
Large
Language
Models

Flavio Giobergia

Efficient
fine-tuning
and inference

[Large Language Models]

The need for fine-tuning
• Language models are few-shot, or even zero-shot learners
• GPT-3 (“Language Models are Few-shot Learners”)
• FLAN (“Finetuned Language Models Are Zero-Shot Learners”)

• However, the upper bound in performance is generally set by fine-
tuned models
• Even much smaller models, when fine-tuned on a task, can outperform bigger

models used with In-Context Learning

• So, we may s>ll need to fine-tune models!

[Efficient fine-tuning & inference] 2

[Large Language Models]

Fine-tuning
• Fine-tuning is a simple (and intui>ve) approach to improve a

model’s performance on new tasks
• In fine-tuning, we con$nue the training of a pretrained model on

the new (fine-tuning) data
• All of the original model’s weights can change (🔥)

• Pros
• Allows achieving performance comparable to training from scratch
• Smaller datasets can be used to change the behavior of pretrained models

• (See instruc,on tuning, model alignment)

• Cons
• Resource intensive for large models

[Efficient fine-tuning & inference] 3

Model
🔥

[Large Language Models]

Feature-based transfer
• We freeze (❄) the backbone model

• i.e., no gradient updates will be computed for those weights
• We add a trainable head

• Only the weights of the head are updated
• Op9onally, we can “unfreeze” the last few layers of the backbone

• The original model is used as a feature extractor
• The head uses the extracted features
• Pros

• Only changes a small frac9on of all possible weights (less resource intensive)
• Works well when the original and the new task(s) are similar

• Cons
• Complex (or more diverse) tasks require deeper changes
• The performance on these tasks will be sub-op9mal

[Efficient fine-tuning & inference] 4

Pretrained model
(backbone)
❄

Head 🔥

[Large Language Models]

Problems with “classic” approaches
• Fine-tuning and feature-based transfer introduce opposite

benefits/problems

• As models grow larger and tasks diversify, we typically struggle to use
one or the other approach

• Other families of approaches emerged to overcome the limita>ons of
the abovemen>oned techniques

• Parameter-efficient Fine-Tuning (PEFT)

[Efficient fine-tuning & inference] 5

[Large Language Models]

Parameter-efficient Fine-Tuning
• Techniques used to reduce the

computa>onal cost required
for the fine-tuning of models
• PEFT techniques reduce the

number of parameters to update
• Among the others, there are:
• BitFit
• Adapter layers
• LoRA (Low Rank AdaptaMon)
• Prompt tuning

[Efficient fine-tuning & inference] 6

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
(h?ps://arxiv.org/pdf/2303.15647)

https://arxiv.org/pdf/2303.15647

[Large Language Models]

Bias-terms Fine-tuning (BitFit)
• BitFit is a very simple sparse fine-tuning technique, where only the bias terms of

the model (or a subset) are modified

• Bias terms characterize a small fracMon of model weights
• E.g., 0.1% for BERT

• Zaken et al., 2021 show that tuning the bias terms is sufficient to get performance
comparable to fine-tuning

• “Bias terms and their importance are rarely discussed in the literature. Indeed,
the equaBons in the paper introducing the Transformer model (Vaswani et al.,
2017) do not include bias terms at all, and their existence in the BERT models
might as well be a fortunate mistake”

[Efficient fine-tuning & inference] 7

Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for transformer-based
masked language-models." arXiv preprint arXiv:2106.10199 (2021). https://arxiv.org/pdf/2106.10199

https://arxiv.org/pdf/2106.10199

[Large Language Models]

Adapters
• Introduces addi:onal layers inbetween

exis:ng (a>en:on or fully-connected) layers
• Only the newly introduced layers (adapters)

are trained
• The rest of the model is frozen

• Except for Layer Norms (small, and introduce
some more flexibility)

• This reduces the overall number of trained
parameters
• But allows changing the model at various

depths (unlike feature-based transfer!)

[Efficient fine-tuning & inference] 8

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." InternaRonal conference on
machine learning. PMLR, 2019. hTp://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

Layer Norm 🔥

Feed Forward
❄

Multi-Head Attention
❄

+

Adapter 🔥

+

Adapter 🔥

Layer Norm 🔥

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

[Large Language Models]

Adapter layer
• The adapter layer is characterized by a simple

fully-connected model
• Down-projec9ng layer (e.g., 768 à 32)
• Non-linearity (e.g., ReLU)
• Up-projec9ng layer (e.g., 32 à 768)

• More complex architectures have been studied in
the original paper, but with no added benefits
• The adapters are “injected” in a pretrained (already working) model

• If ini9alized randomly, it will “ruin” the intermediate results
• Ini9ally, the adapter should behave as an iden9ty func9on (adapter(x) = x)
• Then, during fine-tuning, the layer adapts the intermediate results
• To get an iden9ty-like behavior, the residual connec9on is used (and the linear layers

are ini9alized to produce outputs close to 0)

[Efficient fine-tuning & inference] 9

Adapter
layer

Linear layer (down-project) 🔥

Nonlinearity

Linear layer (up-project) 🔥

+

[Large Language Models]

Results of adapters
• In terms of reduc$on of number of trainable parameters
• A single transformer layer (e.g., in BERT) has ~7M parameters
• Adapters (32 dimensions) have:

• 768*32 + 32 + 32*768+768 à ~50K parameters
• Two adapters for each layer à 100K parameters/layer
• 70x fewer parameters to tune!

• In terms of performance
• Authors show that, empirically, they achieve similar

performance to using classic fine-tuning
• (But at a fracMon of the cost!)

[Efficient fine-tuning & inference] 10

(Source: original paper)

[Large Language Models]

Low Ranking Adaptation (LoRA)
• Fine-tuning of a model (e.g., a single layer 𝑊) produces an

incremental change Δ𝑊 applied to the weights
• APer fine-tuning, we have new weights 𝑊! such that:

𝑊! = 𝑊 + Δ𝑊

• We can fix (freeze) 𝑊 and only learn the incremental change Δ𝑊
during fine-tuning

[Efficient fine-tuning & inference] 11

𝑊! 𝑊❄ Δ𝑊🔥= +

Hu, Edward J., et al. "Lora: Low-rank adaptaRon of large language models."
arXiv preprint arXiv:2106.09685 (2021). hTps://arxiv.org/pdf/2106.09685

https://arxiv.org/pdf/2106.09685

[Large Language Models]

Rank of matrices (digression)
• The rank of a matrix is the number of linearly independent rows

(columns)

• An 𝑛	×	𝑛	matrix 𝐹 is full rank if all rows (columns) are linearly
independent
• It can be factorized as 𝐹 = 𝐴𝐵%, both 𝐴	and 𝐵 are 𝑛 × 𝑛

• An 𝑛 × 𝑛 matrix 𝐿 is low rank if some rows (columns) are linear
combina>ons of the other
• 𝐿 = 𝐴𝐵%, 𝐴 and 𝐵 are 𝑛 × 𝑟

[Efficient fine-tuning & inference] 12

[Large Language Models]

Low-rank factorization (digression)
• This 3x3 matrix is low rank
• row 2 = row 1 * 2
• row 3 = row 1 * -1
• rank = 1

• It can be factorized into two 3x1 matrices
• A = [1 2 -1], B = [1 2 1]

[Efficient fine-tuning & inference] 13

1 2 1

2 4 2

-1 -2 -1

1

2

-1

1 2 1

[Large Language Models]

Near low-rank (digression)
• What about this matrix?

• It is technically full rank
• However, it’s just the previous matrix, with very small changes!
• We call these matrices, near low-rank
• Even if we cannot write it as AB’, we can s>ll approximate it
• The closer the matrix is to actually being low rank, the beXer the

approxima>on will be

[Efficient fine-tuning & inference] 14

1 2 1

2.01 4 2

-1 -2 -1.01

[Large Language Models]

LoRA (low rank assumption of Δ𝑊)
• Learning Δ𝑊 implies having to fine-tune the same number of

parameters, so by itself is not par>cularly useful
• But, if we assume (verify empirically) that Δ𝑊 is generally near low-

rank, we can approximately factorize it into smaller matrices 𝐴, 𝐵

[Efficient fine-tuning & inference] 15

𝑊! 𝑊❄ 𝐴
🔥

= +

𝐵🔥

Δ𝑊

[Large Language Models]

Low-Rank Adaptation
𝑊! = 𝑊 + 𝐴𝐵"

• Since we approximate Δ𝑊 , we can compute the gradients for (and
op>mize) 𝐴, 𝐵	directly
• We learn A, B such that the product will be approximately the desired Δ𝑊
• If Δ𝑊 is near low-rank, we can produce a good approxima>on with 𝐴, 𝐵
• So we can choose the rank to use (𝑟) in the shapes of 𝐴, 𝐵
• If 𝑟 > #

$
, then 𝐴, 𝐵 collec>vely have fewer parameters than Δ𝑊

• Before fine-tuning, we want Δ𝑊 (no update w.r.t. the pretrained model)
• This is achieved by sampling 𝐴 from 𝒩 0, 𝜎(and 𝐵 = 0 (so, A𝐵% = 0)

[Efficient fine-tuning & inference] 16

[Large Language Models]

Results of LoRA
• Authors show, empirically, that the

updates are indeed near low-rank

• By using values as low as r = 4, we get good approximations of Δ𝑊

• For BERT, 1 transformer layer = 7M parameters
• If we apply LoRA on 𝑊),𝑊*,𝑊+,𝑊, (768x768) and the FF layers (768 à 3072 à

768), with r = 4, we get:
• 768*4*2*4 + (768*4+3072*4)*2 = 50k parameters (~140x fewer parameters)

• We can choose to fine-tune only parts of the transformer, e.g. only
queries and values, producing fewers parameters!

[Efficient fine-tuning & inference] 17
(Source: original paper)

[Large Language Models]

Considerations on LoRA
• The benefits increase as we increase the model size
• with 𝑑-,./0 = 12,288 (GPT-3), we get up to 10,000 fewer parameters!
• Authors claim the hardware requirements go down by a factor of 3

• (forward pass s,ll needed “in full”)

• We can fine-tune the same model on mul$ple tasks
• Each task 𝑡 will have its 𝐴1, 𝐵1 adapters

• We can store a single instance of the pretrained model, and add the
appropriate 𝐴% , 𝐵% for each task needed (space efficient!)
• At inference >me, we can precompute 𝑊′ from 𝑊,𝐴, 𝐵
• In this way, there’s no overhead introduced by the addiMonal

mulMplicaMons/addiMons required to compute 𝑊2𝑥 = 𝑊𝑥 + 𝐴𝐵%𝑥

[Efficient fine-tuning & inference] 18

[Large Language Models]

Prompt tuning
• Prompting: approach of adding extra information for the

model to condition on during its generation of the output
• Normally, prompting is done by prepending some tokens to

the input, attempting to maximize the likelihood of the
correct output
• In GPT-3, for instance, these prompt tokens are

part of the model’s vocabulary
• In prompt design, the ”right” words exist, we just need

to choose them
• In prompt tuning, instead, we add a fixed set of

special tokens to the prompt
• Then, we allow fine-tuning only those special tokens
• (Instead of choosing the right ”words”, we create them)

[Efficient fine-tuning & inference] 19

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient
prompt tuning." arXiv preprint arXiv:2104.08691 (2021). h?ps://arxiv.org/pdf/2104.08691 (Source: original paper)

https://arxiv.org/pdf/2104.08691

[Large Language Models]

Other optimization techniques
• The previous techniques fall under the umbrella of PEFT
• Focus on fine-tuning

• Other techniques are more generally focused on reducing the
footprint of the model
• In terms of memory used, and/or computaMonal cost
• Either at training, or inference Mme

• This is done by either making the same model smaller
• (QuanMzaMon, reducMon in floaMng point precision)

• Or, by building smaller versions of models
• (DisMllaMon)

[Efficient fine-tuning & inference] 20

[Large Language Models]

Quantization
• Quanzaon is the process of mapping con>nuous (floa>ng-point)

values to discrete ones
• In other words, reduce the predic>on of the model’s weights and/or

ac>va>ons by limi>ng the range of allowed values
• Pros
• Reduces storage/memory requirements for models
• Improves computaMonal efficiency (operaMons on fewer bits, possibly integer)

• Cons
• Loss in precision typically has some effect on the model’s performance

[Efficient fine-tuning & inference] 21

[Large Language Models]

Numerical representations
• float32

• 1 bit for sign, 8 bits for exponent, 23 bits for mantissa
• Range (positive): ~ 1.18 ⋅ 10!"# (normalized) to 3.4 ⋅ 10"#

• float16
• 1 bit for sign, 5 bits for exponent, 10 bits for fraction
• Range (positive): ~ 6.1 ⋅ 10!$ (normalized) to 6.5 ⋅ 10%

• bfloat16
• 1 bit for sign, 8 bits for exponent, 7 bits for mantissa
• (same range of values as float32, with lower precision)

• int8
• -128 to 127

[Efficient fine-tuning & inference] 22

[Large Language Models]

Quantization process
• Mapping scheme

• Specifies how values from one domain (e.g. values of a
tensor, in float32) should map to the target domain (e.g. int8)

• Various approaches (e.g., absmax, zero-point)
• All based on scale (size of step) and zero-point (what is “0”?)

• Absmax quantization
• Scale values symmetrically
• If a is the abs-largest value in the tensor, values are mapped

so as -a = -127, +a = +127
• The original value “0” is preserved to “0” in the quantized

version
• Zero-point quantization

• Scale values asymmetrically
• If min = a, max = b, values are mapped so that a = -128, b =

+127
• More efficient use of the range of possible values for

asymmetric distributions

[Efficient fine-tuning & inference] 23

-5.2 4.3 1.1 0

-5.2 +5.2

-127 +127

4.3

105

0

0

1.1

26

-5.2 +5.2
4.290 1.06

-5.2 +4.3

-128 +127

0

11

1.1

26

-5.2 +4.3
-0.02 1.09

[Large Language Models]

Types of quantization
• Post-Training Quantization (PTQ)

• A model is trained “normally”, its weights and/or activations are quantized afterwards
• Easy to apply to a model without retraining, but can produce sub-optimal results

• Quantization-Aware Training (QAT)
• Incorporates quantization during training
• Forward pass

• Using (fake) quantized version of weights/activations
• All values are kept to full precision (but rounded)

• Backward pass
• Gradients computed in full precision
• Quantization parameters (e.g., scale, zero-point) are learned
• Some tricks to bypass non-differentiable functions (e.g., rounding)

• Better performance, but requires intervening on the training process

[Efficient fine-tuning & inference] 24
https://pytorch.org/blog/quantization-aware-training/

https://pytorch.org/blog/quantization-aware-training/

[Large Language Models]

Static vs dynamic quantization
• To quan:ze weights/ac:va:ons, we need to know scale and zero-point
• For weights, we can compute the informa:on beforehand
• For acDvaDons, there are two approaches: sta:c & dynamic quan:za:on
• StaDc quanDzaDon

• Pre-compute scale, zero-point, then used them in a fixed way
• Avalida9on set is used to measure distribu9ons (calibra9on phase)
• Faster, more consistent

• Dynamic quanDzaDon
• Compute scale and zero-point for each ac9va9on separately
• Makes befer use of the range of possible values
• No calibra9on step required
• More computa9onally expensive (at inference, we compute values on the ac9va9ons)

[Efficient fine-tuning & inference] 25

[Large Language Models]

LLM.int8()
• Vector-wise quanDzaDon

• Compute scaling constants
for each row/vector of
matrices

• Instead of 1 per matrix
• This produces befer-quan9zed dot products

• Mixed-precision decomposiDon
• Authors observe that there are some outlier

weights/ac9va9ons (features) in larger models, with large
magnitudes
• Approximately 0.1% of all features
• These outliers are useful for LLMs

• To befer handle these outlier features, we can decompose
each matrix into non-outliers (8-bit precision) and outliers
(16-bit precision)

[Efficient fine-tuning & inference] 26

De?mers, Tim, et al. "Gpt3. int8 (): 8-bit matrix mulZplicaZon for transformers at scale." Advances in
Neural Informa3on Processing Systems 35 (2022): 30318-30332. h?ps://arxiv.org/pdf/2208.07339

(Source: original paper)

https://arxiv.org/pdf/2208.07339

[Large Language Models]

Reduced floating point precision
• A less drastic measure, which we can easily adopt, is converting a

model to half precision (float16)
• We typically use float32 (single precision) models
• However, we don’t always need that much precision
• By simply converting a model to half precision, we can save half the

space of the model!
• We preserve values in a continuous range of values, so this is not

considered quantization
• Rather easy in PyTorch!

• model = model.half()

[Efficient fine-tuning & inference] 27

[Large Language Models]

Model distillation
• A smaller model can be dis:lled from a larger model, so as to obtain behaviors similar to

those of the original model

• Dis9lla9on is generally done with a teacher/student paradigm:
• Teacher: the original (larger) model, we want to reduce in size
• Student: a smaller model we want to use to mimic the teacher

• The student is trained to predict the teacher’s probability distribu:on (across all words)
instead of the correct word

• By learning from the teacher, the student receives informa9on unavailable in the ground
truth
• E.g., the correct word could be cat

• (cat: 1, everything else: 0)
• But the teacher may provide a more semanOcally rich target

• (cat: 0.6, ki;en: 0.2, ki;y: 0.1, cats: 0.1)

[Efficient fine-tuning & inference] 28

Hinton, Geoffrey. "Distilling the Knowledge in a Neural Network." arXiv preprint arXiv:1503.02531 (2015). https://arxiv.org/pdf/1503.02531

https://arxiv.org/pdf/1503.02531

[Large Language Models]

Model distillation in LLMs
• It’s been shown that distilled models can achieve comparable

performance to the original ones, despite smaller architectures
• Various LMs have distilled versions:
• DistilBERT (from BERT)

• https://arxiv.org/pdf/1910.01108
• 40% smaller, retains 97% of performance, 60% faster

• TinyBERT (from BERT)
• https://arxiv.org/pdf/1909.10351
• 7.5x smaller, retains 97% of performance, 9.4x faster inference

• MiniLM
• https://arxiv.org/pdf/2002.10957
• 50% smaller, retains 99% of performance

• DistilGPT-2

[Efficient fine-tuning & inference] 29

https://arxiv.org/pdf/1910.01108
https://arxiv.org/pdf/1909.10351
https://arxiv.org/pdf/2002.10957

