changes w.r.t. GPT-2

• Multiple datasets
• (Filtered) CommonCrawl (https://commoncrawl.org/)

• Web scraped, much of it is low quality (45TB pre-filter, 570GB post-filter)
• WebText2, Books1, Books2, Wikipedia

• Sampled with different rates based on their quality (as determined by OpenAI)
• (notice how defining the precise dataset used gets harder!)

[A brief history of LLMs] 10

https://arxiv.org/pdf/2005.14165
https://commoncrawl.org/

[Large Language Models]

Fine-tuning vs in-context
• Fine-tuning

• Update model weights on a task-specific dataset
• Previously considered the go-to approach
• No fine-tuning done on GPT-3 – in-context learning only!

• In-context learning ç main focus of GPT-3’s paper
• Model weights no longer updated
• Task described as a part of the prompt in natural

language
• Zero-shot

• No other information provided to the model
• One-shot

• One input/output example of provided in addition to task
description

• Few-shot
• Multiple examples of input/output pairs provided
• Limited by maximum context size available

[A brief history of LLMs] 11

[Large Language Models]

In-context performance
• Larger models show

remarkable 1- and few-
shot performance
w.r.t. smaller ones

• The gap between 0-
and 1-shot
performance is quite
remarkable
• (It’s typically a good

idea to pass shots!)
(Task of removing some symbols from an input text)

[A brief history of LLMs] 12

[Large Language Models]

Comparison with fine-tuned models
• The 175B few-shot model is

comparable (or outperforms)
fine-tuned SOTA models
• In the plot: TriviaQA, but similar

results on other problems
• This is a remarkable result:
• Scaling the model allows not

fine-tuning on task-specific
datasets and still get competitive
results!

[A brief history of LLMs] 13

[Large Language Models]

The race to bigger models

• These scaling laws resulted in a
race toward building larger
models
• GPT-3 was the first 100B+

parameters model
• Other larger models have been

developed, following this trend

[A brief history of LLMs] 14

[Large Language Models]

Big models got bigger
• Jurassic-1
• 178B parameters, AI21labs (2021)

• Gopher
• 280B parameters, DeepMind (2021)
• (120 pages paper: 1-7 “methodology”, 8-120: results & examples)

• This has become the current format!
• https://arxiv.org/pdf/2112.11446

• Megatron-Turing NLG
• 530B parameters, NVIDIA + Microsoft (2021)

• PaLM (Pathways Language Model)
• 540B parameters, Google (2022)

[A brief history of LLMs] 15

https://arxiv.org/pdf/2112.11446

[Large Language Models]

Oversized and undertrained!
• DeepMind publishes “Training Compute-Optimal Large Language

Models” in March 2022
• https://arxiv.org/pdf/2203.15556

• Main claims:
• “current large language models are significantly under-trained, a

consequence of the recent focus on scaling language models whilst keeping
[…] data constant”
• “for every doubling of model size the number of training tokens should also be

doubled”
• Chinchilla, a new correctly-sized model, outperforms larger ones!

[A brief history of LLMs] 16

https://arxiv.org/pdf/2203.15556

[Large Language Models]

Oversized and undertrained – explained

• DeepMind runs additional experiments
with 3 approaches

• All results indicate that the conclusions
of Kaplan et al (2020) give too much
importance to model size

• For instance, the resources used for
Gopher (280B) should have been used
to train a 40-70B parameters model

[A brief history of LLMs] 17

[Large Language Models]

Approach 1 (fixed-sized models)

[A brief history of LLMs] 18

The authors trained, with a
specific compute budget
(measured in FLOPs), models
of various sizes.
For instance, a 5B parameters
model was trained using up
to 1021 FLOPS

For each compute budget, we can now
find the model with the lowest loss we
can reach. The number of parameters
of that model is the “best” we can
reach, for the given compute budget.
e.g., for 1020 FLOPS, the lowest loss is
achieved by the 1B parameters model

10B è loss 3.5
7.5B è loss 3
5 B è loss 2.8
2 B è loss 2.7
1 B è loss 2.5

The optimal model size is
reported for each budget size.
A linear model is fit (red
dashed line ---)

1020

1.0B

The compute budget used for
Gopher (5.8 ⋅ 10!" FLOPS) shows
that the best model size should
be 67B parameters (not 280B!)

Similar considerations have
been made for the number of
tokens used from training.

[Large Language Models]

Approach 2 (IsoFLOPs)

[A brief history of LLMs] 19

Compute
budget

For a fixed compute budget,
the authors trained models
of various sizes.
Empirically, the behavior of
the loss follows a parabola.

The minimum of the parabola
corresponds to the model size that,
for a fixed compute budget, gets the
lowest loss (best model).
For instance, for a budget of 6 ⋅ 10!#
FLOPS, the model with the lowest
loss (~2.3) has 2B parameters

2B 6 ⋅ 10!"

For each compute budget, the
best model is reported. The red
dashed (---) model interpolates
for other model sizes. Gopher
should now be a 63B model!

2B

[Large Language Models]

Approach 3

[A brief history of LLMs] 20

For a given (FLOPs, model size)
pair, the resulting loss can be
computed. A parametric model
is fit based on the available
data, as shown here (contours
represent levels with the same
loss value)

Vertical lines represent all points (model
sizes). The color represents the loss
obtained for the each point having that
fixed compute budget (e.g., all models
trained with 1020 FLOPs

Along each “isoFLOPs” line, we can
identify the “best” model (i.e., the
model with the minimum loss). The
efficient frontier represents this point
as the compute budget varies.

For a fixed budget slice,
we can the plot of
model size vs loss.

The efficient frontier
passes through the
minimums of each
curve.

[Large Language Models]

Models are undertrained!

[A brief history of LLMs] 21

This is how big models trained on
5.76 ⋅ 10!" FLOPs should be according
to the three approaches proposed.

This is how big models trained on 5.76 ⋅ 10!"
FLOPs should be according to Kaplan et al, 2020.
Notice that many previous models
approximately follow that relationship.

[Large Language Models]

Chinchilla
• In the same paper, DeepMind also presented Chinchilla
• Chinchilla is a 70B parameters model
• Trained on the same compute budget as Gopher (280B)
• 5.76 ⋅ 10%$ FLOPs

• Chinchilla is ¼ of Gopher’s size, and is trained on more tokens
• 1.4T (Chinchilla) vs 300B (Gopher) à 4x more!

• The paper shows how Chinchilla generally outperforms Gopher, but
also GPT-3, on various tasks

[A brief history of LLMs] 22

[Large Language Models]

A new trend
• The previous trend of “always larger” models started fading

• There has since been a return to smaller models, trained for longer

• Smaller models can achieve better performance!
• LLMs become more accessible
• This led to a large ecosystem of (open) models

[A brief history of LLMs] 23

[Large Language Models] [A brief history of LLMs] 24

https://arxiv.org/pdf/2304.13712

https://arxiv.org/pdf/2304.13712

[Large Language Models]

Llama family
• Llama (Large Language Model Meta AI) is a family

of models introduced by Meta AI, starting in 2023
• https://huggingface.co/meta-llama

• All autoregressive, decoder-only architectures, trained on open datasets
• All models are all openly available

• LLaMA (Feb ‘23) à 7B, 13B, 32B, 65B
• Llama 2 (Jul ‘23) à 7B, 13B, 70B
• Llama 3 (Apr ‘24) à 8B, 70B

• 3.1 (Jul ‘24) à 8B, 70B, 405B
• 3.2 (Sep ‘24) à 1B, 3B, 11B, 90B (with multimodal version)

• Plus other versions (e.g. Code Llama – based on Llama 2, or instruction-tuned
models)

[A brief history of LLMs] 25

https://huggingface.co/meta-llama

[Large Language Models]

Other families of open models
• GPT-Neo/GPT-J (EleutherAI, 🇺🇸) – open source alternatives to the GPT

family

• Mistral (MistralAI, 🇫🇷) – wide variety of model sizes, code-tuned versions
(for 80+ languages), multimodal versions (Pixtral)

• GLM (Zhipu AI, 🇨🇳) – General Language Model, more oriented toward the
Chinese language, but also works well on other languages, including
English

• Falcon (Technology Innovation Institute, 🇦🇪) – different sized models, they
also released a Mamba-based model (State Space Language Models!)

[A brief history of LLMs] 26

