

 The “connection” of the driver to the cluster
is based on the Spark Context object

 In Python the name of the class is SparkContext

 The Spark Context is built by means of the
constructor of the SparkContext class

 The only parameter is a configuration object

3

 Example
 #Create a configuration object and
 #set the name of the application
 conf = SparkConf().setAppName("Application name")

 # Create a Spark Context object
 sc = SparkContext(conf=conf)

4

 The Spark Context object can be obtained also
by using the SparkContext.getOrCreate(conf)
method
 The only parameter is a configuration object

 If the SparkContext object already exists for this
application the current SparkContext object is
returned

 Otherwise, a new SparkContext object is returned
 There is always one single SparkContext object

for each application

5

 Example
 #Create a configuration object and
 #set the name of the application
 conf = SparkConf().setAppName("Application name")

 # Retrieve the current SparkContext object or
 # create a new one
 sc = SparkContext.getOrCreate(conf=conf)

6

 A Spark RDD is an immutable distributed
collection of objects

 Each RDD is split in partitions

 This choice allows parallelizing the code based on
RDDs

▪ Code is executed on each partition in isolation

 RDDs can contain any type of Scala, Java, and
Python objects

 Including user-defined classes

 RDDs can be created

 By loading an external dataset (e.g., the content
of a folder, a single file, a database table, etc.)

 By parallelizing a local collection of objects
created in the Driver (e.g., a Java collection)

10

 An RDD can be built from an input textual file
 It is based on the textFile(name) method of the

SparkContext class
▪ The returned RDD is an RDD of Strings associated with

the content of the name textual file

▪ Each line of the input file is associated with an object (a
string) of the instantiated RDD

▪ By default, if the input file is an HDFS file the number of
partitions of the created RDD is equal to the number of
HDFS blocks used to store the file
▪ To support data locality

11

 Example
 # Build an RDD of strings from the input textual file
 # myfile.txt
 # Each element of the RDD is a line of the input file

 inputFile = "myfile.txt"
 lines = sc.textFile(inputFile)

12

 Example
 # Build an RDD of strings from the input textual file
 # myfile.txt
 # Each element of the RDD is a line of the input file

 inputFile = "myfile.txt"
 lines = sc.textFile(inputFile)

13

No computation occurs when sc.textFile() is invoked
• Spark only records how to create the RDD
• The data is lazily read from the input file only when the data
is needed (i.e., when an action is applied on lines, or on one
of its “descendant” RDDs)

 An RDD can be built from a folder containing
textual files

 It is based on the textFile(name) method of the
SparkContext class

▪ If name is the path of a folder all files inside that folder
are considered

▪ The returned RDD contains one string for each line of
the files contained on the name folder

14

 Example
 # Build an RDD of strings from all the files stored in
 # myfolder
 # Each element of the RDD is a line of the input files

 inputFolder = "myfolder/"
 lines = sc.textFile(inputFolder)

15

 Example
 # Build an RDD of strings from all the files stored in
 # myfolder
 # Each element of the RDD is a line of the input files

 inputFolder = "myfolder/"
 lines = sc.textFile(inputFolder)

16

Pay attention that all files inside myfolder are considered.
Also those without suffix or with a suffix different from .txt

 The developer can manually set the
(minimum) number of partitions

 In this case the textFile(name, minPartitions)
method of the SparkContext class is used

▪ This option can be used to increase the parallelization of
the submitted application

▪ For the HDFS files, the number of partitions
minPartitions must be greater than the number of
blocks/chunks

17

 Example
 # Build an RDD of strings from the input textual file
 # myfile.txt
 # The number of partitions is manually set to 4
 # Each element of the RDD is a line of the input file

 inputFile = "myfile.txt“
 lines = sc.textFile(inputFile, 4)

18

 An RDD can be built from a “local” Python
collection/list of local python objects

 It is based on the parallelize(c) method of the
SparkContext class

▪ The created RDD is an RDD of objects of the same type
of objects of the input python collection c

▪ In the created RDD, there is one object for each element
of the input collection

▪ Spark tries to set the number of partitions automatically
based on your cluster’s characteristics

19

 Example
 # Create a local python list
 inputList = ['First element', 'Second element', 'Third

element']

 # Build an RDD of Strings from the local list.
 # The number of partitions is set automatically by Spark
 # There is one element of the RDD for each element
 # of the local list

 distRDDList = sc.parallelize(inputList)

20

 Example
 # Create a local python list
 inputList = ['First element', 'Second element', 'Third

element']

 # Build an RDD of Strings from the local list.
 # The number of partitions is set automatically by Spark
 # There is one element of the RDD for each element
 # of the local list

 distRDDList = sc.parallelize(inputList)

21

No computation occurs when sc.parallelize() is invoked
• Spark only records how to create the RDD
• The data is lazily read from the input Python list only when the data
is needed (i.e., when an action is applied on distRDDList or on one of
its “descendant” RDDs)

 When the parallelize(c) is invoked

 Spark tries to set the number of partitions
automatically based on your cluster’s
characteristics

 The developer can set the number of
partition by using the method parallelize(c,
numSlices) of the SparkContext class

22

 Example
 # Create a local python list
 inputList = ['First element', 'Second element', 'Third

element']

 # Build an RDD of Strings from the local list.
 # The number of partitions is set to 3
 # There is one element of the RDD for each element
 # of the local list

 distRDDList = sc.parallelize(inputList, 3)

23

 An RDD can be easily stored in textual (HDFS)
files
 It is based on the saveAsTextFile(path) method

of the RDD class
▪ path is the path of a folder

▪ The method is invoked on the RDD that we want to
store in the output folder

▪ Each object of the RDD on which the saveAsTextFile
method is invoked is stored in one line of the output files
stored in the output folder
▪ There is one output file for each partition of the input RDD

24

 Example
 # Store the content of linesRDD in the output folder
 # Each element of the RDD is stored in one line
 # of the textual files of the output folder

outputPath="risFolder/"

linesRDD.saveAsTextFile(outputPath);

25

 Example
 # Store the content of linesRDD in the output folder
 # Each element of the RDD is stored in one line
 # of the textual files of the output folder

outputPath="risFolder/"

linesRDD.saveAsTextFile(outputPath);

26

saveAsTextFile() is an action.
Hence Spark computes the content associated with linesRDD
when saveAsTextFile() is invoked.
Spark computes the content of an RDD only when that content is
needed.

 Example
 # Store the content of linesRDD in the output folder
 # Each element of the RDD is stored in one line
 # of the textual files of the output folder

outputPath="risFolder/"

linesRDD.saveAsTextFile(outputPath);

27

Note that the output folder contains one textual file for each
partition of linesRDD.
Each output file contains the elements of one partition.

 The content of an RDD can be retrieved from
the nodes of the cluster and “stored” in a
local python variable of the Driver

 It is based on the collect() method of the RDD
class

28

 The collect() method of the RDD class

 Is invoked on the RDD that we want to “retrieve”

 Returns a local python list of objects containing
the same objects of the considered RDD

 Pay attention to the size of the RDD

 Large RDD cannot be stored in a local variable
of the Driver

29

 Example
 # Retrieve the content of the linesRDD and store it
 # in a local python list
 # The local python list contains a copy of each
 # element of linesRDD

 contentOfLines=linesRDD.collect();

30

 Example
 # Retrieve the content of the linesRDD and store it
 # in a local python list
 # The local python list contains a copy of each
 # element of linesRDD

 contentOfLines=linesRDD.collect();

31

Local python variable.
It is allocated in the main memory
of the Driver process/task

RDD of strings.
It is distributed across
the nodes of the cluster

 RDD support two types of operations

 Transformations

 Actions

33

 Transformations

 Are operations on RDDs that return a new RDD

 Apply a transformation on the elements of the
input RDD(s) and the result of the transformation
is “stored in/associated with” a new RDD

▪ Remember that RDDs are immutable
▪ Hence, you cannot change the content of an already existing RDD

▪ You can only apply a transformation on the content of an RDD
and “store/assign” the result in/to a new RDD

34

 Transformations

 Are computed lazily

▪ i.e., transformations are computed (“executed”) only
when an action is applied on the RDDs generated by the
transformation operations

▪ When a transformation is invoked
▪ Spark keeps only track of the dependency between the input

RDD and the new RDD returned by the transformation

▪ The content of the new RDD is not computed

35

 The graph of dependencies between RDDs
represents the information about which
RDDs are used to create a new RDD

 This is called lineage graph

▪ It is represented as a DAG (Directed Acyclic Graph)

 It is needed to compute the content of an RDD the
first time an action is invoked on it

 Or to compute again the content of an RDD (or
some of its partitions) when failures occur

36

 The lineage graph is also useful for
optimization purposes

 When the content of an RDD is needed, Spark can
consider the chain of transformations that are
applied to compute the content of the needed
RDD and potentially decide how to execute the
chain of transformations

▪ Spark can potentially change the order of some
transformations or merge some of them based on its
optimization engine

37

 Actions

 Are operations that

▪ Return results to the Driver program
▪ i.e., return local (python) variables

▪ Pay attention to the size of the returned results because they
must be stored in the main memory of the Driver program

▪ Or write the result in the storage (output file/folder)
▪ The size of the result can be large in this case since it is directly

stored in the (distributed) file system

38

 Consider the following code

from pyspark import SparkConf, SparkContext

import sys

if __name__ == "__main__":

 conf = SparkConf().setAppName("Spark Application")

 sc = SparkContext(conf=conf)

 # Read the content of a log file

 inputRDD = sc.textFile("log.txt")

39

 # Select the rows containing the word “error”

 errorsRDD = inputRDD.filter(lambda line:
 line.find('error')>=0)

 # Select the rows containing the word “warning”

 warningRDD = inputRDD.filter(lambda line:
 line.find('warning')>=0)

 # Union of errorsRDD and warningRDD

 # The result is associated with a new RDD: badLinesRDD

 badLinesRDD = errorsRDD.union(warningRDD)
40

 # Remove duplicates lines (i.e., those lines containing

 # both “error” and “warning”)

 uniqueBadLinesRDD = badLinesRDD.distinct()

 # Count the number of bad lines by applying

 # the count() action

 numBadLines = uniqueBadLinesRDD.count()

 # Print the result on the standard output of the driver

 print("Lines with problems:", numBadLines)

41

42

inputRDD

errorsRDD warningsRDD

badLinesRDD

uniqueBadLinesRDD

filter filter

union

distinct

 The application reads the input log file only
when the count() action is invoked

 It is the first action of the program

 filter(), union(), and distinct() are
transformations

 They are computed lazily

 Also textFile() is computed lazily

 However, it is not a transformation because it is
not applied on an RDD

43

 Spark, similarly to an SQL optimizer, can
potentially optimize the “execution” of some
transformations
 For instance, in this case the two filters + union +

distinct can be potentially optimized and transformed
in one single filter applying the constraint
▪ The element contains the string “error” or “warning”

 This optimization improves the efficiency of the
application
▪ Spark can performs this kind of optimizations only on

particular types of RDDs: Datasets and DataFrames

44

 Many transformations (and some actions) are
based on user provided functions that specify
which “transformation” function must be
applied on the elements of the “input” RDD

 For example the filter() transformation
selects the elements of an RDD satisfying a
user specified constraint

 The user specified constraint is a Boolean function
applied on each element of the “input” RDD

46

 Each language has its own solution to pass
functions to Spark’s transformations and
actions

 In python, we can use
 Lambda functions/expressions

▪ Simple functions that can be written as one single
expression

 Local user defined functions (local “defs”)
▪ For multi-statement functions or statements that do not

return a value

47

 Create an RDD from a log file
 Create a new RDD containing only the lines of

the log file containing the word “error”

 The filter() transformation applies the filter
constraint on each element of the input RDD

▪ The filter constraint is specified by means of a Boolean
function that returns true for the elements satisfying the
constraint and false for the others

48

 # Read the content of a log file

 inputRDD = sc.textFile("log.txt")

Select the rows containing the word “error”

errorsRDD = inputRDD.filter(lambda l: l.find('error')>=0)

49

 # Read the content of a log file

 inputRDD = sc.textFile("log.txt")

Select the rows containing the word “error”

errorsRDD = inputRDD.filter(lambda l: l.find('error')>=0)

50

This part of the code, which is based on a lambda expression, defines on the fly
the function that we want to apply. This part of the code is applied on each
object of inputRDD. If it returns true then the current object is “stored” in the
new errorsRDD RDD. Otherwise the input object is discarded

 # Define the content of the Boolean function that is applied
 # to select the elements of interest
 def myFunction(l):
 if l.find('error')>=0: return True
 else: return False

 # Read the content of a log file
 inputRDD = sc.textFile("log.txt")

Select the rows containing the word “error”

errorsRDD = inputRDD.filter(myFunction)

51

 # Define the content of the Boolean function that is applied
 # to select the elements of interest
 def myFunction(l):
 if l.find('error')>=0: return True
 else: return False

 # Read the content of a log file
 inputRDD = sc.textFile("log.txt")

Select the rows containing the word “error”

errorsRDD = inputRDD.filter(myFunction)

52

When it is invoked, this function analyzes the value of the parameter line
and returns true if the string line contains the substring “error”. Otherwise,
it returns false.

 # Define the content of the Boolean function that is applied
 # to select the elements of interest
 def myFunction(l):
 if l.find('error')>=0: return True
 else: return False

 # Read the content of a log file
 inputRDD = sc.textFile("log.txt")

Select the rows containing the word “error”

errorsRDD = inputRDD.filter(myFunction)

53

Apply the filter() transformation on inputRDD.
The filter transformation selects the elements of inputRDD satisfying the
constraint specified in myFunction.

 # Define the content of the Boolean function that is applied
 # to select the elements of interest
 def myFunction(l):
 if l.find('error')>=0: return True
 else: return False

 # Read the content of a log file
 inputRDD = sc.textFile("log.txt")

Select the rows containing the word “error”

errorsRDD = inputRDD.filter(myFunction)

54

For each object o in inputRDD the myFunction function is automatically invoked.
If myFunction returns true then o is “stored” in the new RDD errorsRDD.
Otherwise o is discarded

 # Define the content of the Boolean function that is applied
 # to select the elements of interest
 def myFunction(l):
 return l.find('error')>=0

 # Read the content of a log file
 inputRDD = sc.textFile("log.txt")

Select the rows containing the word “error”

errorsRDD = inputRDD.filter(myFunction)

55

This part of the code is the same used in the lambda-based
version.

 The two solutions are more or less equivalent in
terms of efficiency

 Lambda function-based code
 More concise
 More readable
 But multi-statement functions or statements that do

not return a value are not supported
 Local user defined functions (local “defs”)
 Multi-statement functions or statements that do not

return a value are supported
 Code can be reused

▪ Some functions are used in several applications

56

 Some basic transformations analyze the
content of one single RDD and return a new
RDD

 E.g., filter(), map(), flatMap(), distinct(), sample()

 Some other transformations analyze the
content of two (input) RDDs and return a new
RDD

 E.g., union(), intersection(), substract(),
cartesian()

58

 Goal

 The filter transformation is applied on one single
RDD and returns a new RDD containing only the
elements of the “input” RDD that satisfy a user
specified condition

60

 Method

 The filter transformation is based on the filter(f)
method of the RDD class

 A function f returning a Boolean value is passed to
the filter method

▪ It contains the code associated with the condition that
we want to apply on each element e of the “input” RDD
▪ If the condition is satisfied then the call method returns true and

the input element e is selected

▪ Otherwise, it returns false and the e element is discarded

61

 Create an RDD from a log file
 Create a new RDD containing only the lines of

the log file containing the word “error”

62

 ………

 # Read the content of a log file
 inputRDD = sc.textFile("log.txt")

 # Select the rows containing the word “error”
 errorsRDD = inputRDD.filter(lambda e: e.find('error')>=0)

63

 ………

 # Read the content of a log file
 inputRDD = sc.textFile("log.txt")

 # Select the rows containing the word “error”
 errorsRDD = inputRDD.filter(lambda e: e.find('error')>=0)

64

We are working with an input RDD containing strings .
Hence, the implemented lambda function is applied on one
string at a time and returns a Boolean value

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Create a new RDD containing only the values
greater than 2

65

 ………

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList);

 # Select the values greater than 2
 greaterRDD = inputRDD.filter(lambda num : num>2)

66

 ………

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList);

 # Select the values greater than 2
 greaterRDD = inputRDD.filter(lambda num : num>2)

67

We are working with an input RDD of integers.
Hence, the implemented lambda function is applied on one
integer at a time and returns a Boolean value

 ………
 # Define the function to be applied in the filter transformation
 def greaterThan2(num):
 return num>2

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList);

 # Select the values greater than 2
 greaterRDD = inputRDD.filter(greaterThan2)

68

 ………
 # Define the function to be applied in the filter transformation
 def greaterThan2(num):
 return num>2

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList);

 # Select the values greater than 2
 greaterRDD = inputRDD.filter(greaterThan2)

69

The function we want to apply is
defined by using def and then is passed
to the filter transformation

 Goal
 The map transformation is used to create a new RDD

by applying a function f on each element of the
“input” RDD

 The new RDD contains exactly one element y for
each element x of the “input” RDD

 The value of y is obtained by applying a user defined
function f on x
▪ y= f(x)

 The data type of y can be different from the data type
of x

71

 Method

 The map transformation is based on the RDD
map(f) method of the RDD class

 A function f implementing the transformation is
passed to the map method

▪ It contains the code that is applied over each element of
the “input” RDD to create the elements of the returned
RDD
▪ For each input element of the “input” RDD exactly one single

new element is returned by f

72

 Create an RDD from a textual file containing
the surnames of a list of users

 Each line of the file contains one surname

 Create a new RDD containing the length of
each surname

73

 ………

 # Read the content of the input textual file
 inputRDD = sc.textFile("usernames.txt")

 # Compute the lengths of the input surnames
 lenghtsRDD = inputRDD.map(lambda line: len(line))

74

 ………

 # Read the content of the input textual file
 inputRDD = sc.textFile("usernames.txt")

 # Compute the lengths of the input surnames
 lenghtsRDD = inputRDD.map(lambda line: len(line))

75

The input RDD is an RDD of strings.
Hence also the input of the lambda function is a String

 ………

 # Read the content of the input textual file
 inputRDD = sc.textFile("usernames.txt")

 # Compute the lengths of the input surnames
 lenghtsRDD = inputRDD.map(lambda line: len(line))

76

The new RDD is an RDD of Integers.
The lambda function returns a new Integer for each input element

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Create a new RDD containing the square of
each input element

77

 ………

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList)

 # Compute the square of each input element
 squaresRDD = inputRDD.map(lambda element: element*element)

78

 Goal

 The flatMap transformation is used to create a new
RDD by applying a function f on each element of the
“input” RDD

 The new RDD contains a list of elements obtained by
applying f on each element x of the “input” RDD

 The function f applied on an element x of the “input”
RDD returns a list of values [y]

▪ [y]= f(x)

▪ [y] can be the empty list

80

 The final result is the concatenation of the list of
values obtained by applying f over all the
elements of the “input” RDD

▪ i.e., the final RDD contains the “concatenation” of the
lists obtained by applying f over all the elements of the
input RDD

▪ Duplicates are not removed

 The data type of y can be different from the data
type of x

81

 Method
 The flatMap transformation is based on the

flatMap(f) method of the RDD class

 A function f implementing the transformation is
passed to the flatMap method
▪ It contains the code that is applied on each element of

the “input” RDD and returns a list of elements which will
be included in the new returned RDD

▪ For each element of the “input” RDD a list of new
elements is returned by f
▪ The returned list can be empty

82

 Create an RDD from a textual file containing a
generic text
 Each line of the input file can contain many words

 Create a new RDD containing the list of words,
with repetitions, occurring in the input textual
document
 Each element of the returned RDD is one of the words

occurring in the input textual file

 The words occurring multiple times in the input file
appear multiple times, as distinct elements, also in
the returned RDD

83

 ………

 # Read the content of the input textual file
 inputRDD = sc.textFile("document.txt")

 # Compute/identify the list of words occurring in document.txt
 listOfWordsRDD = inputRDD.flatMap(lambda l: l.split(' '))

84

 ………

 # Read the content of the input textual file
 inputRDD = sc.textFile("document.txt")

 # Compute/identify the list of words occurring in document.txt
 listOfWordsRDD = inputRDD.flatMap(lambda l: l.split(' '))

85

In this case the lambda function returns a “list” of
values for each input element

 ………

 # Read the content of the input textual file
 inputRDD = sc.textFile("document.txt")

 # Compute/identify the list of words occurring in document.txt
 listOfWordsRDD = inputRDD.flatMap(lambda l: l.split(' '))

86

The new RDD contains the “concatenation” of the
lists obtained by applying the lambda function over
all the elements of inputRDD

 ………

 # Read the content of the input textual file
 inputRDD = sc.textFile("document.txt")

 # Compute/identify the list of words occurring in document.txt
 listOfWordsRDD = inputRDD.flatMap(lambda l: l.split(' '))

87

The new RDD is an RDD of strings and not an RDD
of lists of strings

 Goal

 The distinct transformation is applied on one
single RDD and returns a new RDD containing the
list of distinct elements (values) of the “input”
RDD

 Method

 The distinct transformation is based on the
distinct() method of the RDD class

 No functions are needed in this case

89

 Shuffle
 A shuffle operation is executed for computing the

result of the distinct transformation
▪ Data from different input partitions must be compared to

remove duplicates

 The shuffle operation is used to repartition the input
data
▪ All the repetitions of the same input element are associated

with the same output partition (in which one single copy of
the element is stored)

▪ A hash function assigns each input element to one of the new
partitions

90

 Create an RDD from a textual file containing
the names of a list of users

 Each line of the input file contains one name

 Create a new RDD containing the list of
distinct names occurring in the input file

 The type of the new RDD is the same of the
“input” RDD

91

 # Read the content of a textual input file
 inputRDD = sc.textFile("names.txt")

 # Select the distinct names occurring in inputRDD
 distinctNamesRDD = inputRDD.distinct()

92

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Create a new RDD containing only the
distinct values appearing in the “input” RDD

93

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList)

 # Compute the set of distinct words occurring in inputRDD
 distinctIntRDD = inputRDD.distinct()

94

 Goal
 The sortBy transformation is applied on one RDD and

returns a new RDD containing the same content of
the input RDD sorted in ascending order

 Method
 The sortBy transformation is based on the

sortBy(keyfunc) method of the RDD class
▪ Each element of the input RDD is initially mapped to a new

value by applying the specified function keyfunc

▪ The input elements are sorted by considering the values
returned by the invocation of keyfunc on the input values

96

 The sortBy(keyfunc, ascending) method of the
RDD class allows specifying if the values in the
returned RDD are sorted in ascending or
descending order by using the Boolean parameter
ascending

▪ ascending set to True = ascending

▪ ascending set to False = descending

97

 Create an RDD from a textual file containing
the names of a list of users

 Each line of the input file contains one name

 Create a new RDD containing the list of users
sorted by name (based on the alphabetic
order)

98

 # Read the content of a textual input file
 inputRDD = sc.textFile("names.txt")

 # Sort the content of the input RDD by name.
 # Store the sorted result in a new RDD
 sortedNamesRDD = inputRDD.sortBy(lambda name: name)

99

 # Read the content of a textual input file
 inputRDD = sc.textFile("names.txt")

 # Sort the content of the input RDD by name.
 # Store the sorted result in a new RDD
 sortedNamesRDD = inputRDD.sortBy(lambda name: name)

100

Each input element is a string.
We are interested in sorting the input names
(strings) in alphabetic order, which is the standard
sort order for strings.
For this reason the lambda function returns the
input strings without modifying them.

 Create an RDD from a textual file containing
the names of a list of users

 Each line of the input file contains one name

 Create a new RDD containing the list of users
sorted by the length of their name (i.e., the
sort order is based on len(name))

101

 # Read the content of a textual input file
 inputRDD = sc.textFile("names.txt")

 # Sort the content of the input RDD by name.
 # Store the sorted result in a new RDD
 sortedNamesLenRDD = inputRDD.sortBy(lambda name: len(name))

102

 # Read the content of a textual input file
 inputRDD = sc.textFile("names.txt")

 # Sort the content of the input RDD by name.
 # Store the sorted result in a new RDD
 sortedNamesLenRDD = inputRDD.sortBy(lambda name: len(name))

103

Each input element is a string but we are interested
in sorting the input names (strings) by length
(integer), which is not the standard sort order for
strings.
For this reason the lambda function returns the
length of each input string. The sort operation is
performed on the returned integer values (the
lengths of the input names).

 Goal
 The sample transformation is applied on one single

RDD and returns a new RDD containing a random
sample of the elements (values) of the “input” RDD

 Method
 The sample transformation is based on the

sample(withReplacement, fraction) method of RDD
class
▪ withReplacement specifies if the random sample is with

replacement (true) or not (false)

▪ fraction specifies the expected size of the sample as a fraction
of the “input” RDD's size (values in the range [0, 1])

105

 Create an RDD from a textual file containing
a set of sentences

 Each line of the file contains one sentence

 Create a new RDD containing a random
sample of sentences

 Use the “without replacement” strategy

 Set fraction to 0.2 (i.e., 20%)

106

 # Read the content of a textual input file
 inputRDD = sc.textFile("sentences.txt")

 # Create a random sample of sentences
 randomSentencesRDD = inputRDD.sample(False,0.2)

107

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Create a new RDD containing a random
sample of the input values

 Use the “replacement” strategy

 Set fraction to 0.2

108

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList)

 # Create a sample of the inputRDD
 randomSentencesRDD = inputRDD.sample(True,0.2)

109

 Spark provides also a set of transformations
that operate on two input RDDs and return a
new RDD

 Some of them implement standard set
transformations

 Union

 Intersection

 Subtract

 Cartesian

 111

 All these transformations have
 Two input RDDs

▪ One is the RDD on which the method is invoked

▪ The other RDD is passed as parameter to the method

 One output RDD
 All the involved RDDs have the same data

type when union, intersection, or subtract are
used

 “Mixed” data types can be used with the
cartesian transformation

112

 The union transformation is based on the
union(other) method of the RDD class
 other is the second RDD we want to use
 It returns a new RDD containing the union (with

duplicates) of the elements of the two input RDDs
 Duplicates elements are not removed

▪ This choice is related to optimization reasons
▪ Removing duplicates means having a global view of the whole

content of the two input RDDs
▪ Since each RDD is split in partitions that are stored in different nodes

of the cluster, the contents of all partitions should be “shared” to
remove duplicates  Computational costly operation

▪ The shuffle operation is not needed in this case

113

 If you really need to union two RDDs and
remove duplicates you can apply the
distinct() transformation on the output of the
union() transformation

 But pay attention that distinct() is a
computational costly operation

▪ It is associated with a shuffle operation

 Use distinct() if and only if duplicate removal is
indispensable for your application

114

 The intersection transformation is based on the
intersection(other) method of the RDD class

 other is the second RDD we want to use

 It returns a new RDD containing the elements
(without duplicates) of the elements occurring in
both input RDDs

 A shuffle operation is executed for computing the
result of intersection

▪ Elements from different input partitions must be compared
to find common elements

115

 The subtract transformation is based on the
subtract(other) method of the RDD class

 other is the second RDD we want to use

 The result contains the elements appearing only in
the RDD on which the subtract method is invoked

▪ In this transformation the two input RDDs play different roles

 Duplicates are not removed

 A shuffle operation is executed for computing the
result of subtract

▪ Elements from different input partitions must be compared

116

 The cartesian transformation is based on the
cartesian(other) method of the RDD class

 The data types of the objects of the two “input”
RDDs can be different

 The returned RDD is an RDD of pairs (tuples)
containing all the combinations composed of one
element of the first input RDD and one element of
the second input RDD

▪ We will see later what an RDD of pairs is

117

 A large amount of data is sent on the network

▪ Elements from different input partitions must be
combined to compute the returned pairs
▪ The elements of the two input RDDs are stored in different

partitions, which could be in different servers

118

 Create two RDDs of integers
 inputRDD1 contains the values [1, 2, 2, 3, 3]

 inputRDD2 contains the values [3, 4, 5]
 Create three new RDDs
 outputUnionRDD contains the union of

inputRDD1 and inputRDD2

 outputIntersectionRDD contains the intersection
of inputRDD1 and inputRDD2

 outputSubtractRDD contains the result of
inputRDD1 \ inputRDD2

119

 # Create two RDD of integers
 inputList1 = [1, 2, 2, 3, 3]
 inputRDD1 = sc.parallelize(inputList1)

 inputList2 = [3, 4, 5]
 inputRDD2 = sc.parallelize(inputList2)

 # Create three new RDDs by using union, intersection, and subtract
 outputUnionRDD = inputRDD1.union(inputRDD2)

 outputIntersectionRDD = inputRDD1.intersection(inputRDD2)

 outputSubtractRDD = inputRDD1.subtract(inputRDD2)

120

 Create two RDDs of integers

 inputRDD1 contains the values [1, 2, 2, 3, 3]

 inputRDD2 contains the values [3, 4, 5]

 Create a new RDD containing the cartesian
product of inputRDD1 and inputRDD2

121

 # Create two RDD of integers
 inputList1 = [1, 2, 2, 3, 3]
 inputRDD1 = sc.parallelize(inputList1)

 inputList2 = [3, 4, 5]
 inputRDD2 = sc.parallelize(inputList2)

 # Compute the cartesian product
 outputCartesianRDD = inputRDD1.cartesian(inputRDD2)

122

 # Create two RDD of integers
 inputList1 = [1, 2, 2, 3, 3]
 inputRDD1 = sc.parallelize(inputList1)

 inputList2 = [3, 4, 5]
 inputRDD2 = sc.parallelize(inputList2)

 # Compute the cartesian product
 outputCartesianRDD = inputRDD1.cartesian(inputRDD2)

123

Each element of the returned RDD is a pair (tuple)
of integer elements

 Create two RDDs

 inputRDD1 contains the Integer values [1, 2, 3]

 inputRDD2 contains the String values ["A", "B"]

 Create a new RDD containing the cartesian
product of inputRDD1 and inputRDD2

124

 # Create an RDD of Integers and an RDD of Strings
 inputList1 = [1, 2, 3]
 inputRDD1 = sc.parallelize(inputList1)

 inputList2 = ["A", "B"]
 inputRDD2 = sc.parallelize(inputList2)

 # Compute the cartesian product
 outputCartesianRDD = inputRDD1.cartesian(inputRDD2)

125

 # Create an RDD of Integers and an RDD of Strings
 inputList1 = [1, 2, 3]
 inputRDD1 = sc.parallelize(inputList1)

 inputList2 = ["A", "B"]
 inputRDD2 = sc.parallelize(inputList2)

 # Compute the cartesian product
 outputCartesianRDD = inputRDD1.cartesian(inputRDD2)

126

Each element of the returned RDD is a pair (tuple)
containing an integer and string

 All the examples reported in the following
tables are applied on an RDD of integers
containing the following elements (i.e.,
values)

 [1, 2, 3, 3]

128

129

Transformation Purpose Example of applied
function

Result

filter(f) Return an RDD consisting
only of the elements of the
“input”” RDD that pass the
condition passed to filter().
The “input” RDD and the new
RDD have the same data
type.

filter(lambda x: x != 1) [2,3,3]

map(f) Apply a function to each
element in the RDD and
return an RDD of the result.
The applied function return
one element for each
element of the “input” RDD.
The “input” RDD and the new
RDD can have a different
data type.

map(lambda x: x+1)

For each input
element x, the

element with value
x+1 is included in the

new RDD

[2,3,4,4]

130

Transformation Purpose Example of applied
function

Result

flatMap(f) Apply a function to each
element in the RDD and
return an RDD of the result.
The applied function return a
set of elements (from 0 to
many) for each element of
the “input” RDD.
The “input” RDD and the new
RDD can have a different
data type.

flatMap(lambda x:
list(range(x,4))

For each input

element x, the set of
elements with values

from x to 3 are
returned

[1,2,3,2,
3,3,3]

131

Transformation Purpose Example of applied
function

Result

distinct() Remove duplicates distinct() [1, 2, 3]

sortBy(keyfunc) Return a new RDD
containing the same values
of the input RDD sorted in
ascending order

sortBy(lambda v: v)

Sort the input integer
values in ascending
order by using the

standard integer sort
order

[1, 2, 3, 3]

sample(withReplacement,
fraction)

Sample the content of the
“input” RDD, with or
without replacement and
return the selected sample.
The “input” RDD and the
new RDD have the same
data type.

sample(True, 0.2)

Non
determini

stic

 All the examples reported in the following
tables are applied on the following two RDDs
of integers

 inputRDD1 [1, 2, 2, 3, 3]

 inputRDD2 [3, 4, 5]

132

133

Transformation Purpose Example Result

union(other) Return a new RDD containing
the union of the elements of
the “input”” RDD and the
elements of the one passed as
parameter to union().
Duplicate values are not
removed.
All the RDDs have the same
data type.

inputRDD1.union
(inputRDD2)

[1, 2, 2, 3,
3, 3, 4, 5]

intersection(other) Return a new RDD containing
the intersection of the
elements of the “input”” RDD
and the elements of the one
passed as parameter to
intersection().
All the RDDs have the same
data type.

inputRDD1.intersection
(inputRDD2)

[3]

134

Transformation Purpose Example Result

subtract(other) Return a new RDD the
elements appearing only in
the “input”” RDD and not in
the one passed as parameter
to subtract().
All the RDDs have the same
data type.

inputRDD1.subtract
(inputRDD2)

[1, 2, 2]

cartesian(other) Return a new RDD containing
the cartesian product of the
elements of the “input”” RDD
and the elements of the one
passed as parameter to
cartesian().
All the RDDs have the same
data type.

inputRDD1.cartesian(in
putRDD2)

[(1, 3), (1,
4),
… ,
(3,5)]

 Spark actions can retrieve the content of an
RDD or the result of a function applied on an
RDD and
 “Store” it in a local Python variable of the Driver

program
▪ Pay attention to the size of the returned value

▪ Pay attentions that date are sent on the network
from the nodes containing the content of RDDs and
the executor running the Driver

 Or store the content of an RDD in an output folder
or database

136

 The spark actions that return a result that is
stored in local (Python) variables of the Driver
1. Are executed locally on each node containing

partitions of the RDD on which the action is invoked
▪ Local results are generated in each node

2. Local results are sent on the network to the Driver
that computes the final result and store it in local
variables of the Driver

 The basic actions returning (Python) objects to
the Driver are
 collect(), count(), countByValue(), take(), top(),

takeSample(), reduce(), fold(), aggregate(), foreach()

137

 Goal
 The collect action returns a local Python list of

objects containing the same objects of the
considered RDD

 Pay attention to the size of the RDD

 Large RDD cannot be memorized in a local
variable of the Driver

 Method
 The collect action is based on the collect()

method of the RDD class

139

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Retrieve the values of the created RDD and
store them in a local python list that is
instantiated in the Driver

140

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList)

 # Retrieve the elements of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.collect()

141

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList)

 # Retrieve the elements of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.collect()

142

inputRDD is distributed across the nodes of the cluster.
It can be large and it is stored in the local disks of the nodes
if it is needed

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputList = [1, 2, 3, 3]
 inputRDD = sc.parallelize(inputList)

 # Retrieve the elements of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.collect()

143

retrievedValues is a local python variable.
It can only be stored in the main memory of the process/task associated
with the Driver.
Pay attention to the size of the list.
Use the collect() action if and only if you are sure that the list is small.
Otherwise, store the content of the RDD in a file by using the
saveAsTextFile method

 Goal

 Count the number of elements of an RDD

 Method

 The count action is based on the count() method
of the RDD class

 It returns the number of elements of the input
RDD

145

 Consider the textual files “document1.txt”
and “document2.txt”

 Print the name of the file with more lines

146

 # Read the content of the two input textual files
 inputRDD1 = sc.textFile("document1.txt")
 inputRDD2 = sc.textFile("document2.txt")

 # Count the number of lines of the two files = number of elements
 # of the two RDDs
 numLinesDoc1 = inputRDD1.count()
 numLinesDoc2 = inputRDD2.count()

 if numLinesDoc1> numLinesDoc2:
 print("document1.txt")
 elif numLinesDoc2> numLinesDoc1:
 print("document2.txt")
 else:
 print("Same number of lines")

147

 Goal
 The countByValue action returns a local python dictionary

containing the information about the number of times
each element occurs in the RDD
▪ The keys of the dictionary are associated with the input elements

▪ The values are the frequencies of the elements

 Method
 The countByValue action is based on the countByValue()

method of the RDD class
 The amount of used main memory in the Driver is

related to the number of distinct elements/keys

149

 Create an RDD from a textual file containing
the first names of a list of users

 Each line contain one name

 Compute the number of occurrences of each
name and “store” this information in a local
variable of the Driver

150

 # Read the content of the input textual file
 namesRDD = sc.textFile("names.txt")

 # Compute the number of occurrencies of each name
 namesOccurrences = namesRDD.countByValue()

151

 # Read the content of the input textual file
 namesRDD = sc.textFile("names.txt")

 # Compute the number of occurrencies of each name
 namesOccurrences = namesRDD.countByValue()

152

Also in this case, pay attention to the size of the
returned dictionary (that is related to the number of
distinct names in this case).
Use the countByValue() action if and only if you are sure
that the returned dictionary is small.
Otherwise, use an appropriate chain of Spark’s
transformations and write the final result in a file by
using the saveAsTextFile method.

 Goal

 The take(num) action returns a local python list of
objects containing the first num elements of the
considered RDD

▪ The order of the elements in an RDD is consistent with
the order of the elements in the file or collection that
has been used to create the RDD

 Method

 The take action is based on the take(num)
method of the RDD class

154

 Create an RDD of integers containing the
values [1, 5, 3, 3, 2]

 Retrieve the first two values of the created
RDD and store them in a local python list that
is instantiated in the Driver

155

 # Create an RDD of integers. Load the values 1, 5, 3, 3,2 in this RDD
 inputList = [1, 5, 3, 3, 2]
 inputRDD = sc.parallelize(inputList)

 # Retrieve the first two elements of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.take(2)

156

 Goal

 The first() action returns a local python object
containing the first element of the considered
RDD

▪ The order of the elements in an RDD is consistent with
the order of the elements in the file or collection that
has been used to create the RDD

 Method

 The first action is based on the first() method of
the RDD class

158

 The only difference between first() and
take(1) is given by the fact that

 first() returns a single element

▪ The returned element is the first element of the RDD

 take(1) returns a list of elements containing one
single element

▪ The only element of the returned list is the first element
of the RDD

159

 Goal
 The top(num) action returns a local python list of

objects containing the top num (largest) elements
of the considered RDD
▪ The ordering is the default one of class associated with

the objects stored in the RDD

▪ The descending order is used

 Method
 The top action is based on the top(num) method

of the RDD class

161

 Create an RDD of integers containing the
values [1, 5, 3, 4, 2]

 Retrieve the top-2 greatest values of the
created RDD and store them in a local python
list that is instantiated in the Driver

162

 # Create an RDD of integers. Load the values 1, 5, 3, 4,2 in this RDD
 inputList = [1, 5, 3, 4, 2]
 inputRDD = sc.parallelize(inputList)

 # Retrieve the top-2 elements of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.top(2)

163

 Goal
 The top(num, key) action returns a local python list of

objects containing the num largest elements of the
considered RDD sorted by considering a user specified
“sorting” function

 Method
 The top action is based on the top(num, key) method

of the RDD class
▪ num is the number of elements to be selected
▪ key is a function that is applied on each input element before

comparing them
▪ The comparison between elements is based on the values returned

by the invocations of this function

164

 Create an RDD of strings containing the
values ['Paolo', 'Giovanni', 'Luca']

 Retrieve the 2 longest names (longest strings)
of the created RDD and store them in a local
python list that is instantiated in the Driver

165

 # Create an RDD of strings. Load the values 'Paolo', 'Giovanni', 'Luca']
 # in the RDD
 inputList = ['Paolo', 'Giovanni', 'Luca']
 inputRDD = sc.parallelize(inputList)

 # Retrieve the 2 longest names of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.top(2,lambda s:len(s))

166

 Goal
 The takeOrdered(num) action returns a local

python list of objects containing the num smallest
elements of the considered RDD
▪ The ordering is the default one of class associated with

the objects stored in the RDD

▪ The ascending order is used

 Method
 The takeOrdered action is based on the

takeOrdered (num) method of the RDD class

168

 Create an RDD of integers containing the
values [1, 5, 3, 4, 2]

 Retrieve the 2 smallest values of the created
RDD and store them in a local python list that
is instantiated in the Driver

169

 # Create an RDD of integers. Load the values 1, 5, 3, 4,2 in this RDD
 inputList = [1, 5, 3, 4, 2]
 inputRDD = sc.parallelize(inputList)

 # Retrieve the 2 smallest elements of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.takeOrdered(2)

170

 Goal
 The takeOrdered(num, key) action returns a local

python list of objects containing the num smallest
elements of the considered RDD sorted by
considering a user specified “sorting” function

 Method
 The takeOrdered action is based on the takeOrdered

(num, key) method of the RDD class
▪ num is the number of elements to be selected
▪ key is a function that is applied on each input element before

comparing them
▪ The comparison between elements is based on the values returned

by the invocations of this function

171

 Create an RDD of strings containing the
values ['Paolo', 'Giovanni', 'Luca']

 Retrieve the 2 shortest names (shortest
strings) of the created RDD and store them in
a local python list that is instantiated in the
Driver

172

 # Create an RDD of strings. Load the values 'Paolo', 'Giovanni', 'Luca']
 # in the RDD
 inputList = ['Paolo', 'Giovanni', 'Luca']
 inputRDD = sc.parallelize(inputList)

 # Retrieve the 2 shortest names of the inputRDD and store them in
 # a local python list
 retrievedValues = inputRDD.takeOrdered(2,lambda s:len(s))

173

 Goal
 The takeSample(withReplacement, num) action

returns a local python list of objects containing
num random elements of the considered RDD

 Method
 The takeSampleaction is based on the

takeSample(withReplacement, num) method of
the RDD class
▪ withReplacement specifies if the random sample is with

replacement (True) or not (False)

175

 Method

 The takeSample(withReplacement, num, seed)
method of the RDD class is used when we want to
set the seed

176

 Create an RDD of integers containing the
values [1, 5, 3, 3, 2]

 Retrieve randomly, without replacement, 2
values from the created RDD and store them
in a local python list that is instantiated in the
Driver

177

 # Create an RDD of integers. Load the values 1, 5, 3, 3,2 in this RDD
 inputList = [1, 5, 3, 3, 2]
 inputRDD = sc.parallelize(inputList)

 # Retrieve randomly two elements of the inputRDD and store them in
 # a local python list
 randomValues= inputRDD.takeSample(True, 2)

178

 Goal
 Return a single python object obtained by

combining all the objects of the input RDD by
using a user provide “function”
▪ The provided “function” must be associative and

commutative
▪ otherwise the result depends on the content of the partitions and

the order used to analyze the elements of the RDD’s partitions

▪ The returned object and the ones of the “input” RDD are
all instances of the same data type/class

180

 Method

 The reduce action is based on the
reduce(f) method of the RDD class

 A function f is passed to the reduce method

▪ Given two arbitrary input elements, f is used to combine
them in one single value

▪ f is recursively invoked over the elements of the input
RDD until the input values are “reduced” to one single
value

181

 Suppose L contains the list of elements of the
“input” RDD

 To compute the final element/value, the reduce
action operates as follows
1. Apply the user specified “function” on a pair of

elements e1 and e2 occurring in L and obtain a new
element enew

2. Remove the “original” elements e1 and e2 from L and
then insert the element enew in L

3. If L contains only one value then return it as final
result of the reduce action.
Otherwise, return to step 1

182

 “Function” f must be associative and
commutative

 The computation of the reduce action can be
performed in parallel without problems

183

 “Function” f must be associative and
commutative
 The computation of the reduce action can be

performed in parallel without problems
 Otherwise the result depends on how the

input RDD is partitioned
 i.e., for the functions that are not associative and

commutative the output depends on how the
RDD is split in partitions and how the content of
each partition is analyzed

184

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Compute the sum of the values occurring in
the RDD and “store” the result in a local
python integer variable in the Driver

185

 …..
 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListReduce = [1, 2, 3, 3]
 inputRDDReduce = sc.parallelize(inputListReduce)

 # Compute the sum of the values
 sumValues = inputRDDReduce.reduce(lambda e1, e2: e1+e2)

186

 …..
 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListReduce = [1, 2, 3, 3]
 inputRDDReduce = sc.parallelize(inputListReduce)

 # Compute the sum of the values
 sumValues = inputRDDReduce.reduce(lambda e1, e2: e1+e2)

187

This lambda function combines two input integer
elements at a time and returns theirs sum

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Compute the maximum value occurring in the
RDD and “store” the result in a local python
integer variable in the Driver

188

 …..

 # Define the function for the reduce action
 def computeMax(v1,v2):
 if v1>v2:
 return v1
 else:
 return v2

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListReduce = [1, 2, 3, 3]
 inputRDDReduce = sc.parallelize(inputListReduce)

 # Compute the maximum value
 maxValue = inputRDDReduce.reduce(computeMax)

189

 …..

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListReduce = [1, 2, 3, 3]
 inputRDDReduce = sc.parallelize(inputListReduce)

 # Compute the maximum value
 maxValue = inputRDDReduce.reduce(lambda e1, e2: max(e1, e2))

190

 Goal
 Return a single python object obtained by

combining all the objects of the input RDD and a
“zero” value by using a user provide “function”
▪ The provided “function”

▪ Must be associative

 Otherwise the result depends on how the RDD is partitioned

▪ It is not required to be commutative

▪ An initial neutral “zero” value is also specified

192

 Method
 The fold action is based on the

fold(zeroValue, op) method of the RDD class

 A function op is passed to the fold method
▪ Given two arbitrary input elements, op is used to combine them in

one single value

▪ op is also used to combine input elements with the “zero” value

▪ op is recursively invoked over the elements of the input RDD until
the input values are “reduced” to one single value

 The “zero” value is the neutral value for the used function
op
▪ i.e., “zero” combined with any value v by using op is equal to v

193

 Create an RDD of strings containing the
values ['This ', 'is ', 'a ', 'test']

 Compute the concatenation of the values
occurring in the RDD (from left to right) and
“store” the result in a local python string
variable in the Driver

194

 …..
 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListFold = ['This ', 'is ', 'a ', 'test']
 inputRDDFold = sc.parallelize(inputListFold)

 # Concatenate the input strings
 finalString = inputRDDFold.fold('', lambda s1, s2: s1+s2)

195

 Fold is characterized by the “zero” value
 Fold can be used to parallelize functions that

are associative but non-commutative
 E.g., concatenation of a list of strings

196

 Goal
 Return a single python object obtained by

combining the objects of the RDD and an initial
“zero” value by using two user provide “functions”
▪ The provided “functions” must be associative

▪ Otherwise the result depends on how the RDD is partitioned

▪ The returned objects and the ones of the “input” RDD
can be instances of different classes
▪ This is the main difference with respect to reduce () and fold()

198

 Method
 The aggregate action is based on the

aggregate(zeroValue, seqOp, combOp) method of
the RDD class

 The “input” RDD contains objects of type T while the
returned object is of type U (T!=U)
▪ We need one “function” for merging an element of type T

with an element of type U to return a new element of type U
▪ It is used to merge the elements of the input RDD and the

accumulator of each partition

▪ We need one “function” for merging two elements of type U
to return a new element of type U
▪ It is used to merge two elements of type U obtained as partial results

generated by two different partitions

199

 The seqOp function contains the code that is applied
to combine the accumulator value (one accumulator
for each partition) with the elements of each partition

▪ One “local” result per partition is computed by recursively
applying seqOp

 The combOp function contains the code that is
applied to combine two elements of type U returned
as partial results by two different partitions

▪ The global final result is computed by recursively applying
combOp

200

 Suppose that L contains the list of elements of the “input”
RDD and this RDD is split in a set of partitions, i.e., a set of
lists {L1, .., Ln}

 The aggregate action computes a partial result in each
partition and then combines/merges the results.

 It operates as follows
1. Aggregate the partial results in each partition, obtaining a set

of partial results (of type U) P= {p1, .., pn}
2. Apply the combOp function on a pair of elements p1 and p2 in

P and obtain a new element pnew

3. Remove the “original” elements p1 and p2 from P and then
insert the element pnew in P

4. If P contains only one value then return it as final result of the
aggregate action. Otherwise, return to step 2

201

 Suppose that
 Li is the list of elements on the i-th partition of the “input”

RDD
 And zeroValue is the initial zero value

 To compute the partial result over the elements in Li
the aggregate action operates as follows
1. Set accumulator to zeroValue (accumulator=zeroValue)
2. Apply the seqOp function on accumulator and an

elements ej in Li and update accumulator with the value
returned by seqOp

3. Remove the “original” elements ej from Li
4. If Li is empty return accumulator as (final) partial result

pi of the i-th partition. Otherwise, return to step 2

202

 Create an RDD of integers containing the
values [1, 2, 3, 3]

 Compute both

 the sum of the values occurring in the input RDD

 and the number of elements of the input RDD

 Finally, “store” in a local python variable of
the Driver the average computed over the
values of the input RDD

203

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListAggr = [1, 2, 3, 3]
 inRDD = sc.parallelize(inputListAggr)

 # Instantiate the zero value
 # We use a tuple containing two values:
 # (sum, number of represented elements)
 zeroValue = (0, 0)

 # Compute the sum of the elements in inputRDDAggr and count them
 sumCount = inRDD.aggregate(zeroValue, \
 lambda acc, e: (acc[0]+e, acc[1]+1), \
 lambda p1, p2: (p1[0]+p2[0], p1[1]+p2[1]))

 204

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListAggr = [1, 2, 3, 3]
 inRDD = sc.parallelize(inputListAggr)

 # Instantiate the zero value
 # We use a tuple containing two values:
 # (sum, number of represented elements)
 zeroValue = (0, 0)

 # Compute the sum of the elements in inputRDDAggr and count them
 sumCount = inRDD.aggregate(zeroValue, \
 lambda acc, e: (acc[0]+e, acc[1]+1), \
 lambda p1, p2: (p1[0]+p2[0], p1[1]+p2[1]))

 205

Instantiate the zero value

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListAggr = [1, 2, 3, 3]
 inRDD = sc.parallelize(inputListAggr)

 # Instantiate the zero value
 # We use a tuple containing two values:
 # (sum, number of represented elements)
 zeroValue = (0, 0)

 # Compute the sum of the elements in inputRDDAggr and count them
 sumCount = inRDD.aggregate(zeroValue, \
 lambda acc, e: (acc[0]+e, acc[1]+1), \
 lambda p1, p2: (p1[0]+p2[0], p1[1]+p2[1]))

 206

Given a partition p of the input RDD, this is the function that is used to combine
the elements of partition p with the accumulator of partition p.
• acc is a tuple object (it is initially initialized to the zero value)
• e is an integer

 # Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
 inputListAggr = [1, 2, 3, 3]
 inRDD = sc.parallelize(inputListAggr)

 # Instantiate the zero value
 # We use a tuple containing two values:
 # (sum, number of represented elements)
 zeroValue = (0, 0)

 # Compute the sum of the elements in inputRDDAggr and count them
 sumCount = inRDD.aggregate(zeroValue, \
 lambda acc, e: (acc[0]+e, acc[1]+1), \
 lambda p1, p2: (p1[0]+p2[0], p1[1]+p2[1]))

 207

This is the function that is used to combine the partial results emitted by the
RDD’s partitions.
• p1 and p2 are tuple objects

 # Compute the average value
 myAvg = sumCount[0]/sumCount[1]

 # Print the average on the standard output of the driver
 print('Average:', myAvg)

208

 inRDD = [1, 2, 3, 3]
 Suppose inRDD is split in the following two

partitions

 [1, 2] and [3, 3]

209

210

Partition #1

Partition #2

[1, 2] acc=(0,0)

[3, 3] acc=(0,0)

211

Partition #1

Partition #2

(1,1)

[1, 2] acc=(0,0)

[3, 3] acc=(0,0)

212

Partition #1

Partition #2

(1,1)

(3,2)

[1, 2] acc=(0,0)

[3, 3] acc=(0,0)

213

Partition #1

Partition #2

(1,1)

(3,2)

[1, 2] acc=(0,0)

[3, 3] acc=(0,0)

(3,1)

(6,2)

214

Partition #1

Partition #2

(1,1)

(3,2)

[1, 2] acc=(0,0)

[3, 3] acc=(0,0)

(3,1)

(6,2)

sumCount=(9,4)

 All the examples reported in the following
tables are applied on inputRDD that is an
RDD of integers containing the following
elements (i.e., values)

 [1, 2, 3, 3]

216

217

Action Purpose Example Result

collect() Return a python list
containing all the elements
of the RDD on which it is
applied.
The objects of the RDD and
objects of the returned list
are objects of the same class.

inputRDD.collect() [1,2,3,3]

count() Return the number of
elements of the RDD

inputRDD.count() 4

countByValue() Return a Map object
containing the information
about the number of times
each element occurs in the
RDD.

inputRDD.
countByValue()

[(1, 1),
(2, 1),
(3, 2)]

218

Action Purpose Example Result

take(num) Return a Python list containing
the first num elements of the
RDD.
The objects of the RDD and
objects of the returned list are
objects of the same class.

inputRDD.take(2) [1,2]

first() Return the first element of the
RDD

first() 1

top(num) Return a Python list containing
the top num elements of the
RDD based on the default sort
order/comparator of the
objects.
The objects of the RDD and
objects of the returned list are
objects of the same class.

inputRDD.top(2) [3,3]

219

Action Purpose Example Result

takeSample(withReplace
ment, num)

takeSample(withReplace
ment, num, seed)

Return a (Python) List
containing a random sample
of size n of the RDD.
The objects of the RDD and
objects of the returned list
are objects of the same class.

inputRDD.
takeSample

(False, 1)

Nondet
erminis

tic

reduce(f) Return a single Python object
obtained by combining the
values of the objects of the
RDD by using a user provide
“function”. The provided
“function” must be
associative and commutative
The object returned by the
method and the objects of
the RDD belong to the same
class.

inputRDD.
reduce(lambda e1,

e2: e1+e2)

The passed
“function” is the sum

9

220

Action Purpose Example Resul
t

fold(zeroValue, op) Same as reduce
but with the
provided zero
value.

inputRDD.
fold(0, lambda v1, v2: v1+v2)

The passed “function” is the sum

and the passed zeroValue is 0

9

Aggregate(zeroValue,
seqOp, combOp)

Similar to
reduce() but used
to return a
different type.

inputRDD.aggregate
(zeroValue,
lambda acc, e: (acc[0]+e, acc[1]+1),
lambda p1, p2: (p1[0]+p2[0],
 p1[1]+p2[1]))

Compute a pair of integers where

the first one is the sum of the
values of the RDD and the second

the number of elements

(9, 4)

