

 Spark supports also RDDs of key-value pairs

 Key-value pairs in python are represented by
means of python tuples

▪ The first value is the key part of the pair

▪ The second value is the value part of the pair

 RDDs of key-value pairs are sometimes called
“pair RDDs”

2

 RDDs of key-value pairs are characterized by
specific operations

 reduceByKey(), join(), etc.

 These operations analyze the content of one
group (key) at a time

 RDDs of key-value pairs are characterized
also by the operations available for the
“standard” RDDs

 filter(), map(), reduce(), etc.

3

 Many applications are based on RDDs of key-
value pairs

 The operations available for RDDs of key-
value pairs allow

 “grouping” data by key

 performing computation by key (i.e., by group)

 The basic idea is similar to the one of the
MapReduce-based programs in Hadoop

 But there are more operations already available

4

 RDDs of key-value pairs can be built

 From other RDDs by applying the map() or the
flatMap() transformation on other RDDs

 From a Python in-memory collection of tuple
(key-value pairs) by using the parallelize() method
of the SparkContext class

6

 Key-value pairs are represented as tuples
composed of two elements

 Key

 Value

 The standard built-in Python tuples are used

7

 Goal

 Define an RDD of key-value pairs by using the
map transformation

 Apply a function f on each element of the input
RDD that returns one tuple for each input
element

▪ The new RDD of key-value pairs contains one tuple y for
each element x of the “input” RDD

9

 Method

 The standard map(f) transformation is used

▪ The new RDD of key-value pairs contains one tuple y for
each input element x of the “input” RDD
▪ y= f(x)

10

 Create an RDD from a textual file containing
the first names of a list of users

 Each line of the file contains one first name

 Create an RDD of key-value pairs containing a
list of pairs (first name, 1)

11

 # Read the content of the input textual file
 namesRDD = sc.textFile("first_names.txt")

 # Create an RDD of key-value pairs
 nameOnePairRDD = namesRDD.map(lambda name: (name, 1))

12

 # Read the content of the input textual file
 namesRDD = sc.textFile("first_names.txt")

 # Create an RDD of key-value pairs
 nameOnePairRDD = namesRDD.map(lambda name: (name, 1))

13

nameOnePairRDD contains key-value pairs (i.e., tuples)
of type (string, integer)

 Goal

 Define an RDD of key-value pairs by using the
flatMap transformation

 Apply a function f on each element of the input
RDD that returns a list of tuples for each input
element

▪ The new PairRDD contains all the pairs obtained by
applying f on each element x of the “input” RDD

15

 Method

 The standard flatMap(f) transformation is used

▪ The new RDD of key-value pairs contains the tuples
returned by the execution of f on each element x of the
“input” RDD
▪ [y]= f(x)

 Given a element x of the input RDD, f applied on x returns a list
of pairs [y]

 The new RDD is a “list” of pairs contains all the pairs of the
returned list of pairs. It is not an RDD of lists.

▪ [y] can be the empty list

16

 Create an RDD from a textual file

 Each line of the file contains a set of words

 Create a PairRDD containing a list of pairs
(word, 1)

 One pair for each word occurring in the input
document (with repetitions)

17

 # Define the function associated with the flatMap transformation
 def wordsOnes(line):
 pairs = []
 for word in line.split(' '):
 pairs.append((word, 1))
 return pairs

 # Read the content of the input textual file
 linesRDD = sc.textFile("document.txt")

 # Create an RDD of key-value pairs based on the input document
 # One pair (word,1) for each input word
 wordOnePairRDD = linesRDD.flatMap(wordsOnes)

18

 # Read the content of the input textual file
 linesRDD = sc.textFile("document.txt")

 # Create an RDD of key-value pairs based on the input document
 # One pair (word,1) for each input word
 wordOnePairRDD = linesRDD.flatMap(lambda line: \
 map(lambda w: (w, 1), line.split(' ')))

19

 # Read the content of the input textual file
 linesRDD = sc.textFile("document.txt")

 # Create an RDD of key-value pairs based on the input document
 # One pair (word,1) for each input word
 wordOnePairRDD = linesRDD.flatMap(lambda line: \
 map(lambda w: (w, 1), line.split(' ')))

20

This is the map of python.
It is not the Spark’s map transformation.

 Goal

 Use the parallelize method to create an RDD of key-
value pairs from a local python in-memory
collection of tuples

 Method

 It is based on the standard parallelize(c) method of
the SparkContext class

 Each element (tuple) of the local python collection
becomes a key-vaue pair of the returned RDD

22

 Create an RDD from a local python list
containing the following key-value pairs

 ("Paolo", 40)

 ("Giorgio", 22)

 ("Paolo", 35)

23

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

24

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

25

Create a local in-memory python list of key-value pairs (tuples).
This list is stored in the main memory of the Driver.

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

26

Create an RDD or key-value pairs based on the content of the local
in-memory python list.
The RDD is stored in the “distributed” main memory of the cluster
servers

 All the “standard” transformations can be
applied

 Where the specified “functions” operate on tuples

 Specific transformations are available

 E.g., reduceByKey(), groupByKey(), mapValues(),
join(), …

28

 Goal
 Create a new RDD of key-value pairs where there is

one pair for each distinct key k of the input RDD of
key-value pairs
▪ The value associated with key k in the new RDD of key-value

pairs is computed by applying a function f on the values
associated with k in the input RDD of key-value pairs
▪ The function f must be associative and commutative

 otherwise the result depends on how data are partitioned and
analyzed

▪ The data type of the new RDD of key-value pairs is the same
of the “input” RDD of key-value pairs

30

 Method
 The reduceByKey transformation is based on the

reduceByKey(f) method of the RDD class

 A function f is passed to the reduceByKey method
▪ Given the values of two input pairs, f is used to combine them

in one single value

▪ f is recursively invoked over the values of the pairs associated
with one key at a time until the input values associated with
one key are “reduced” to one single value

 The retuned RDD contains a number of key-value
pairs equal to the number of distinct keys in the input
key-value pair RDD

31

 Similarly to the reduce() action, the
reduceByKey() transformation aggregate values

 However,
 reduceByKey() is executed on RDDs of key-value

pairs and returns a set of key-value pairs
 reduce() is executed on an RDD and returns one

single value (stored in a local python variable)
 And
 reduceByKey() is a transformation

▪ reduceByKey() is executed lazily and its result is stored in
another RDD

 Whereas reduce() is an action

32

 Shuffle

 A shuffle operation is executed for computing the
result of the reduceByKey() transformation

▪ The result/value for each group/key is computed from
data stored in different input partitions

33

 Create an RDD from a local python list
containing the pairs
 ("Paolo", 40)
 ("Giorgio", 22)
 ("Paolo", 35)
 The key is the first name of a user and the value is

his/her age
 Create a new RDD of key-value pairs containing

one pair for each name. In the returned RDD,
associate each name with the age of the
youngest user with that name

34

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Select for each name the lowest age value
 youngestPairRDD= nameAgePairRDD.reduceByKey(lambda age1, age2:\
 min(age1, age2))

35

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Select for each name the lowest age value
 youngestPairRDD= nameAgePairRDD.reduceByKey(lambda age1, age2:\
 min(age1, age2))

36

The returned RDD of key-value pairs contains one pair for each
distinct input key (i.e., for each distinct name in this example)

 Goal
 The foldByKey() has the same goal of the

reduceBykey() transformation

 However, foldByKey()
▪ Is characterized also by a “zero” value

▪ Functions must be associative but are not required to
be commutative

38

 Method
 The foldByKey transformation is based on the

foldByKey(zeroValue, op) method of the RDD class

 A function op is passed to the fold method
▪ Given values of two input pairs, op is used to combine them in one

single value

▪ op is also used to combine input values with the “zero” value

▪ op is recursively invoked over the values of the pairs associated with
one key at a time until the input values are “reduced” to one single
value

 The “zero” value is the neutral value for the used function
op
▪ i.e., “zero” combined with any value v by using op is equal to v

39

 Shuffle

 A shuffle operation is executed for computing the
result of the foldByKey() transformation

▪ The result/value for each group/key is computed from
data stored in different input partitions

40

 Create an RDD from a local python list
containing the pairs
 ("Paolo", "Message1")
 ("Giorgio", "Message2")
 ("Paolo", "Message3")
 The key is the first name of a user and the value is a

message published by him/her
 Create a new RDD of key-value pairs containing

one pair for each name. In the returned RDD,
associate each name the concatenation of its
messages (preserving the order of the messages
in the input RDD)

41

 # Create the local python list
 nameMess = [("Paolo", "Message1"), ("Giorgio", "Message2"), \
 ("Paolo", "Message3")]

 # Create the RDD of pairs from the local collection
 nameMessPairRDD = sc.parallelize(nameMess)

 # Concatenate the messages of each user
 concatPairRDD= nameMessPairRDD.foldByKey('', lambda m1, m2:\
 m1+m2)

42

 Goal
 Create a new RDD of key-value pairs where there is

one pair for each distinct key k of the input RDD of
key-value pairs
▪ The value associated with the key k in the new RDD of key-

value pairs is computed by applying user-provided functions
on the values associated with k in the input RDD of key-value
pairs
▪ The user-provided “function” must be associative
 otherwise the result depends how data are partitioned and

analyzed

▪ The data type of the new RDD of key-value pairs can be
different with respect to the data type of the “input” RDD of
key-value pairs

44

 Method

 The combineByKey transformation is based on
the combineByKey(createCombiner,
mergeValue, mergeCombiner) method of the
RDD class

▪ The values of the input RDD of pairs are of type V

▪ The values of the returned RDD of pairs are of type U

▪ The type of the keys is K for both RDDs of pairs

45

 The createCombiner function contains the
code that is used to transform a single value
(type V) of the input RDD of key-value pairs
into a value of the data type (type U) of the
output RDD of key-value pairs

 It is used to transform the first value of each key in
each partition to a value of type U

46

 The mergeValue function contains the code
that is used to combine one value of type U
with one value of type V

 It is used in each partition to combine the initial
values (type V) of each key with the intermediate
ones (type U) of each key

47

 The mergeCombiner function contains the
code that is used to combine two values of
type U

 It is used to combine intermediate values of each
key returned by the analysis of different partitions

48

 combineByKey is more general than
reduceByKey and foldByKey because the
data types of the values of the input and
the returned RDD of pairs can be different

 For this reason, more functions must be
implemented in this case

49

 Shuffle

 A shuffle operation is executed for computing the
result of the combineByKey() transformation

▪ The result/value for each group/key is computed from
data stored in different input partitions

50

 Create an RDD from a local python list
containing the pairs
 ("Paolo", 40)

 ("Giorgio", 22)

 ("Paolo", 35)

 The key is the first name of a user and the value is
his/her age

 Store the results in an output HDFS folder. The
output contains one line for each name followed
by the average age of the users with that name

51

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Compute the sum of ages and
 # the number of input pairs for each name (key)
 sumNumPerNamePairRDD=nameAgePairRDD.combineByKey(\
 lambda inputElem: (inputElem, 1), \

 lambda intermediateElem, inputElem: \
 (intermediateElem[0]+inputElem, intermediateElem[1]+1),

 lambda intermediateElem1, intermediateElem2: \
 (intermediateElem1[0]+intermediateElem2[0], \

 intermediateElem1[1]+intermediateElem2[1])
)

52

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Compute the sum of ages and
 # the number of input pairs for each name (key)
 sumNumPerNamePairRDD=nameAgePairRDD.combineByKey(\
 lambda inputElem: (inputElem, 1), \

 lambda intermediateElem, inputElem: \
 (intermediateElem[0]+inputElem, intermediateElem[1]+1),

 lambda intermediateElem1, intermediateElem2: \
 (intermediateElem1[0]+intermediateElem2[0], \

 intermediateElem1[1]+intermediateElem2[1])
)

53

Given an input value (an age), it returns a tuple containing (age, 1)

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Compute the sum of ages and
 # the number of input pairs for each name (key)
 sumNumPerNamePairRDD=nameAgePairRDD.combineByKey(\
 lambda inputElem: (inputElem, 1), \

 lambda intermediateElem, inputElem: \
 (intermediateElem[0]+inputElem, intermediateElem[1]+1),

 lambda intermediateElem1, intermediateElem2: \
 (intermediateElem1[0]+intermediateElem2[0], \

 intermediateElem1[1]+intermediateElem2[1])
)

54

Given an input value (an age) and an intermediate value (sum
ages, num represented values), it combines them and returns a
new updated tuple (sum ages, num represented values)

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Compute the sum of ages and
 # the number of input pairs for each name (key)
 sumNumPerNamePairRDD=nameAgePairRDD.combineByKey(\
 lambda inputElem: (inputElem, 1), \

 lambda intermediateElem, inputElem: \
 (intermediateElem[0]+inputElem, intermediateElem[1]+1),

 lambda intermediateElem1, intermediateElem2: \
 (intermediateElem1[0]+intermediateElem2[0], \

 intermediateElem1[1]+intermediateElem2[1])
)

55

Given two intermediate result tuples (sum ages, num represented
values), it combines them and returns a new updated tuple (sum
ages, num represented values)

 # Compute the average for each name
 avgPerNamePairRDD = \
 sumNumPerNamePairRDD.map(lambda pair: (pair[0], pair[1][0]/pair[1][1]))

 # Store the result in an output folder
 avgPerNamePairRDD.saveAsTextFile(outputPath)

56

 # Compute the average for each name
 avgPerNamePairRDD = \
 sumNumPerNamePairRDD.map(lambda pair: (pair[0], pair[1][0]/pair[1][1]))

 # Store the result in an output folder
 avgPerNamePairRDD.saveAsTextFile(outputPath)

57

Compute the average age for each key (i.e., for each name) by
combining “sum ages” and “num represented values”.

Each input pair is characterized by a value that is a tuple
containing (sum ages, num represented values).

 Goal
 Create a new RDD of key-value pairs where there

is one pair for each distinct key k of the input
RDD of key-value pairs
▪ The value associated with key k in the new RDD of key-

value pairs is the list of values associated with k in the
input RDD of key-value pairs

 Method

 The groupByKey transformation is based on the
groupByKey() method of the RDD class

59

 If you are grouping values per key to perform
then an aggregation such as sum or average
over the values of each key then groupByKey
is not the right choice
 reduceByKey, aggregateByKey or

combineByKey provide better performances for
associative and commutative aggregations

 groupByKey is useful if you need to apply an
aggregation/compute a function that is not
associative

60

 Shuffle

 A shuffle operation is executed for computing the
result of the groupByKey() transformation

▪ Each group/key is associated with/is composed of values
which are stored in different partitions of the input RDD

61

 Create an RDD from a local python list
containing the pairs
 ("Paolo", 40)

 ("Giorgio", 22)

 ("Paolo", 35)

 The key is the first name of a user and the value is
his/her age

 Store the results in an output HDFS folder. The
output contains one line for each name followed
by the ages of all the users with that name

62

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Create one group for each name with the list of associated ages
 agesPerNamePairRDD = nameAgePairRDD.groupByKey()

 # Store the result in an output folder
 agesPerNamePairRDD.mapValues(lambda listValues: list(listValues))
 .saveAsTextFile(outputPath);

63

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Create one group for each name with the list of associated ages
 agesPerNamePairRDD = nameAgePairRDD.groupByKey()

 # Store the result in an output folder
 agesPerNamePairRDD.mapValues(lambda listValues: list(listValues))
 .saveAsTextFile(outputPath);

64

In this RDD of key-value pairs each tuple is composed of
- a string (key of the pair)
- a “collection” of integers (the value of the pair) – a ResultIterable object

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Create one group for each name with the list of associated ages
 agesPerNamePairRDD = nameAgePairRDD.groupByKey()

 # Store the result in an output folder
 agesPerNamePairRDD.mapValues(lambda listValues: list(listValues))
 .saveAsTextFile(outputPath);

65

This part is used to format the content of the value part of each pair before
storing the result in the output folder.
-This transforms a ResultIterable object to a Python list
-Without this “map” the output will contains the pointers to ResultIterable
objects instead of a readable list of integer values

 Goal
 Apply a function f over the value of each pair of an

input RDD or key-value pairs and return a new RDD of
key-value pairs

 One pair is created in the returned RDD for each input
pair
▪ The key of the created pair is equal to the key of the input pair
▪ The value of the created pair is obtained by applying the

function f on the value of the input pair

 The data type of the values of the new RDD of key-
value pairs can be different from the data type of the
values of the “input” RDD of key-value pairs

 The data type of the key is the same

67

 Method
 The mapValues transformation is based on the

mapValues(f) method of the RDD class

 A function f is passed to the mapValues method
▪ f contains the code that is applied to transform each

input value into the a new value that is stored in the
RDD of key-value pairs

 The retuned RDD of pairs contains a number of
key-value pairs equal to the number of key-value
pairs of the input RDD of pairs
▪ The key part is not changed

68

 Create an RDD from a local python list
containing the pairs
 ("Paolo", 40)

 ("Giorgio", 22)

 ("Paolo", 35)

 The key is the first name of a user and the value is
his/her age

 Increase the age of each user (+1 year) and
store the result in the HDFS file system
 One output line per user

69

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Increment age of all users
 plusOnePairRDD = nameAgePairRDD.mapValues(lambda age: age+1)

 # Save the result on disk
 plusOnePairRDD.saveAsTextFile(outputPath)

70

 Goal
 Apply a function f over the value of each pair of an input

RDD or key-value pairs and return a new RDD of key-value
pairs
▪ f returns a list of values for each input value

 A list of pairs is inserted in the returned RDD for each input
pair
▪ The key of the created pairs is equal to the key of the input pair
▪ The values of the created pairs are obtained by applying the

function f on the value of the input pair

 The data type of the values of the new RDD of key-value
pairs can be different from the data type of the values of
the “input” RDD of key-value pairs

 The data type of the key is the same

72

 Method

 The flatMapValues transformation is based on
flatMapValues(f) method of the RDD class

 A function f is passed to the mapValues method

▪ f contains the code that is applied to transform each
input value into a set of new values that are stored in the
new RDD of key-value pairs

 The keys of the input pairs are not changed

73

 Create an RDD from a local python list
containing the pairs

 ("Sentence#1", "Sentence test")

 ("Sentence#2", "Sentence test number 2")

 ("Sentence#3", "Sentence test number 3")

 Select the words of each sentence and store
in the HDFS file system one pair (senteceId,
word) per line

74

 # Create the local python list
 sentences = [("Sentence#1", "Sentence test"), \
 ("Sentence#2", "Sentence test number 2"), \
 ("Sentence#3", "Sentence test number 3")]

 # Create the RDD of pairs from the local collection
 sentPairRDD = sc.parallelize(sentences)

 # “Extract” words from each sentence
 sentIdWord = sentPairRDD.flatMapValues(lambda s: s.split(' '))

 # Save the result on disk
 sentIdWord.saveAsTextFile(outputPath)

75

 Goal
 Return the list of keys of the input RDD of pairs

and store them in a new RDD
▪ The returned RDD is not an RDD of key-value pairs

▪ The returned RDD is a “standard” RDD of “single”
elements

▪ Duplicates keys are not removed

 Method
 The keys transformation is based on the keys()

method of the RDD class

77

 Create an RDD from a local python list
containing the pairs
 ("Paolo", 40)

 ("Giorgio", 22)

 ("Paolo", 35)

 The key is the first name of a user and the value is
his/her age

 Store the names of the input users in an output
HDFS folder. The output contains one name per
line (duplicate names are removed)

78

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Select the key part of the input RDD of key-value pairs
 namesRDD = nameAgePairRDD.keys().distinct()

 # Store the result in an output folder
 namesRDD.saveAsTextFile(outputPath);

79

 Goal
 Return the list of values of the input RDD of pairs

and store them in a new RDD
▪ The returned RDD is not an RDD of key-value pairs

▪ The returned RDD is a “standard” RDD of “single”
elements

▪ Duplicates values are not removed

 Method
 The values transformation is based on the

values() method of the RDD class

 81

 Create an RDD from a local python list
containing the pairs
 ("Paolo", 40)
 ("Giorgio", 22)
 ("Paolo", 22)
 The key is the first name of a user and the value is

his/her age
 Store the ages of the input users in an output

HDFS folder.
 The output contains one age per line
 Duplicate ages/values are not removed

82

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 22)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Select the value part of the input RDD of key-value pairs
 agesRDD = nameAgePairRDD.values()

 # Store the result in an output folder
 agesRDD.saveAsTextFile(outputPath);

83

 Goal

 Return a new RDD of key-value pairs obtained by
sorting, in ascending order, the pairs of the input
RDD by key

▪ Note that the final order is related to the default sorting
function of the data type of the input keys

 The content of the new RDD of key-value pairs is
the same of the input RDD but the pairs are sorted
by key in the new returned RDD

85

 Method
 The sortByKey transformation is based on the

sortByKey() method of the RDD class
▪ Pairs are sorted by key in ascending order

 The sortByKey(ascending) method of the RDD
class is also available
▪ This method allows specifying if the sort order is

ascending or descending by means of a Boolean
parameter
▪ True = ascending

▪ False = descending

86

 Shuffle

 A shuffle operation is executed for computing the
result of the sortByKey() transformation

▪ Pairs from different partitions of the input RDD must be
compared to sort the input pairs by key

87

 Create an RDD from a local python list
containing the pairs

 ("Paolo", 40)

 ("Giorgio", 22)

 ("Paolo", 35)

 The key is the first name of a user and the value is
his/her age

 Sort the users by name and store the result in
the HDFS file system

88

 # Create the local python list
 nameAge = [("Paolo", 40), ("Giorgio", 22), ("Paolo", 35)]

 # Create the RDD of pairs from the local collection
 nameAgePairRDD = sc.parallelize(nameAge)

 # Sort by name the content of the input RDD of key-value pairs
 sortedNameAgePairRDD = nameAgePairRDD.sortByKey()

 # Store the result in an output folder

sortedNameAgePairRDD.saveAsTextFile(outputPath);

89

 All the examples reported in the following
tables are applied on an RDD of pairs
containing the following tuples (pairs)

 [("k1", 2), ("k3", 4), ("k3", 6)]

▪ The key of each tuple is a string

▪ The value of each tuple is an integer

91

92

Transformation Purpose Example of applied
function

Result

reduceByKey(f) Return an RDD of pairs
containing one pair for each
key of the “input” RDD of
pairs. The value of each pair
of the new RDD of pairs is
obtained by combining the
values of the input RDD
associated with the same
key.
The “input” RDD of pairs
and the new RDD of pairs
have the same data type.

reduceByKey(
lambda v1, v2: v1+v2)

Sum values per key

[("k1", 2),
("k3", 10)]

93

Transformation Purpose Example of applied
function

Result

foldByKey(zeroValue,
op)

Similar to the reduceByKey()
transformation.
However, foldByKey() is
characterized also by a zero
value

foldByKey(0,
lambda v1, v2: v1+v2)

Sum values per key.
The zero value is 0

[("k1", 2),
("k3", 10)]

94

Transformation Purpose Example of applied
function

Result

combineByKey(
createCombiner,
mergeValue,
mergeCombiner)

Return an RDD of key-value
pairs containing one pair for
each key of the “input” RDD
of pairs. The value of each
pair of the new RDD is
obtained by combining the
values of the input RDD
associated with the same
key.
The values of the “input”
RDD of pairs and the values
of the new (returned) RDD
of pairs can be characterized
by different data types.

combineByKey(
lambda e: (e, 1), \

lambda c, e:
(c[0]+e, c[1]+1), \

lambda c1, c2:
(c1[0]+c2[0],
c1[1]+c2[1])

)

Sum values by key
and count the number
of pairs by key in one
single step

[("k1", (2,1)),
("k3", (10,2))]

95

Transformation Purpose Example of applied
function

Result

groupByKey() Return an RDD of pairs
containing one pair for each
key of the “input” RDD of
pairs.
The value of each pair of the
new RDD of pairs is a
“collection” containing all
the values of the input RDD
associated with one of the
input keys.

groupByKey() [("k1", [2]),
("k3", [4, 6])]

96

Transformation Purpose Example of applied
function

Result

mapValues(f)

Apply a function over each
pair of an RDD of pairs and
return a new RDD of pairs.
The applied function returns
one pair for each pair of the
“input” RDD of pairs.
The function is applied only
on the value part without
changing the key.
The values of the “input”
RDD and the values of new
RDD can have different data
types.

mapValues(
lambda v: v+1)

Increment the value
part by 1

[("k1", 3),
("k3", 5),
("k3", 7)]

97

Transformation Purpose Example of applied
function

Result

flatMapValues(f)

Apply a function over each
pair of an RDD of pairs and
return a new RDD of pairs.
The applied function returns
a set of pairs (from 0 to
many) for each pair of the
“input” RDD of pairs.
The function is applied only
on the value part without
changing the key.
The values of the “input”
RDD and the values of new
RDD can have different data
types.

flatMapValues(lamb
da v: list(range(v,6)))

for each input pair
(k,v),

the set of pairs (k,u)
with values of u from

v to 5 are returned
and included in the

new RDD

[("k1", 2),
("k1", 3),
("k1", 4),
("k1", 5),
("k3", 4),
("k3", 5)]

98

Transformation Purpose Example of applied
function

Result

keys() Return an RDD containing
the keys of the input
pairRDD

keys()

["k1", "k3“,
"k3"]

values() Return an RDD containing
the values of the input
pairRDD

values()

[2, 4, 6]

sortByKey() Return a PairRDD sorted by
key.
The “input” PairRDD and
the new PairRDD have the
same data type.

sortByKey()
-

[("k1", 2),
("k3", 4),
("k3", 6)]

 Spark supports also some transformations
that are applied on two RDDs of key-value
pairs at the same time

 subtractByKey, join, coGroup, etc.

101

 Goal

 Create a new RDD of key-value pairs containing
only the pairs of the first input RDD of pairs
associated with a key that is not appearing as key
in the pairs of the second input RDD or pairs

▪ The data type of the new RDD of pairs is the same of the
“first input” RDD of pairs

▪ The two input RDD of pairs must have the same type of
keys
▪ The data type of the values can be different

103

 Method

 The subtractByKey transformation is based on the
subtractByKey(other) method of the RDD class

 The two input RDDs of pairs analyzed by
subtractByKey are the one on which the method
is invoked and the one passed as parameter (i.e.,
other)

104

 Shuffle

 A shuffle operation is executed for computing the
result of the subtractByKey() transformation

▪ Keys from different partitions of the two input RDDs
must be compared

105

 Create two RDDs of key-value pairs from two
local python lists
 First list – Profiles of the users of a blog

(username, age)
▪ [("PaoloG", 40), ("Giorgio", 22), ("PaoloB", 35)]

 Second list – Banned users (username,
motivation)
▪ [("PaoloB", "spam"), ("Giorgio", "Vandalism")]

 Create a new RDD of pairs containing only
the profiles of the non-banned users

106

 # Create the first local python list
 profiles = [("PaoloG", 40), ("Giorgio", 22), ("PaoloB", 35)]

 # Create the RDD of pairs from the profiles local list
 profilesPairRDD = sc.parallelize (profiles)

 # Create the second local python list
 banned = [("PaoloB", "spam"), ("Giorgio", "Vandalism")]

 # Create the RDD of pairs from the banned local list
 bannedPairRDD = sc.parallelize (banned)

 # Select the profiles of the “good” users
 selectedProfiles = profilesPairRDD.subtractByKey(bannedPairRDD)

107

 Goal
 Join the key-value pairs of two RDDs of key-value

pairs based on the value of the key of the pairs
▪ Each pair of the input RDD of pairs is combined with all

the pairs of the other RDD of pairs with the same key

▪ The new RDD of key-value pairs
▪ Has the same key data type of the “input” RDDs of pairs

▪ Has a tuple as value (the pair of values of the two joined input
pairs)

▪ The two input RDDs of key-value pairs
▪ Must have the same type of keys

▪ But the data types of the values can be different

109

 Method

 The (inner) join transformation is based on the
join(other) method of the RDD class

 The two input RDDs of pairs analyzed by join are
the one on which the method is invoked and the
one passed as parameter (i.e., other)

110

 Shuffle

 A shuffle operation is executed for computing the
result of the join() transformation

▪ Keys from different partitions of the two input RDDs
must be compared and values from different partitions
must be retrieved

111

 Create two RDDs of key-value pairs from two
local python lists
 First list – List of questions (QuestionId, Text of the

question)
▪ [(1, "What is .. ?"), (2, "Who is ..?")]

 Second list – List of answers (QuestionId, Text of the
answer)
▪ [(1, "It is a car"), (1, "It is a byke"), (2, "She is Jenny")]

 Create a new RDD of pairs to associate each
question with its answers
 One pair for each possible pair question - answer

112

 # Create the first local Python list
 questions= [(1, "What is .. ?"), (2, "Who is ..?")]

 # Create the RDD of pairs from the local list
 questionsPairRDD = sc.parallelize (questions)

 # Create the second local python list
 answers = [(1, "It is a car"), (1, "It is a byke"), (2, "She is Jenny")]

 # Create the RDD of pairs from the local list
 answersPairRDD = sc.parallelize(answers)

 # Join questions with answers
 joinPairRDD = questionsPairRDD.join(answersPairRDD)

 113

 # Create the first local Python list
 questions= [(1, "What is .. ?"), (2, "Who is ..?")]

 # Create the RDD of pairs from the local list
 questionsPairRDD = sc.parallelize (questions)

 # Create the second local python list
 answers = [(1, "It is a car"), (1, "It is a byke"), (2, "She is Jenny")]

 # Create the RDD of pairs from the local list
 answersPairRDD = sc.parallelize(answers)

 # Join questions with answers
 joinPairRDD = questionsPairRDD.join(answersPairRDD)

114

The key part of the returned RDD of pairs is an integer number

The value part of the returned RDD of pairs is a tuple containing two
values: (question, answer)

 Spark supports outer joins

 leftOuterJoin

 rightOuterJoin

 fullOuterJoin

 Each of these methods joins two RDDs of
pairs and returns an RDD of pairs with the
results of the outer join operation

 The join condition is again based on the key part
of the input pairs

 116

 Goal
 Outer join the key-value pairs of two RDDs of key-

value pairs based on the value of the key of the
pairs
▪ The new RDD of key-value pairs

▪ Has the same key data type of the “input” RDDs of pairs

▪ Has a tuple as value (the pair of values of the two outer joined
input pairs)

▪ The two input RDDs of key-value pairs
▪ Must have the same type of keys

▪ But the data types of the values can be different

117

 Shuffle

 A shuffle operation is executed for computing the
result of the outer join transformations

▪ Keys from different partitions of the two input RDDs
must be compared and values from different partitions
must be retrieved

118

 Goal
 Associated each key k of the two input RDDs of key-

value pairs with
▪ The list of values associated with k in the first input RDD of

pairs
▪ And the list of values associated with k in the second input

RDD of pairs

 The new RDD of key-value pairs
▪ Has the same key data type of the two “input” RDDs of pairs
▪ Has a tuple as value (the two lists of values of the two input RDDs of

pairs)

▪ The two input RDDs of key-value pairs
▪ Must have the same type of keys
▪ But the data types of the values can be different

120

 Method

 The cogroup transformation is based on the
cogroup(other) method of the RDD class

 The two input RDDs of pairs analyzed by cogroup
are the one on which the method is invoked and
the one passed as parameter (i.e., other)

121

 Shuffle

 A shuffle operation is executed for computing the
result of the cogroup() transformation

▪ Keys from different partitions of the two input RDDs
must be compared and values from different partitions
must be retrieved

122

 Create two RDDs of key-value pairs from two
local python lists

 First list – List of liked movies (userId,
likedMovies)

▪ [(1, "Star Trek"), (1, "Forrest Gump") , (2, "Forrest
Gump")]

 Second list – List of liked directors (userId,
likedDirector)

▪ [(1, "Woody Allen"), (2, "Quentin Tarantino") ,
(2, "Alfred Hitchcock")]

123

 Create a new RDD of pairs containing one
pair for each userId (key) associated with

 The list of liked movies

 The list of liked directors

124

 Inputs
 [(1, "Star Trek"), (1, "Forrest Gump") , (2, "Forrest

Gump")]

 [(1, "Woody Allen"), (2, "Quentin Tarantino") ,
(2, "Alfred Hitchcock")]

 Output
 (1, (["Star Trek", "Forrest Gump"], ["Woody

Allen"]))

 (2, (["Forrest Gump"], ["Quentin Tarantino",
"Alfred Hitchcock"]))

125

 # Create the first local python list
 movies= [(1, "Star Trek"), (1, "Forrest Gump"), (2, "Forrest Gump")]

 # Create the RDD of pairs from the first local list
 moviesPairRDD = sc.parallelize(movies)

 # Create the second local python list
 directors = [(1, "Woody Allen"), (2, "Quentin Tarantino"), \
 (2, "Alfred Hitchcock")]

 # Create the RDD of pairs from the second local list
 directorsPairRDD = sc.parallelize(directors)

 # Cogroup movies and directors per user
 cogroupPairRDD = moviesPairRDD.cogroup(directorsPairRDD)

126

 # Create the first local python list
 movies= [(1, "Star Trek"), (1, "Forrest Gump"), (2, "Forrest Gump")]

 # Create the RDD of pairs from the first local list
 moviesPairRDD = sc.parallelize(movies)

 # Create the second local python list
 directors = [(1, "Woody Allen"), (2, "Quentin Tarantino"), \
 (2, "Alfred Hitchcock")]

 # Create the RDD of pairs from the second local list
 directorsPairRDD = sc.parallelize(directors)

 # Cogroup movies and directors per user
 cogroupPairRDD = moviesPairRDD.cogroup(directorsPairRDD)

127

Note that the value part of the returned tuples is a tuple containing two “lists”:
- The first value contains the “list” of movies (iterable) liked by a user
- The second value contains the “list” of directors (iterable) liked by a user

 All the examples reported in the following
tables are applied on the following two RDDs
of key-value pairs

 inputRDD1: [('k1', 2), ('k3', 4), ('k3', 6)]

 inputRDD2: [('k3', 9)]

129

130

Transformation Purpose Example Result

subtractByKey(other) Return a new RDD of
key-value pairs.
The returned pairs are
those of input RDD on
which the method is
invoked such that the
key part does not occur
in the keys of the RDD
that is passed as
parameter.
The values are not
considered to take the
decision.

inputRDD1.
subtractByKey

(inputRDD2)

[('k1',2)]

join(other) Return a new RDD of
pairs corresponding to
join of the two input
RDDs. The join is based
on the value of the key.

inputRDD1.join
(inputRDD2)

[('k3', (4,9)),
('k3', (6,9))]

131

Transformation Purpose Example Result

cogroup(other) For each key k in one of
the two input RDDs of
pairs, return a pair (k,
tuple), where tuple
contains:
- the list (iterable) of
values of the first input
RDD associated with
key k
- the list (iterable) of
values of the second
input RDD associated
with key k

inputRDD1.
cogroup

(inputRDD2)

[('k1', ([2], [])),
('k3', ([4, 6], [9]))]

 Spark supports also some specific actions on
RDDs of key-value pairs

 countByKey, collectAsMap, lookup

133

 Goal
 The countByKey action returns a local python

dictionary containing the information about the
number of elements associated with each key in the
input RDD of key-value pairs
▪ i.e., the number of times each key occurs in the input RDD

 Pay attention to the number of distinct keys of the
input RDD of pairs

 If the number of distinct keys is large, the result of
the action cannot be stored in a local variable of the
Driver

135

 Method

 The countBykey action is based on the
countBykey() method of the RDD class

 Data are sent on the network to compute
the final result

136

 Create an RDD of pairs from the following
python list

 [("Forrest Gump", 4), ("Star Trek", 5) ,
("Forrest Gump", 3)]

 Each pair contains a movie and the rating given by
someone to that movie

 Compute the number of ratings for each
movie

137

 # Create the local python list
 movieRating= [("Forrest Gump", 4), ("Star Trek", 5), ("Forrest Gump", 3)]

 # Create the RDD of pairs from the local collection
 movieRatingRDD = sc.parallelize(movieRating)

 # Compute the number of rating for each movie
 movieNumRatings = movieRatingRDD.countByKey()

 # Print the result on the standard output
 print(movieNumRatings)

138

 # Create the local python list
 movieRating= [("Forrest Gump", 4), ("Star Trek", 5), ("Forrest Gump", 3)]

 # Create the RDD of pairs from the local collection
 movieRatingRDD = sc.parallelize(movieRating)

 # Compute the number of rating for each movie
 movieNumRatings = movieRatingRDD.countByKey()

 # Print the result on the standard output
 print(movieNumRatings)

139

Pay attention to the size of the returned local python dictionary
(i.e., the number of distinct movies in this case).

 Goal

 The collectAsMap action returns a local dictionary
containing the same pairs of the considered input
RDD of pairs

 Pay attention to the size of the returned RDD

 Data are sent on the network

 Method

 The collectAsMap action is based on the
collectAsMap() method of the RDD class

141

 Pay attention that the collectAsMap action
returns a dictionary object

 A dictionary cannot contain duplicate keys
 Each key can be associated with at most one value

 If the “input” RDD of pairs contains more than one
pair with the same key, only one of those pairs is
stored in the returned local python dictionary
▪ Usually, the last one occurring in the input RDD of pairs

 Use collectAsMap only if you are sure that each
key appears only once in the input RDD of key-
value pairs

142

 The collectAsMap() action returns a local
dictionary while collect() return a list of key-
value pairs (i.e., a list of tuples)

 The list of pairs returned by collect() can contain
more than one pair associated with the same key

143

 Create an RDD of pairs from the following
python list

 [("User1", "Paolo"), ("User2", "Luca"),
("User3", "Daniele")]

 Each pair contains a userId and the name of the
user

 Retrieve the pairs of the created RDD of pairs
and store them in a local python dictionary
that is instantiated in the Driver

144

 # Create the local python list
 users = [("User1", "Paolo"), ("User2", "Luca"), ("User3", "Daniele")]

 #Create the RDD of pairs from the local list
 usersRDD = sc.parallelize(users)

 # Retrieve the content of usersRDD and store it in a
 # local python dictionary

retrievedPairs = usersRDD.collectAsMap()

 # Print the result on the standard output
 print(retrievedPairs)

145

 # Create the local python list
 users = [("User1", "Paolo"), ("User2", "Luca"), ("User3", "Daniele")]

 #Create the RDD of pairs from the local list
 usersRDD = sc.parallelize(users)

 # Retrieve the content of usersRDD and store it in a
 # local python dictionary

retrievedPairs = usersRDD.collectAsMap()

 # Print the result on the standard output
 print(retrievedPairs)

146

Pay attention to the size of the returned local python dictionary
(i.e., the number of distinct users in this case).

 Goal

 The lookup(k) action returns a local python list
containing the values of the pairs of the input
RDD associated with the key k specified as
parameter

 Method

 The lookup action is based on the lookup(key)
method of the RDD class

148

 Create an RDD of pairs from the following
python list

 [("Forrest Gump", 4), ("Star Trek", 5) ,
("Forrest Gump", 3)]

 Each pair contains a movie and the rating given by
someone to that movie

 Retrieve the ratings associated with the
movie “Forrest Gump” and store them in a
local python list in the Driver

149

 # Create the local python list
 movieRating= [("Forrest Gump", 4), ("Star Trek", 5), ("Forrest Gump", 3)]

 # Create the RDD of pairs from the local collection
 movieRatingRDD = sc.parallelize(movieRating)

 # Select the ratings associated with “Forrest Gump”
 movieRatings = movieRatingRDD.lookup("Forrest Gump")

 # Print the result on the standard output
 print(movieRatings)

150

 # Create the local python list
 movieRating= [("Forrest Gump", 4), ("Star Trek", 5), ("Forrest Gump", 3)]

 # Create the RDD of pairs from the local collection
 movieRatingRDD = sc.parallelize(movieRating)

 # Select the ratings associated with “Forrest Gump”
 movieRatings = movieRatingRDD.lookup("Forrest Gump")

 # Print the result on the standard output
 print(movieRatings)

151

Pay attention to the size of the returned list (i.e., the
number of ratings associated with “Forrest Gump” in this
case).

 All the examples reported in the following
tables are applied on the following RDD of
key-value pairs

 inputRDD: [('k1', 2), ('k3', 4), ('k3', 6)]

153

154

Transformation Purpose Example Result

countByKey() Return a local python
dictionary containing the
number of elements in the
input RDD for each key of
the input RDD of pairs

inputRDD.
countByKey()

{('k1',1), ('K3',2)}

collectAsMap() Return a local python
dictionary containing the
pairs of the input RDD of
pairs

inputRDD.
collectAsMap()

{('k1', 2), ('k3', 6)}
Or

{('k1', 2), ('k3', 4)}
Depending on

the order of the
pairs in the input

RDD of pairs

lookup(key) Return a local python list
containing all the values
associated with the key
specified as parameter

inputRDD.
lookup('k3')

[4, 6]

