

 Spark SQL is the Spark component for
structured data processing

 It provides a programming abstraction called
Dataframe and can act as a distributed SQL
query engine

 The input data can be queried by using

1. Ad-hoc methods

2. Or an SQL-like language

2

 The interfaces provided by Spark SQL provide more
information about the structure of both the data
and the computation being performed

 Spark SQL uses this extra information to perform
extra optimizations based on an “SQL-like”
optimizer called Catalyst
 => Programs based on Dataframe are usually faster than
 standard RDD-based programs

3

RDD vs DataFrame
Unstructured Structured

Distributed list of objects ~Distributed relational table

4

 DataFrame

 Distributed collection of structured data

▪ It is conceptually equivalent to a table in a relational
database

▪ It can be created reading data from different types of
external sources (CSV files, JSON files, RDBMs, ..)

 Benefits from Spark SQL’s optimized execution
engine exploiting the information about the data
structure

5

 All the Spark SQL functionalities are based on
an instance of the

 pyspark.sql.SparkSession class

 Import it in your standalone applications

 from pyspark.sql import SparkSession

 To instance a SparkSession object:
 spark = SparkSession.builder.getOrCreate()

6

 To “close” a Spark Session use the
SparkSession.stop() method

 spark.stop()

7

 DataFrame

 It is a distributed collection of data organized into
named columns

 It is equivalent to a relational table

 DataFrames are lists of Row objects
 Classes used to define DataFrames

 pyspark.sql.DataFrame

 pyspark.sql.Row

9

 DataFrames can be created from different
sources

 Structured (textual) data files

▪ E.g., csv files, json files

 Existing RDDs

 Hive tables

 External relational databases

10

 Spark SQL provides an API that allows
creating DataFrames directly from CSV files

 Example of csv file
name,age

Andy,30

Michael,

Justin,19

 The file contains name and age of three
persons
 The age of the second person in unknown

 11

 The creation of a DataFrame from a csv file is
based the

 load(path) method of the
pyspark.sql.DataFrameReader class

▪ Path is the path of the input file

 You get a DataFrameReader with the read()
method of the SparkSesssion class.

 df = spark.read.load(path, options…)

12

 Create a DataFrame from a csv file (persons.csv)
containing the profiles of a set of persons
 Each line of the file contains name and age of a

person
▪ Age can assume the null value (i.e., it can be missing)

 The first line contains the header (i.e., the names of
the attributes/columns)

 Example of csv file
 name,age
 Andy,30
 Michael,
 Justin,19

13

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

14

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

15

This is used to specify the format of the input
file

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

16

This is used to specify that the first line of the file
contains the name of the attributes/columns

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

17

This method is used to specify that the system
must infer the data types of each column.
Without this option all columns are considered
strings

 Spark SQL provides an API that allows
creating a DataFrame directly from a textual
file where each line contains a JSON object
 Hence, the input file is not a “standard” JSON

file
▪ It must be properly formatted in order to have one

JSON object (tuple) for each line

 The format of the input file is complaint with the
“JSON Lines text format”, also called newline-
delimited JSON

18

 Example of JSON Lines text formatted file
compatible with the Spark expected format

{"name":"Michael"}

{"name":"Andy", "age":30}

{"name":"Justin", "age":19}

 The example file contains name and age of
three persons

 The age of the first person in unknown

19

 The creation of a DataFrame from JSON files is
based on the same method used for reading csv
files
 load(path) method of the

pyspark.sql.DataFrameReader class
▪ Path is the path of the input file

 You get a DataFrameReader with the read() method
of the SparkSesssion class

 df = spark.read.load(path, format="json", …)

▪ or
 df = spark.read.json(path, …)

20

 The same API allows also reading “standard”
multiline JSON files

 Set the multiline option to true by setting the
argument multiLine = True on the defined
DataFrameReader for reading “standard” JSON
files

 This feature is available since Spark 2.2.0

 Pay attention that reading a set of small
JSON files from HDFS is very slow

21

 Create a DataFrame from a JSON Lines text
formatted file containing the profiles of a set
of persons

 Each line of the file contains a JSON object
containing name and age of a person

▪ Age can assume the null value

22

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.json",

 format="json")

23

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.json",

 format="json")

24

This method is used to specify the format of the input file

 Create a DataFrame from a folder containing
a set of “standard” multiline JSON files

 Each input JSON file contains the profile of
one person

 Name and Age

▪ Age can assume the null value

25

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("folder_JSONFiles/",

 format="json",

 multiLine=True)

26

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("folder_JSONFiles/",

 format="json",

 multiLine=True)

27

This multiline option is set to true to specify that
the input files are “standard” multiline JSON files

 The DataFrameReader class (the same we
used for reading a json file and store it in a
DataFrame) provides other methods to read
many standard (textual) formats and read
data from external databases
 Apache parquet files

 External relational database, through a JDBC
connection

 Hive tables

 Etc.

 28

 The content of an RDD of tuples or the content
of a Python list of tuples can be stored in a
DataFrame by using the
spark.createDataFrame(data, schema)
method
 data: RDD of tuples or Rows, Python list of tuples or

Rows, or pandas DataFrame

 schema: list of string with the names of the
columns/attributes
▪ schema is optional. If it is not specified the column names are

set to _1, _2, …, _n for input RDDs/lists of tuples

29

 Create a DataFrame from a Python list
containing the following data

 (19, "Justin")

 (30, "Andy")

 (None, "Michael")

 The column names must be set to “age” and
“name”

30

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a Python list of tuples

profilesList = [(19, "Justin"), (30, "Andy"),

 (None, "Michael")]

Create a DataFrame from the profilesList

df = spark.createDataFrame(profilesList,["age","name"])

31

 The rdd member of the DataFrame class
returns an RDD of Row objects containing the
content of the DataFrame on which it is
invoked

 Each Row object is like a dictionary
containing the values of a record

 It contains column names in the keys and column
values in the values

32

Usage of the Row class
 The fields in it can be accessed:
 like attributes (row.key)

▪ where key is a column name

 like dictionary values (row["key"])

 for key in row will search through row keys
 asDict() method:
 Returns the Row content as a Python dictionary

33

 Create a DataFrame from a csv file containing
the profiles of a set of persons

 Each line of the file contains name and age of a
person

 The first line contains the header, i.e., the name of
the attributes/columns

 Transform the input DataFrame into an RDD,
select only the name field/column and store
the result in the output folder

34

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

35

 # Define an RDD based on the content of

 # the DataFrame

 rddRows = df.rdd

 # Use the map transformation to extract

 # the name field/column

 rddNames = rddRows.map(lambda row: row.name)

 # Store the result

 rddNames.saveAsTextFile(outputPath)

36

 Now you know how to create DataFrames

 How to manipulate them?
 How to compute statistics?

38

 A set of specific methods are available for the
DataFrame class

 E.g., show(), printSchema(), count(), distinct(),
select(), filter()

 Also the standard collect() and count()
actions are available

39

 The show(n) method of the DataFrame class
prints on the standard output the first n of
the input DataFrame

 Default value of n: 20

40

 Create a DataFrame from a csv file containing
the profiles of a set of persons

 The content of persons.csv is

name,age

Andy,30

Michael,

Justin,19

 Print the content of the first 2 persons (i.e.,
the first 2 rows of the DataFrame)

41

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

df.show(2)

42

 The printSchema() method of the
DataFrame class prints on the standard
output the schema of the DataFrame

 i.e., the name of the attributes of the data stored
in the DataFrame

43

 The count() method of the DataFrame class
returns the number of rows in the input
DataFrame

44

 The distinct() method of the DataFrame
class returns a new DataFrame that contains
only the unique rows of the input DataFrame

 Pay attention that the distinct operation is always
a heavy operation in terms of data sent on the
network

 A shuffle phase is needed

45

 Create a DataFrame from a csv file containing
the names of a set of persons
 The content of names.csv is

name

Andy

Michael

Justin

Michael

 The first line is the header
 Create a new DataFrame without duplicates

46

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from names.csv

df = spark.read.load("names.csv",

 format="csv",

 header=True,

 inferSchema=True)

df_distinct = df.distinct()

47

 The select(col1, .., coln) method of the
DataFrame class returns a new DataFrame
that contains only the specified columns of
the input DataFrame

 Use ‘*’ as special column to select all columns
 Pay attention that the select method can

generate errors at runtime if there are
mistakes in the names of the columns

48

 Create a DataFrame from the persons2.csv file that
contains the profiles of a set of persons
 The first line contains the header
 The others lines contain the users’ profiles

▪ One line per person
▪ Each line contains name, age, and gender of a person

 Example
name,age,gender
Paul,40,male
John,40,male
..

 Create a new DataFrame containing only name and
age of the persons

49

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons2.csv

df = spark.read.load("persons2.csv",

 format="csv",

 header=True,

 inferSchema=True)

dfNamesAges = df.select("name", "age")

50

 The selectExpr(expression1, ..,
expressionN) method of the DataFrame
class is a variant of the select method, where
expr can be an SQL expression.

 Example:
df.selectExpr("name", "age")

df.selectExpr("name", "age + 1 AS new_age")

51

 Create a DataFrame from the persons2.csv
file that contains the profiles of a set of
persons
 The first line contains the header

 The others lines contain the users’ profiles
▪ Each line contains name, age, and gender of a person

 Create a new DataFrame containing the same
columns of the initial dataset plus an
additional column called newAge containing
the value of age incremented by one

52

 # Create a Spark Session object

 spark = SparkSession.builder.getOrCreate()

 # Create a DataFrame from persons.csv

 df = spark.read.load("persons2.csv",

 format="csv",

 header=True,

 inferSchema=True)

 # Create a new DataFrame with four columns:

 # name, age, gender, newAge = age +1

 dfNewAge = df.selectExpr("name", "age", "gender",

 "age+1 as newAge")

53

 # Create a Spark Session object

 spark = SparkSession.builder.getOrCreate()

 # Create a DataFrame from persons.csv

 df = spark.read.load("persons2.csv",

 format="csv",

 header=True,

 inferSchema=True)

 # Create a new DataFrame with four columns:

 # name, age, gender, newAge = age +1

 dfNewAge = df.selectExpr("name", "age", "gender",

 "age+1 as newAge")

54

This part of the expression is used to specify the name of the column associated
with the result of the first part of the expression in the returned DataFrame.
Without this part of the expression, the name of the returned column will be
“age+1”

 The filter(conditionExpr) method of the
DataFrame class returns a new DataFrame
that contains only the rows satisfying the
specified condition
 The condition is a Boolean SQL expression

 Pay attention that this version of the filter
method can generate errors at runtime if there
are errors in the filter expression
▪ The parameter is a string and the system cannot check

the correctness of the expression at compile time

55

 Create a DataFrame from the persons.csv file
that contains the profiles of a set of persons

 The first line contains the header

 The others lines contain the users’ profiles

▪ Each line contains name and age of a person

 Create a new DataFrame containing only the
persons with age between 20 and 31

56

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

df_filtered = df.filter("age>=20 and age<=31")

57

 The where(expression) method of the
DataFrame class is an alias of the
filter(conditionExpr) method

58

 The join(right, on, how) method of the
DataFrame class is used to join two
DataFrames

 It returns a DataFrame that contains the join of
the tuples of the two input DataFrames based on
the on join condition

59

 on: the join condition

▪ It can be:
▪ A string: the join column

▪ A list of strings: multiple join columns

▪ A condition/an expression on the columns.

 E.g.:
 joined_df = df.join(df2, df.name == df2.name)

 how: the type of join

▪ inner, cross, outer, full, full_outer, left, left_outer, right,
right_outer, left_semi, and left_anti

▪ Default: inner

60

 Pay attention that this method

 Can generate errors at runtime if there are errors
in the join expression

61

 Create two DataFrames
 One based on the persons_id.csv file that contains

the profiles of a set of persons
▪ Schema: uid,name,age

 One based on the liked_sports.csv file that
contains the liked sports for each person
▪ Schema: uid,sportname

 Join the content of the two DataFrames (uid
is the join column) and show it on the
standard output

62

 # Create a Spark Session object
 spark = SparkSession.builder.getOrCreate()

 # Read persons_id.csv and store it in a DataFrame
 dfPersons = spark.read.load("persons_id.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Read liked_sports.csv and store it in a DataFrame
 dfUidSports = spark.read.load("liked_sports.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Join the two input DataFrames
 dfPersonLikes = dfPersons.join(dfUidSports,
 dfPersons.uid == dfUidSports.uid)

 # Print the result on the standard output
 dfPersonLikes.show()

63

 # Create a Spark Session object
 spark = SparkSession.builder.getOrCreate()

 # Read persons_id.csv and store it in a DataFrame
 dfPersons = spark.read.load("persons_id.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Read liked_sports.csv and store it in a DataFrame
 dfUidSports = spark.read.load("liked_sports.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Join the two input DataFrames
 dfPersonLikes = dfPersons.join(dfUidSports,
 dfPersons.uid == dfUidSports.uid)

 # Print the result on the standard output
 dfPersonLikes.show()

64

Specify the join condition on the uid columns

 Create two DataFrames

 One based on the persons_id.csv file that contains
the profiles of a set of persons

▪ Schema: uid,name,age

 One based on the banned.csv file that contains
the banned users

▪ Schema: uid,bannedmotivation

 Select the profiles of the non-banned users
and show them on the standard output

65

 # Create a Spark Session object
 spark = SparkSession.builder.getOrCreate()

 # Read persons_id.csv and store it in a DataFrame
 dfPersons = spark.read.load("persons_id.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Read banned.csv and store it in a DataFrame
 dfBannedUsers = spark.read.load("banned.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Apply the Left Anti Join on the two input DataFrames
 dfSelectedProfiles = dfPersons.join(dfBannedUsers,
 dfPersons.uid == dfBannedUsers.uid,
 "left_anti")

 # Print the result on the standard output
 dfSelectedProfiles.show()

66

 # Create a Spark Session object
 spark = SparkSession.builder.getOrCreate()

 # Read persons_id.csv and store it in a DataFrame
 dfPersons = spark.read.load("persons_id.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Read banned.csv and store it in a DataFrame
 dfBannedUsers = spark.read.load("banned.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Apply the Left Anti Join on the two input DataFrames
 dfSelectedProfiles = dfPersons.join(dfBannedUsers,
 dfPersons.uid == dfBannedUsers.uid,
 "left_anti")

 # Print the result on the standard output
 dfSelectedProfiles.show()

67

Specify the (anti) join condition on the uid columns

 # Create a Spark Session object
 spark = SparkSession.builder.getOrCreate()

 # Read persons_id.csv and store it in a DataFrame
 dfPersons = spark.read.load("persons_id.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Read banned.csv and store it in a DataFrame
 dfBannedUsers = spark.read.load("banned.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Apply the Left Anti Join on the two input DataFrames
 dfSelectedProfiles = dfPersons.join(dfBannedUsers,
 dfPersons.uid == dfBannedUsers.uid,
 "left_anti")

 # Print the result on the standard output
 dfSelectedProfiles.show()

68

Use Left Anti Join

 Aggregate functions are provided to compute
aggregates over the set of values of columns

 Some of the provided aggregate
functions/methods are:

▪ avg(column), count(column), sum(column), abs(column),
etc.

 Each aggregate function returns one value
computed by considering all the values of the
input column

69

 The agg(expr) method of the DataFrame class is
used to specify which aggregate functions we
want to apply and on which input columns
 The result is a DataFrame containing one single row

and one column for each of the specified aggregate
functions

 The name of the returned column associated with
each input aggregate function is
“function_name(column)”

 Pay attention that this methods can generate
errors at runtime
 E.g., wrong attribute names, wrong data types

70

 Create a DataFrame from the persons.csv file
that contains the profiles of a set of persons

 The first line contains the header

 The others lines contain the users’ profiles

▪ Each line contains name and age of a person

 Create a Dataset containing the average
value of age

71

 Input file
 name,age

 Andy,30

 Michael,15

 Justin,19

 Andy,40

 Expected output
 avg(age)

 26.0

72

 # Create a Spark Session object

 spark = SparkSession.builder.getOrCreate()

 # Create a DataFrame from persons.csv

 df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

 # Compute the average of age

 averageAge = df.agg({"age": "avg"})

73

 The method groupBy(col1, .., coln) method
of the DataFrame class combined with a set
of aggregate methods can be used to split
the input data in groups and compute
aggregate function over each group

 Pay attention that this methods can
generate errors at runtime if there are
semantic errors

 E.g., wrong attribute names, wrong data types

74

 Specify which attributes are used to split the
input data in groups by using the
groupBy(col1, .., coln) method

 Then, apply the aggregate functions you
want to compute by final result

 The result is a DataFrame

75

 Some of the provided aggregate
functions/methods are
 avg(column), count(column), sum(column),

abs(column), etc.

 The agg(..) method can be used to apply multiple
aggregate functions at the same time over each
group

 See the static methods of the
pyspark.sql.GroupedData class for a
complete list

76

 Create a DataFrame from the persons.csv file
that contains the profiles of a set of persons

 The first line contains the header

 The others lines contain the users’ profiles

▪ Each line contains name and age of a person

 Create a DataFrame containing the for each
name the average value of age

77

 Input file
 name,age

 Andy,30

 Michael,15

 Justin,19

 Andy,40

 Expected output
 name,avg(age)

 Andy,35

 Michael,15

 Justin,19

78

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

grouped = df.groupBy("name").avg("age")

79

 Create a DataFrame from the persons.csv file
that contains the profiles of a set of persons

 The first line contains the header

 The others lines contain the users’ profiles

▪ Each line contains name and age of a person

 Create a DataFrame containing the for each
name the average value of age and the
number of person with that name

80

 Input file
 name,age

 Andy,30

 Michael,15

 Justin,19

 Andy,40

 Expected output
 name,avg(age),count(name)

 Andy,35,2

 Michael,15,1

 Justin,19,1

81

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

grouped = df.groupBy("name")

 .agg({"age": "avg", "name": "count"})

82

 The sort(col1, .., coln, ascending=True)
method of the DataFrame class returns a
new DataFrame that

 contains the same data of the input one

 but the content is sorted by col1, .., coln

 Ascending determines ascending vs. descending

83

 Sparks allows querying the content of a
DataFrame also by using the SQL language

 In order to do this a “table name” must be
assigned to a DataFrame

 The createOrReplaceTempView
(tableName) method of the DataFrame class
can be used to assign a “table name” to the
DataFrame on which it is invoked

85

 Once the DataFrame has been mapped to “table
names”, SQL-like queries can be executed

 The executed queries return DataFrame objects

 The sql(query) method of the SparkSession
class can be used to execute an SQL-like query

 query is an SQL-like query

 Currently some SQL features are not supported

 E.g., correlations between external and nested
queries are not allowed

86

 Create a DataFrame from a JSON file
containing the profiles of a set of persons

 Each line of the file contains a JSON object
containing name, age, and gender of a person

 Create a new DataFrame containing only the
persons with age between 20 and 31 and print
them on the standard output

 Use the SQL language to perform this operation

 87

Create a Spark Session object
spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv
df = spark.read.load("persons.json",
 format="json")

Assign the “table name” people to the df DataFrame
df.createOrReplaceTempView("people");

Select the persons with age between 20 and 31
by querying the people table
selectedPersons =
spark.sql("SELECT * FROM people WHERE age>=20 and

age<=31")

Print the result on the standard output
selectedPersons.show()

88

 Create two DataFrames

 One based on the persons_id.csv file that contains
the profiles of a set of persons

▪ Schema: uid,name,age

 One based on the liked_sports.csv file that
contains the liked sports for each person

▪ Schema: uid,sportname

 Join the content of the two DataFrames and
show it on the standard output

89

 # Create a Spark Session object
 spark = SparkSession.builder.getOrCreate()

 # Read persons_id.csv and store it in a DataFrame
 dfPersons = spark.read.load("persons_id.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Assign the “table name” people to the dfPerson
 dfPersons.createOrReplaceTempView("people")

 # Read liked_sports.csv and store it in a DataFrame
 dfUidSports = spark.read.load("liked_sports.csv",
 format="csv",
 header=True,
 inferSchema=True)

 # Assign the “table name” liked to dfUidSports
 dfUidSports.createOrReplaceTempView("liked")

90

 # Join the two input tables by using the

 #SQL-like syntax

 dfPersonLikes = spark.sql("SELECT * from people,

liked where people.uid=liked.uid")

 # Print the result on the standard output

 dfPersonLikes.show()

91

 Create a DataFrame from the persons.csv file
that contains the profiles of a set of persons

 The first line contains the header

 The others lines contain the users’ profiles

▪ Each line contains name and age of a person

 Create a DataFrame containing for each
name the average value of age and the
number of person with that name

 Print its content on the standard output

92

 Input file
 name,age

 Andy,30

 Michael,15

 Justin,19

 Andy,40

 Expected output
 name,avg(age),count(name)

 Andy,35,2

 Michael,15,1

 Justin,19,1

93

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.json",

 format="json")

Assign the “table name” people to the df DataFrame

df.createOrReplaceTempView("people")

Define groups based on the value of name and

compute average and number of records for each group

nameAvgAgeCount = spark.sql("SELECT name, avg(age),

 count(name) FROM people GROUP BY name")

Print the result on the standard output

nameAvgAgeCount.show()

94

 The content of DataFrames can be stored on
disk by using two approches

1 Convert DataFrames to traditional RDDs by using
the rdd method of the DataFrame

And then use saveAsTextFile(outputFolder)

2 Use the write() method of DataFrames, that
returns a DatFrameWriter class instance

96

 Create a DataFrame from the persons.csv file
that contains the profiles of a set of persons

 The first line contains the header

 The others lines contain the users’ profiles

▪ Each line contains name, age, and gender of a person

 Store the DataFrame in the output folder by
using the saveAsTextFile(..) method

97

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

Save it

df.rdd.saveAsTextFile(outputPath)

98

 Create a DataFrame from the persons.csv file
that contains the profiles of a set of persons

 The first line contains the header

 The others lines contain the users’ profiles

▪ Each line contains name, age, and gender of a person

 Store the DataFrame in the output folder by
using the write() method

 Store the result by using the CSV format

99

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Create a DataFrame from persons.csv

df = spark.read.load("persons.csv",

 format="csv",

 header=True,

 inferSchema=True)

Save it

df.write.csv(outputPath, header=True)

100

 Spark SQL provides a set of system
predefined functions

 hour(Timestamp), abs(Integer), ..

 Those functions can be used in some
transformations (e.g., selectExpr(..), sort(..)) but
also in the SQL queries

 Users can defined their personalized
functions

 They are called User Defined Functions (UDFs)

102

 UDFs are defined/registered by invoking
udf().register(name, function, datatype) on
SparkSession
 name: name of the defined UDF
 function: function used to specify how the parameters of

the function are used to generate the returned value
 One of more input parameters
 One single returned value

 datatype: SQL data type of the returned value

103

 Define a UDFs that, given a string, returns the
length of the string

Create a Spark Session object

spark = SparkSession.builder.getOrCreate()

Define a UDF

name: length

output: integer value

spark.udf.register("length", lambda x: len(x))

104

 Use of the defined UDF in a selectExpr
transformation

 result = inputDF.selectExpr("length(name) as size")

 Use of the defined UDF in a SQL query

 result = spark.sql("SELECT length(name) FROM

 profiles")

105

 Similarly to RDDs also DataFrames can be
combined by using set transformations

 df1.union(df2)

 df1.intersect(df2)

 df1.subtract(df2)

107

 Spark SQL automatically implements a
broadcast version of the join operation if one
of the two input DataFrames is small enough
to be stored in the main memory of each
executor

109

 We can suggest/force it by creating a
broadcast version of a DataFrame

 E.g.,
 dfPersonLikesBroadcast = dfUidSports\
 .join(broadcast(dfPersons),\
 dfPersons.uid == dfUidSports.uid)

110

 We can suggest/force it by creating a
broadcast version of a DataFrame

 E.g.,
 dfPersonLikesBroadcast = dfUidSports\
 .join(broadcast(dfPersons),\
 dfPersons.uid == dfUidSports.uid)

111

In this case we specify that dfPersons must be
broadcasted and hence Spark will execute the join
operation by using a broadcast join

 The method explain() can be invoked on a
DataFrame to print on the standard output
the execution plan of the part of the code
that is used to compute the content of the
DataFrame on which explain() is invoked

113

