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The need for fine-funing

* Language models are few-shot, or even zero-shot learners
* GPT-3 (“Language Models are Few-shot Learners”)
* FLAN (“Finetuned Language Models Are Zero-Shot Learners”)

* However, the upper bound in performance is generally set by fine-
tuned models

* Even much smaller models, when fine-tuned on a task, can outperform bigger
models used with In-Context Learning

* So, we may still need to fine-tune models!
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Fine-tuning | Mol

* Fine-tuning is a simple (and intuitive) approach to improve a
model’s performance on new tasks
* In fine-tuning, we continue the training of a pretrained model on

the new (fine-tuning) data
* All of the original model’s weights can change (”ﬁh’)

* Pros
* Allows achieving performance comparable to training from scratch

* Smaller datasets can be used to change the behavior of pretrained models
e (Seeinstruction tuning, model alignment)

* Cons
* Resource intensive for large models
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Feature-based transfer [ Headh
i i Pretrained model )

* We freeze () the backbone model (backbone)
* i.e., no gradient updates will be computed for those weights L )

 We add a trainable head
* Only the weights of the head are updated
e Optionally, we can “unfreeze” the last few layers of the backbone

* The original model is used as a feature extractor
* The head uses the extracted features

* Pros

* Only changes a small fraction of all possible weights (less resource intensive)
* Works well when the original and the new task(s) are similar

* Cons
 Complex (or more diverse) tasks require deeper changes
* The performance on these tasks will be sub-optimal
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Problems with “classic” approaches

* Fine-tuning and feature-based transfer introduce opposite
benefits/problems

* As models grow larger and tasks diversify, we typically struggle to use
one or the other approach

* Other families of approaches emerged to overcome the limitations of
the abovementioned techniques

* Parameter-efficient Fine-Tuning (PEFT)
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Parameter-efticient Fine-Tuning

* Techniques used to reduce the
computational cost required
for the fine-tuning of models

* PEFT techniques reduce the
number of parameters to update

* Among the others, there are:
* BitFit
* Adapter layers
* LoRA (Low Rank Adaptation)
* Prompt tuning

additive selective

BitFit LN Tuning
Attention Tuning

Ladder-Side
Tuning

Diff-Pruning
AttentionFusion

adapters Fish-Mask LT-SFT

FAR
Sparse
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LeTS
LoRa

KronA
soft prompts

Intrinsic-SAID reparametrization-based

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
(https://arxiv.org/pdf/2303.15647)
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Bias-terms Fine-tuning (BitFit)

* BitFit is a very simple sparse fine-tuning technique, where only the bias terms of
the model (or a subset) are modified

* Bias terms characterize a small fraction of model weights
* E.g., 0.1% for BERT

* Zaken et al., 2021 show that tuning the bias terms is sufficient to get performance
comparable to fine-tuning

* “Bias terms and their importance are rarely discussed in the literature. Indeed,
the equations in the paper introducing the Transformer model (Vaswani et al.,
2017) do not include bias terms at all, and their existence in the BERT models
might as well be a fortunate mistake”

Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for transformer-based
masked language-models." arXiv preprint arXiv:2106.10199 (2021). https://arxiv.org/pdf/2106.10199
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Adapters

* Introduces additional layers inbetween
existing (attention or fully-connected) layers

* Only the newly introduced layers (adapters)
are trained

* The rest of the model is frozen
* Except for Layer Norms (small, and introduce
some more flexibility)

* This reduces the overall number of trained
parameters

e e e e e

* But allows changing the model at various
depths (unlike feature-based transfer!)

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International conference on
machine learning. PMLR, 2019. http://proceedings.mlr.press/v97/houlsbyl19a/houlsby19a.pdf

Adapter O

Feed Forward

Layer Norm ¢

s

Adapter O

-,
Multi-Head Attention



http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
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Adapter layer = O—

[ Linear layer (up-project) ¢ )

A

* The adapter layer is characterized by a simple
fully-connected model Noniineariy
* Down-projecting layer (e.g., 768 = 32) |
 Non-linearity (e.g., ReLU) Linear layer (down-project) &
* Up-projecting layer (e.g., 32 = 768) L 1 J
* More complex architectures have been studied in
the original paper, but with no added benefits

* The adapters are “injected” in a pretrained (already working) model
* If initialized randomly, it will “ruin” the intermediate results
* Initially, the adapter should behave as an identity function (adapter(x) = x)
* Then, during fine-tuning, the layer adapts the intermediate results

* To get an identity-like behavior, the residual connection is used (and the linear layers
are initialized to produce outputs close to 0)
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Results of adapters

* In terms of reduction of number of trainable parameters

* Asingle transformer layer (e.g., in BERT) has ~7M parameters
* Adapters (32 dimensions) have:

e 768*%32 + 32 + 32*768+768 = ~50K parameters
* Two adapters for each layer 2 100K parameters/layer 5
e 70x fewer parameters to tune! 0

I I
* In terms of performance N _///-

e Authors show that, empirically, they achieve similar
performance to using classic fine-tuning

Accuracy delta (%)
&
o

—20+ *—e Adapters (ours) -
 (But at a fraction of the cost!) sl | == Finedunelonloven
10° 10° 10* 108 10°

Num trainable parameters / task

(Source: original paper)
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Low Ranking Adaptation (LORA)

* Fine-tuning of a model (e.g., a single layer W) produces an
incremental change AW applied to the weights

o After fine-tuning, we have new weights W' such that:
W' =w+

W’ = w o + AW &

* We can fix (freeze) W and only learn the incremental change
during fine-tuning

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models."
arXiv preprint arXiv:2106.09685 (2021). https://arxiv.org/pdf/2106.09685
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Rank of matrices (digression)

* The rank of a matrix is the number of linearly independent rows
(columns)

* An n X n matrix F is full rank if all rows (columns) are linearly
independent

e It can be factorized as F = ABT,bothAand Baren X n

* An n X n matrix L is low rank if some rows (columns) are linear
combinations of the other

e L=ABT AandBare n Xr
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Low-rank factorization (digression)

* This 3x3 matrix is low rank 1
e row2=rowl*?2
e row3=row1l*-1 1 1
e rank=1
2 2
* |t can be factorized into two 3x1 matrices 1 1

«A=[12-1],B=[121]
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Near low-rank (digression)

e What about this matrix? ' ? '

2.01 4 2

-1 -2 |-1.01

* It is technically full rank

* However, it’s just the previous matrix, with very small changes!
* We call these matrices, near low-rank

* Even if we cannot write it as AB’, we can still approximate it

* The closer the matrix is to actually being low rank, the better the
approximation will be



LORA (low rank assumption of AW )

e Learning AW implies having to fine-tune the same number of
parameters, so by itself is not particularly useful

* But, if we assume (verify empirically) that AW is generally near low-
rank, we can approximately factorize it into smaller matrices A, B

WI

@

__________________

AW
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Low-Rank Adaptation

W' =W +

* Since we approximate AW , we can compute the gradients for (and
optimize) A, B directly

* We learn A, B such that the product will be approximately the desired AW
e If AW is near low-rank, we can produce a good approximation with 4, B
* So we can choose the rank to use () in the shapes of 4, B

e Ifr > %, then A, B collectively have fewer parameters than AW

* Before fine-tuning, we want AW (no update w.r.t. the pretrained model)
e This is achieved by sampling A from V' (0, ¢?) and B = 0 (so, ABT = 0)
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(Source: original paper)
E2E NLG Challenge
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Model & Method # Trainable

Parameters | BLEU NIST MET ROUGE-L CIDEr
R e S U ‘ '|' S Of L O R A GPT-2 M (FT)* 35492M | 682 8.62 46.2 71.0 2.47
GPT-2 M (Adapter™)* 037M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter™)* 11.09M | 68.9 8.71 46.1 7123 2.47
GPT-2 M (Adapter™) 11.09M | 67.3.¢ 8.50.Lg; 460, 7071, 244,
GPT-2 M (FTToP2)x 25.19M | 68.1 8.59 46.0 70.8 2.41
o GPT-2 M (PreLayer)* 035M | 69.7 8.81 46.1 71.4 2.49
° A ut h ors S h OW, em p irica | |y’ t h at t h e GPT-2 M (LoRA) 035M | 704, 8.85.0, 468., 71.8+1 253,
. GPT-2 L (FT)* 774.03M | 685 8.78 46.0 69.9 2.45
up dates are indeed near low-rank GPT-2 L (Adapter") 0.88M | 69.15, 8.68.0s 46310 Tlds, 249,
GPT-2 L (Adapter") 23.00M | 689+ 870r0s 461+, 713+,  245.0
GPT-2 L (PreLayer)* 077M | 703 8.85 46.2 717 2.47
GPT-2 L (LoRA) 077M | 704+, 8.89.0 468., 72.0., 2470

* By using values as low as r = 4, we get good approximations of AW

* For BERT, 1 transformer layer = 7M parameters
* If we apply LoRA on W,, Wy, W,,, W, (768x768) and the FF layers (768 - 3072 <
768), with r = 4, we get:
e 768*4%*2*4 + (768*4+3072*4)*2 = 50k parameters (~140x fewer parameters)

* We can choose to fine-tune only parts of the transformer, e.g. only
qgueries and values, producing fewers parameters!
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Considerations on LORA

* The benefits increase as we increase the model size
* with dy,04e1 = 12,288 (GPT-3), we get up to 10,000 fewer parameters!
e Authors claim the hardware requirements go down by a factor of 3
* (forward pass still needed “in full”)
* We can fine-tune the same model on multiple tasks
* Each task t will have its A;, B; adapters

* We can store a single instance of the pretrained model, and add the
appropriate A;, B; for each task needed (space efficient!)

* At inference time, we can precompute W' from W, A, B

* In this way, there’s no overhead introduced by the additional
multiplications/additions required to compute W'x = Wx + ABTx
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Prompt tuning

* Prompting: approach of adding extra information for the
model to condition on during its generation of the output

* Normally, prompting is done .by.preﬂending some tokens to

the input, attempting to maximize the likelihood of the

correct output
* In GPT-3, for instance, these prompt tokens are
part of the model’s vocabulary

* In prompt design, the “right” words exist, we just need
to choose them

19

i Pre-trained B

Model Tuning Model
_ (11B params)
al ( )
Task A 22 Task A Model
Batch (11B params)
& >
b1 A R
Task B .| Task B Model
Batch (11B params)
\_ >,
cl a R
TaskC [ c2 | | Task C Model
Batch (11B params)
. J

Prompt Tuning

Pre-trained
Model

(11B params)

. . . Mixed-task
* In prompt tuning, instead, we add a fixed set of Batch
special tokens to the prompt AT 3
* Then, we allow fine-tuning only those special tokens i g g}
 (Instead of choosing the right “words”, we create them) Al a2
C c2
Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient ;2%8; Z';Zrnr:si:ach)

prompt tuning." arXiv preprint arXiv:2104.08691 (2021). https://arxiv.org/pdf/2104.08691 P

(Source: original paper)


https://arxiv.org/pdf/2104.08691

Ny,
> A% poiitecni B
2V Politecnico
iwsre iy di Torino DNp
o g

Other optimization technigues

* The previous techniques fall under the umbrella of PEFT
* Focus on fine-tuning

e Other techniques are more generally focused on reducing the
footprint of the model
* In terms of memory used, and/or computational cost
* Either at training, or inference time

* This is done by either making the same model smaller
e (Quantization, reduction in floating point precision)

* Or, by building smaller versions of models
 (Distillation)
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Quantization

* Quantization is the process of mapping continuous (floating-point)
values to discrete ones

* [n other words, reduce the prediction of the model’s weights and/or
activations by limiting the range of allowed values

* Pros
* Reduces storage/memory requirements for models
* Improves computational efficiency (operations on fewer bits, possibly integer)

* Cons
* Loss in precision typically has some effect on the model’s performance



Numerical representations

e float32
1 bit for sign, 8 bits for exponent, 23 bits for mantissa
* Range (positive): ~ 1.18 - 10738 (normalized) to 3.4 - 1038

e float16

1 bit for sign, 5 bits for exponent, 10 bits for fraction
* Range (positive): ~ 6.1 - 107> (normalized) to 6.5 - 10

* bfloat16

* 1 bit for sign, 8 bits for exponent, 7 bits for mantissa
e (same range of values as float32, with lower precision)

° Int8
e -128t0 127
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Quantization process 53143 14 o
* Mapping scheme

» Specifies how values from one domain (e.g. values of a
tensor, in float32) should map to the target domain (e.g. int8)

 Various approaches (e.g., absmax, zero-point)

1.1 4.3
* All based on scale (size of step) and zero-point (what is “0”?) - RS < +5.2
 Absmax quantization / \
e Scale values symmetrically 127 e ====--=to o Xl ++127
 If ais the abs-largest value in the tensor, values are mapped \ A /
soas-a=-127,+a=+127
. ;I/'Qresicg)rri]ginal value “0” is preserved to “0” in the quantized 5.2 ----- s e 5.2
« Zero-point quantization 52 e---mon--Si-=443
e Scale values asymmetrically / \
* If min =a, max = b, values are mapped so thata=-128, b =
+127 128 ¢ === n e 127
* More efficient use of the range of possible values for \ /
asymmetric distributions A S o143
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https://pytorch.org/blog/quantization-aware-training/
°1 mmm No quantization QAT (quantized) mm PTQ

Types of guantization

Accuracy (%)

hellaswag hellaswag arc_easy arc_easy arc_challenge arc_challenge openbookqga

P Post_ Train I'n g Quan tiza tion (PTQ) acc acc_norm acc acc_norm acc acc_norm acc

* A modelis trained “normally”, its weights and/or activations are quantized afterwards
* Easy to apply to a model without retraining, but can produce sub-optimal results

* Quantization-Aware Training (QAT)
* |Incorporates quantization during training
* Forward pass
* Using (fake) quantized version of weights/activations
» All values are kept to full precision (but rounded)
* Backward pass
e Gradients computed in full precision
* Quantization parameters (e.g., scale, zero-point) are learned
* Some tricks to bypass non-differentiable functions (e.g., rounding)
» Better performance, but requires intervening on the training process


https://pytorch.org/blog/quantization-aware-training/

Statfic vs dynamic quantization

* To quantize weights/activations, we need to know scale and zero-point
* For weights, we can compute the information beforehand
e For activations, there are two approaches: static & dynamic quantization

e Static quantization
* Pre-compute scale, zero-point, then used them in a fixed way

* Avalidation set is used to measure distributions (calibration phase)
e Faster, more consistent

* Dynamic quantization
 Compute scale and zero-point for each activation separately
* Makes better use of the range of possible values
* No calibration step required
 More computationally expensive (at inference, we compute values on the activations)



[ Efficient fine-tuning & inference ] 26

LLM.iNt8() Attt @tlon ey

(2) Quantize (4) Dequantize
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° E (1) Find vector-wise constants: C,, & Cy :
E e X1127/C,) = X, . ) i
L LM ) I n -|-8 ( ) ﬁ E 2[2 -1)-(1 1o CW WFl*6(127/CW) =W, OUt|3212(7:l(sz;:W = OUtFlﬁ i
E 1[1]1)0 o (3) Int8 Matmul i
2 [as]-1[a7[1 e Y F16 w e E
XEERRE REw |
* Vector-wise quantization CBBL. e becompotion
* Compute scaling constants | (1) Decompose outiers () FP16 Matmul |
for each row/vector of W < w—ou |
matrices regutorva L x oo [ R
. egular values ' ad 3]-2 :
* Instead of 1 per matrix [ outlers P e
* This produces better-quantized dot products - |
Ma:o _¢//u
. . o ) — LMin | .
* Mixed-precision decomposition | Ssibasene e
* Authors observe that there are some outlier I
weights/activations (features) in larger models, with large ~
magnitudes

e Approximately 0.1% of all features
 These outliers are useful for LLMs

* To better handle these outlier features, we can decompose
each matrix into non-outliers (8-bit precision) and outliers .
(16'b|t preCISlon) emergence of ——»

outlier features

bt
wv
®
.

Mean zeroshot accuracy
°
()]

0.3
Dettmers, Tim, et al. "Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale." Advances in & s . © & & & & &
Neural Information Processing Systems 35 (2022): 30318-30332. https://arxiv.org/pdf/2208.07339 Parameters



https://arxiv.org/pdf/2208.07339

Reduced floating point precision

* A less drastic measure, which we can easily adopt, is converting a
model to half precision (float16)

* We typically use float32 (single precision) models
* However, we don’t always need that much precision

* By simply converting a model to half precision, we can save half the
space of the model!

* We preserve values in a continuous range of values, so this is not
considered quantization

* Rather easy in PyTorch!
 model = model.half()



Model distillation

* A smaller model can be distilled from a larger model, so as to obtain behaviors similar to
those of the original model

* Distillation is generally done with a teacher/student paradigm:
» Teacher: the original (larger) model, we want to reduce in size
e Student: a smaller model we want to use to mimic the teacher

* The student is trained to predict the teacher’s probability distribution (across all words)
instead of the correct word

* By I%arning from the teacher, the student receives information unavailable in the ground
trut

* E.g., the correct word could be cat
* (cat: 1, everything else: 0)

* But the teacher may provide a more semantically rich target
* (cat: 0.6, kitten: 0.2, kitty: 0.1, cats: 0.1)

Hinton, Geoffrey. "Distilling the Knowledge in a Neural Network." arXiv preprint arXiv:1503.02531 (2015). https://arxiv.org/pdf/1503.02531



https://arxiv.org/pdf/1503.02531
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Model distillation in LLMs

* It’s been shown that distilled models can achieve comparable
performance to the original ones, despite smaller architectures

e VVarious LMs have distilled versions:

* DistilBERT (from BERT)
* https://arxiv.org/pdf/1910.01108
* 40% smaller, retains 97% of performance, 60% faster

e TinyBERT (from BERT)
* https://arxiv.org/pdf/1909.10351
e 7.5x smaller, retains 97% of performance, 9.4x faster inference

* MiniLM
* https://arxiv.org/pdf/2002.10957
* 50% smaller, retains 99% of performance

* DistilGPT-2

29
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