- Spark MLlib is the Spark component providing the machine learning/data mining algorithms
 - Pre-processing techniques
 - Classification (supervised learning)
 - Clustering (unsupervised learning)
 - Itemset mining

- MLlib APIs are divided into two packages:
 - pyspark.mllib
 - It contains the original APIs built on top of RDDs
 - This version of the APIs is in maintenance mode and will be probably deprecated in the next releases of Spark
 - pyspark.ml
 - It provides higher-level API built on top of DataFrames (i.e, Dataset<Row>) for constructing ML pipelines
 - It is recommended because the DataFrame-based API is more versatile and flexible
 - It provides the pipeline concept

MLlib APIs are divided into two packages:

- pyspark.mllib
 - It contai
 We will use the DataFrame-based version
 This ver
 be probably deprecated in the next releases of Spark
- pyspark.ml
 - It provides higher-level API built on top of DataFrames (i.e, Dataset<Row>) for constructing ML pipelines
 - It is recommended because the DataFrame-based API is more versatile and flexible
 - It provides the pipeline concept

Spark MLlib – Data types

Spark MLlib – Data types

- Spark MLlib is based on a set of basic local and distributed data types
 - Local vector
 - Local matrix
 - Distributed matrix
- DataFrames for ML-based applications contain objects based on these basic data types

- Local pyspark.ml.linalg.Vector objects in MLlib are used to store vectors of double values
 - Dense and sparse vectors are supported
- The MLlib algorithms work on vectors of doubles
 - Vectors of doubles are used to represent the input records/data
 - One vector for each input record
 - Non double attributes/values must be mapped to double values before applying MLlib algorithms

- Dense and sparse representations are supported
- E.g., the vector of doubles [1.0, 0.0, 3.0] can be represented
 - in dense format as [1.0, 0.0, 3.0]
 - or in sparse format as (3, [0, 2], [1.0, 3.0])
 - where 3 is the size of the vector
 - The array [0,2] contains the indexes of the non-zero cells
 - The array [1.0, 3.0] contains the values of the non-zero cells

The following code shows how dense and sparse vectors can be created in Spark

from pyspark.ml.linalg import Vectors

Create a dense vector [1.0, 0.0, 3.0]
dv = Vectors.dense([1.0, 0.0, 3.0])

Create a sparse vector [1.0, 0.0, 3.0] by specifying # its indices and values corresponding to non-zero entries # by means of a dictionary sv = Vectors.sparse(3, { 0:1.0, 2:3.0 })

The following code shows how dense and sparse vectors can be created in Spark

from pyspark.ml.linalg import Vectors

Create a dense vector [1.0, 0.0, 3.0] dv = Vectors.dense([1.0, 0.0, 3.0])

Create a sparse vector [1.0, 0.0, 3.0] by specifying
its indices and value Index and value of a non-empty cell entries
by means of a dictionary
sv = Vectors.sparse(3, {0:1.0, 2:3.0})
Size of the vector
Dictionary of index:value pairs

- Spark MLlib uses DataFrames as input data
 The input of the MLlib algorithms are structured data (i.e., tables)
- All input data must be represented by means of "tables" before applying the MLlib algorithms
 - Also document collections must be transformed in a tabular format before applying the MLlib algorithms

- The DataFrames used and created by the MLlib algorithms are characterized by several columns
- Each column is associated with a different role/meaning
 - label
 - Target of a classification/regression analysis
 - features
 - A vector containing the values of the attributes/features of the input record/data points
 - text
 - The original text of a document before being transformed in a tabular format
 - prediction
 - Predicted value of a classification/regression analysis

Transformer

- A Transformer is an ML algorithm/procedure that transforms one DataFrame into another DataFrame by means of the method transform(inputDataFrame)
 - E.g., A feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g., feature vectors), and output a new DataFrame with the mapped column appended
 - E.g., a classification model is a Transformer that can be applied on a DataFrame with features and transforms it into a DataFrame with also the prediction column

Estimator

- An Estimator is an ML algorithm/procedure that is fit on an input (training) DataFrame to produce a Transformer
 - Each Estimator implements a method fit(), which accepts a DataFrame and produces a Model of type Transformer
- An Estimator abstracts the concept of a learning algorithm or any algorithm that fits/trains on an input dataset and returns a model
 - E.g., The Logistic Regression classification algorithm is an Estimator
 - Calling fit(input training DataFrame) on it a Logistic Regression Model is built, which is a Model/a Transformer

Pipeline

- A Pipeline chains multiple Transformers and Estimators together to specify a Machine learning/Data Mining workflow
 - The output of a transformer/estimator is the input of the next one in the pipeline
- E.g., a simple text document processing workflow aiming at building a classification model includes several steps
 - Split each document into a set of words
 - Convert each set of words into a numerical feature vector
 - Learn a prediction model using the feature vectors and the associated class labels

- Parameters
 - Transformers and Estimators share common APIs for specifying the values of their parameters

- In the new APIs of Spark MLlib the use of the pipeline approach is preferred/recommended
 This approach is based on the following steps
 - The set of Transformers and Estimators that are needed are instantiated
 - 2. A pipeline object is created and the sequence of transformers and estimators associated with the pipeline are specified
 - The pipeline is executed and a model is trained
 (optional) The model is applied on new data

Data Preprocessing

Data preprocessing

- Input data must be preprocessed before applying machine learning and data mining algorithms
 - To organize data in a format consistent with the one expected by the applied algorithms
 - To define good (predictive) features
 - To remove bias
 - E.g., normalization
 - To remove noise and missing values

Extracting, transforming and selecting features

- MLlib provides a set of transformers than can be used to extract, transform and select features from DataFrames
 - Feature Extractors
 - TF-IDF, Word2Vec, ..
 - Feature Transformers
 - Tokenizer, StopWordsRemover, StringIndexer, IndexToString, OneHotEncoderEstimator, Normalizer, ...
 - Feature Selectors
 - VectorSlicer, ...
- Up-to-date list
 - https://spark.apache.org/docs/latest/ml-features.html

Feature Transformations

Feature Transformations

- Several techniques are provided by MLlib to transform features
 - They are used to create new columns/features by combining or transforming other features
 - You can perform feature transformations and feature creations by using the standard methods you already know for DataFrames and RDDs

Vector Assembler

VectorAssembler

(pyspark.ml.feature.VectorAssembler) is a transformer that combines a given list of columns into a single vector column

 Useful for combining features into a single feature vector before applying ML algorithms

Vector Assembler

- VectorAssembler(inputCols, outputCol)
 - inputCols
 - The list of original columns to include in the new column of type Vector
 - The following input column types are accepted
 - all numeric types, boolean type, and vector type
 - Boolean values are mapped to 1 (True) and o (False)
 - outputCol
 - The name of the new output column

Vector Assembler

- When the transform method of VectorAssembler is invoked on a DataFrame the returned DataFrame
 - Has a new column (outputCol)
 - For each record, the value of the new column is the "concatenation" of the values of the input columns
 - Has also all the columns of the input DataFrame

Vector Assembler: Example

- Consider an input DataFrame with three columns
- Create a new DataFrame with a new column containing the "concatenation" of colB and colC in a new vector column
 - The name of the new column is set to features

colA	colB	colC
1	4.5	True
2	0.6	True
3	1.5	False
4	12.1	True
5	0.0	True

colA	colB	colC	features
1	4.5	True	[4.5,1.0]
2	0.6	True	[0.6,1.0]
3	1.5	False	[1.5,0.0]
4	12.1	True	[12.1,1.0]
5	0.0	True	[0.0,1.0]

Vector Assembler: Example

- Consider an input DataFrame with three columns
- Create a new DataFrame with a new column containing the "concatenation" of colB and colC in a new vector
 - The name of the new column is set to features

colA	colB	colC
1	4.5	True
2	0.6	True
3	1.5	False
4	12.1	True
5	0.0	True

colA	colB	colC	features
1	4.5	True	[4.5,1.0]
2	0.6	True	[0.6,1.0]
3	1.5	False	[1.5,0.0]
4	12.1	True	[12.1,1.0]
5	0.0	True	[0.0,1.0]

Vector Assembler: Example

from pyspark.mllib.linalg import Vectors from pyspark.ml.feature import VectorAssembler

input and output folders inputPath = "data/exampleDataAssembler.csv" # Create a DataFrame from the input data inputDF = spark.read.load(inputPath,\ format="csv", header=True, inferSchema=True)

Create a VectorAssembler that combines columns colB and colC # The new vetor column is called features myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\ outputCol = 'features')

Apply myVectorAssembler on the input DataFrame transformedDF = myVectorAssembler.transform(inputDF)

Data Normalization

- MLlib provides a set of normalization algorithms (called scalers)
 - StandardScaler
 - MinMaxScaler
 - Normalizer
 - MaxAbsScaler

Standard Scaler

- StandardScaler (pyspark.ml.feature.
 StandardScaler) is an Estimator that returns a Transformer
 - (pyspark.ml.feature.StandardScalerModel)
- StandardScalerModel transforms a vector column of an input DataFrame normalizing each "feature" of the input vector column to have unit standard deviation and/or zero mean

Standard Scaler

- StandardScaler(inputCol, outputCol)
 - inputCol
 - The name of the input vector column (of doubles) to normalize
 - outputCol
- The name of the new output normalized vector column
 Invoke the fit method of StandardScaler on the input DataFrame to infer a StandardScalerModel
 - The returned model is a Transformer

Standard Scaler

- Invoke the transform method of StandardScalerModel on the input DataFrame to create a new DataFrame that
 - Has a new column (outputCol)
 - For each record, the value of the new column is the normalized version of the input vector column
 - Has also all the columns of the input DataFrame

Standard Scaler: Example

- Consider an input DataFrame with four columns
- Create a new DataFrame with a new column containing the normalized version of the vector column features
 - Set the name of the new column to scaledFeatures

colA	colB	colC	features	colA	colB	colC	features	scaledFeatures
1	4.5	True	[4.5,1.0]	1	4.5	True	[4.5,1.0]	[0.903,2.236]
2	0.6	True	[0.6,1.0]	2	0.6	True	[0.6,1.0]	[0.120,2.236]
3	1.5	False	[1.5,0.0]	3	1.5	False	[1.5,0.0]	[0.301, 0.0]
4	12.1	True	[12.1,1.0]	4	12.1	True	[12.1,1.0]	[2.428,2.236]
5	0.0	True	[0.0,1.0]	5	0.0	True	[0.0,1.0]	[0.0 ,2.236]

Standard Scaler: Example

```
from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StandardScaler
```

input and output folders inputPath = "data/exampleDataAssembler.csv" # Create a DataFrame from the input data inputDF = spark.read.load(inputPath,\ format="csv", header=True, inferSchema=True) # Create a VectorAssembler that combines columns colB and colC # The new vetor column is called features myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\ outputCol = 'features')

Apply myVectorAssembler on the input DataFrame transformedDF = myVectorAssembler.transform(inputDF)

Standard Scaler: Example

Create a Standard Scaler to scale the content of features myScaler = StandardScaler(inputCol="features", outputCol="scaledFeatures")

Compute summary statistics by fitting the StandardScaler # Before normalizing the content of the data we need to compute mean and # standard deviation of the analyzed data scalerModel = myScaler.fit(transformedDF)

Apply myScaler on the input column features scaledDF = scalerModel.transform(transformedDF)

Categorical columns

- Frequently the input data are characterized by categorical attributes (i.e., string columns)
 - The class label of the classification problem is a categorical attribute
- The Spark MLlib classification and regression algorithms work only with numerical values
- Categorical columns must be mapped to double values

StringIndexer

- StringIndexer (pyspark.ml.feature. StringIndexer) is an Estimator that returns a Transformer of type pyspark.ml.feature.StringIndexerModel
- StringIndexerModel encodes a string column of "labels" to a column of "label indices"
 - Each distinct value of the input string column is mapped to an integer value in [o, num. distinct values)

StringIndexer

- StringIndexer(inputCol, outputCol)
 - inputCol
 - The name of the input string column to map to a set of integers
 - outputCol
 - The name of the new output column
- Invoke the fit method of StringIndexer on the input DataFrame to infer a StringIndexerModel
 - The returned model is a Transformer

StringIndexer

- Invoke the transform method of StringIndexerModel on the input DataFrame to create a new DataFrame that
 - Has a new column (outputCol)
 - For each record, the value of the new column is the integer (casted to a double) associated with the value of the input string column
 - Has also all the columns of the input DataFrame

StringIndexer : Example

- Consider an input DataFrame with two columns
- Create a new DataFrame with a new column containing the "integer" version of the string column category
 - Set the name of the new column to categoryIndex

id	category
1	а
2	b
3	С
4	С
5	а

id	category	categoryIndex
1	а	0.0
2	b	2.0
3	С	1.0
4	С	1.0
5	а	0.0

StringIndexer : Example

from pyspark.mllib.linalg import Vectors from pyspark.ml.feature import StringIndexer

```
# input DataFrame
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\
["id", "category"])
```

Create a StringIndexer to map the content of category to a set of "integers"
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")

Analyze the input data to define the mapping string -> integer indexerModel = indexer.fit(df)

Apply indexerModel on the input column category indexedDF = indexerModel.transform(df)

IndexToString

- IndexToString(pyspark.ml.feature.
 IndexToString), which is symmetrical to StringIndexer, is a Transformer that maps a column of "label indices" back to a column containing the original "labels" as strings
 - Classification models return the integer version of the predicted label values. We must remap those values to the original ones to obtain human readable results

IndexToString

- IndexToString(inputCol, outputCol, labels)
 - inputCol
 - The name of the input numerical column to map to the original a set of string "labels"
 - outputCol
 - The name of the new output column
 - labels
 - The list of original "labels"/strings
 - The mapping with integer values is given by the positions of the strings inside labels
- Invoke the transform method of IndexToString on the input DataFrame to create a new DataFrame that
 - Has a new column (outputCol)
 - For each record, the value of the new column is the original string associated with the value of the input numerical column
 - Has also all the columns of the input DataFrame

IndexToString: Example

- Consider an input DataFrame with two columns
- Create a new DataFrame with a new column containing the "integer" version of the string column category and then map it back to the string version in a new column

id	category	id	category	categoryIndex	originalCategory
1	а	1	а	0.0	а
2	b	2	b	2.0	b
3	С	3	С	1.0	С
4	С	4	С	1.0	С
5	а	5	а	0.0	а

IndexToString: Example

from pyspark.mllib.linalg import Vectors from pyspark.ml.feature import StringIndexer from pyspark.ml.feature import IndexToString

input DataFrame df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\ ["id", "category"])

Create a StringIndexer to map the content of category to a set of "integers"
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")

Analyze the input data to define the mapping string -> integer indexerModel = indexer.fit(df)

Apply indexerModel on the input column category indexedDF = indexerModel.transform(df)

IndexToString: Example

Create an IndexToString to map the content of numerical attribute categoryIndex # to the original string value converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory",\ labels=indexerModel.labels)

Apply converter on the input column categoryIndex reconvertedDF = converter.transform(indexedDF)

SQLTransformer

- SQLTransformer (pyspark.ml.feature. SQLTransformer) is a transformer that implements the transformations which are defined by SQL queries
 - "SELECT attributes, function(attributes) FROM __THIS___ [WHERE ...] [HAVING ..]"
 - __THIS__ represents the DataFrame on which the SQLTransformer is invoked
- SQLTransformer executes an SQL query on the input DataFrame and returns a new DataFrame associated with the result of the query

SQLTransformer

- SQLTransformer(statement)
 - statement
 - The SQL query to execute

SQLTransformer

 When the transform method of SQLTransformer is invoked on a DataFrame the returned DataFrame is the result of the executed statement query

SQLTransformer : Example

- Consider an input DataFrame with two columns: "text" and "id"
- Create a new DataFrame with a new column, called "numWords", containing the number of words occurring in column "text"

id	text	id	text	numWords
1	This is Spark	1	This is Spark	3
2	Spark	2	Spark	1
3	Another sample sentence of words	3	Another sample sentence of words	5
4	Paolo Rossi	4	Paolo Rossi	2
5	Giovanni	5	Giovanni	1

SQLTransformer : Example

from pyspark.sql.types import *
from pyspark.ml.feature import SQLTransformer

#Local Input data
inputList = [(1, "This is Spark"),\
 (2, "Spark"),\
 (3, "Another sample sentence of words"),\
 (4, "Paolo Rossi"),\
 (5, "Giovanni")]

Create the initial DataFrame

dfInput = spark.createDataFrame(inputList, ["id", "text"])

SQLTransformer : Example

Define a UDF function that that counts the number of words in an input string spark.udf.register("countWords", lambda text: len(text.split(" ")), IntegerType())

Define an SQLTranformer to create the columns we are interested in sqlTrans = SQLTransformer(statement="""SELECT *, countWords(text) AS numLines FROM __THIS__""")

Create the new DataFrame by invoking the transform method of the # defined SQLTranformer newDF = sqlTrans.transform(dfInput)