


 Spark MLlib is the Spark component 
providing the machine learning/data mining 
algorithms 

 Pre-processing techniques 

 Classification (supervised learning) 

 Clustering (unsupervised learning) 

 Itemset mining 
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 MLlib APIs are divided into two packages: 
 pyspark.mllib 

▪ It contains the original APIs built on top of RDDs 

▪ This version of the APIs is in maintenance mode and will 
be probably deprecated in the next releases of Spark 

 pyspark.ml 
▪ It provides higher-level API built on top of DataFrames 

(i.e, Dataset<Row>) for constructing ML pipelines 

▪ It is recommended because the DataFrame-based API is 
more versatile and flexible 

▪ It provides the pipeline concept 
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We will use the DataFrame-based  version 

 





 Spark MLlib is based on a set of basic local 
and distributed data types 

 Local vector 

 Local matrix 

 Distributed matrix 

 .. 

 DataFrames for ML-based applications 
contain objects based on these basic data 
types 
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 Local pyspark.ml.linalg.Vector objects in MLlib 
are used to store vectors of double values 

 Dense and sparse vectors are supported 

 The MLlib algorithms work on vectors of doubles 

 Vectors of doubles are used to represent the input 
records/data 

▪ One vector for each input record 

 Non double attributes/values must be mapped to 
double values before applying MLlib algorithms 
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 Dense and sparse representations are 
supported 

 E.g., the vector of doubles [1.0, 0.0, 3.0] can 
be represented 
 in dense format as [1.0, 0.0, 3.0]  

 or in sparse format as (3, [0, 2], [1.0, 3.0]) 
▪ where 3 is the size of the vector 

▪ The array [0,2] contains the indexes of the non-zero cells 

▪ The array [1.0, 3.0] contains the values of the non-zero 
cells 
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 The following code shows how dense and sparse 
vectors can be created in Spark 

 

 from pyspark.ml.linalg import Vectors 
 
 # Create a dense vector [1.0, 0.0, 3.0] 
 dv = Vectors.dense([1.0, 0.0, 3.0]) 
  
 # Create a sparse vector [1.0, 0.0, 3.0] by specifying  
 # its indices and values corresponding to non-zero entries 
 #  by means of a dictionary 
 sv = Vectors.sparse(3, { 0:1.0, 2:3.0 }) 
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Size of the vector 

Index and value of a non-empty cell 

Dictionary of index:value pairs 





 Spark MLlib uses DataFrames as input data 
 The input of the MLlib algorithms are 

structured data (i.e., tables) 
 All input data must be represented by means 

of “tables” before applying the MLlib 
algorithms 

 Also document collections must be transformed 
in a tabular format before applying the MLlib 
algorithms 
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 The DataFrames used and created by the MLlib 
algorithms are characterized by several columns 

 Each column is associated with a different role/meaning 
 label 

▪ Target of a classification/regression analysis 

 features 
▪ A vector containing the values of the attributes/features of the input 

record/data points 

 text  
▪ The original text of a document before being transformed in a tabular 

format 

 prediction 
▪ Predicted value of a classification/regression analysis 

 .. 
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 Transformer 

 A Transformer is an ML algorithm/procedure that 
transforms one DataFrame into another DataFrame 
by means of the method transform(inputDataFrame) 

▪ E.g., A feature transformer might take a DataFrame, read a 
column (e.g., text), map it into a new column (e.g., feature 
vectors), and output a new DataFrame with the mapped 
column appended 

▪ E.g., a classification model is a Transformer that can be 
applied on a DataFrame with features and transforms it into a 
DataFrame with also the prediction column 
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 Estimator 
 An Estimator is an ML algorithm/procedure that is fit 

on an input (training) DataFrame to produce a 
Transformer 
▪ Each Estimator implements a method fit(), which accepts a 

DataFrame and produces a Model of type Transformer 

 An Estimator abstracts the concept of a learning 
algorithm or any algorithm that fits/trains on an input 
dataset and returns a model 
▪ E.g., The Logistic Regression classification algorithm is an 

Estimator 
▪ Calling fit(input training DataFrame) on it a Logistic Regression 

Model is built, which is a Model/a Transformer 
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 Pipeline 
 A Pipeline chains multiple Transformers and 

Estimators together to specify a Machine 
learning/Data Mining workflow 
▪ The output of a transformer/estimator is the input of the next 

one in the pipeline 

 E.g., a simple text document processing workflow 
aiming at building a classification model includes 
several steps 
▪ Split each document into a set of words 
▪ Convert each set of words into a numerical feature vector 
▪ Learn a prediction model using the feature vectors and the 

associated class labels 
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 Parameters 

 Transformers and Estimators share common APIs 
for specifying the values of their parameters 
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 In the new APIs of Spark MLlib the use of the 
pipeline approach is preferred/recommended 

 This approach is based on the following steps 
1. The set of Transformers and Estimators that are 

needed are instantiated 

2. A pipeline object is created and the sequence of 
transformers and estimators associated with the 
pipeline are specified 

3. The pipeline is executed and a model is trained 

4. (optional) The model is applied on new data     
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 Input data must be preprocessed before 
applying machine learning and data mining 
algorithms 
 To organize data in a format consistent with the 

one expected by the applied algorithms 

 To define good (predictive) features 

 To remove bias 
▪ E.g., normalization 

 To remove noise and missing values 

 … 
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 MLlib provides a set of transformers than can be 
used to extract, transform and select features 
from DataFrames 
 Feature Extractors 

▪ TF-IDF, Word2Vec, .. 

 Feature Transformers 
▪ Tokenizer, StopWordsRemover, StringIndexer, IndexToString, 

OneHotEncoderEstimator, Normalizer, … 

 Feature Selectors 
▪ VectorSlicer, … 

 Up-to-date list 
 https://spark.apache.org/docs/latest/ml-features.html 
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 Several techniques are provided by MLlib to 
transform features 

 They are used to create new columns/features by 
combining or transforming other features 

 You can perform feature transformations and 
feature creations by using the standard methods 
you already know for DataFrames and RDDs 
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 VectorAssembler  
(pyspark.ml.feature.VectorAssembler) is a 
transformer that combines a given list of 
columns into a single vector column 

 Useful for combining features into a single feature 
vector before applying ML algorithms 
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 VectorAssembler(inputCols, outputCol) 

 inputCols 

▪ The list of original columns to include in the new column 
of type Vector 

▪ The following input column types are accepted 
▪ all numeric types, boolean type, and vector type  

▪ Boolean values are mapped to 1 (True) and 0 (False) 

 outputCol 

▪ The name of the new output column 
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 When the transform method of 
VectorAssembler is invoked on a DataFrame 
the returned DataFrame 

 Has a new column (outputCol) 

▪ For each record, the value of the new column is the 
“concatenation” of the values of the input columns 

 Has also all the columns of the input DataFrame 
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 Consider an input DataFrame with three 
columns 

 Create a new DataFrame with a new column 
containing the “concatenation” of colB and 
colC in a new vector column 

 The name of the new column is set to features 
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colA colB colC 

1 4.5 True 

2 0.6 True 

3 1.5 False 

4 12.1 True 

5 0.0 True 

colA colB colC features 

1 4.5 True [4.5,1.0] 

2 0.6 True [0.6,1.0] 

3 1.5 False [1.5,0.0] 

4 12.1 True [12.1,1.0] 

5 0.0 True [0.0,1.0] 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
 
# input and output folders 
inputPath = "data/exampleDataAssembler.csv“ 
# Create a DataFrame from the input data 
inputDF = spark.read.load(inputPath,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Create a VectorAssembler that combines columns colB and colC 
# The new vetor column is called features 
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\ 
            outputCol = 'features') 
 
# Apply myVectorAssembler on the input DataFrame 
transformedDF = myVectorAssembler.transform(inputDF) 
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 MLlib provides a set of normalization 
algorithms (called scalers) 

 StandardScaler 

 MinMaxScaler 

 Normalizer 

 MaxAbsScaler 
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 StandardScaler (pyspark.ml.feature. 
StandardScaler) is an Estimator that returns a 
Transformer 
(pyspark.ml.feature.StandardScalerModel)  

 StandardScalerModel transforms a vector 
column of an input DataFrame normalizing 
each “feature” of the input vector column to 
have unit standard deviation and/or zero 
mean 
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 StandardScaler(inputCol, outputCol) 
 inputCol 

▪ The name of the input vector column (of doubles) to 
normalize 

 outputCol 
▪ The name of the new output normalized vector column 

 Invoke the fit method of StandardScaler on 
the input DataFrame to infer a 
StandardScalerModel 
 The returned model is a Transformer 
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 Invoke the transform method of 
StandardScalerModel on the input 
DataFrame to create a new DataFrame that 

 Has a new column (outputCol) 

▪ For each record, the value of the new column is the 
normalized version of the input vector column 

 Has also all the columns of the input DataFrame 
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 Consider an input DataFrame with four 
columns 

 Create a new DataFrame with a new column 
containing the normalized version of the 
vector column features 

 Set the name of the new column to scaledFeatures 
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colA colB colC features scaledFeatures 

1 4.5 True [4.5,1.0] [0.903,2.236] 

2 0.6 True [0.6,1.0] [0.120,2.236] 

3 1.5 False [1.5,0.0] [0.301,  0.0] 

4 12.1 True [12.1,1.0] [2.428,2.236] 

5 0.0 True [0.0,1.0] [0.0  ,2.236] 

colA colB colC features 

1 4.5 True [4.5,1.0] 

2 0.6 True [0.6,1.0] 

3 1.5 False [1.5,0.0] 

4 12.1 True [12.1,1.0] 

5 0.0 True [0.0,1.0] 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.feature import StandardScaler 
 
# input and output folders 
inputPath = "data/exampleDataAssembler.csv“ 
# Create a DataFrame from the input data 
inputDF = spark.read.load(inputPath,\ 
                     format="csv", header=True, inferSchema=True) 
# Create a VectorAssembler that combines columns colB and colC 
# The new vetor column is called features 
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\ 
            outputCol = 'features') 
 
# Apply myVectorAssembler on the input DataFrame 
transformedDF = myVectorAssembler.transform(inputDF) 
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# Create a Standard Scaler to scale the content of features 
myScaler = StandardScaler(inputCol="features", outputCol="scaledFeatures") 
 
# Compute summary statistics by fitting the StandardScaler 
# Before normalizing the content of the data we need to compute mean and  
# standard deviation of the analyzed data 
scalerModel = myScaler.fit(transformedDF) 
 
# Apply myScaler on the input column features 
scaledDF = scalerModel.transform(transformedDF) 

40 



 Frequently the input data are characterized 
by categorical attributes (i.e., string columns) 

 The class label of the classification problem is a 
categorical attribute 

 The Spark MLlib classification and regression 
algorithms work only with numerical values 

 Categorical columns must be mapped to 
double values 
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 StringIndexer (pyspark.ml.feature. 
StringIndexer) is an Estimator that returns a 
Transformer of type 
pyspark.ml.feature.StringIndexerModel 

 StringIndexerModel encodes a string column 
of “labels” to a column of “label indices” 

 Each distinct value of the input string column is 
mapped to an integer value in [0, num. distinct 
values) 
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 StringIndexer(inputCol, outputCol) 
 inputCol 

▪ The name of the input string column to map to a set of 
integers 

 outputCol 
▪ The name of the new output column 

 Invoke the fit method of StringIndexer on the 
input DataFrame to infer a 
StringIndexerModel 
 The returned model is a Transformer 
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 Invoke the transform method of 
StringIndexerModel on the input DataFrame 
to create a new DataFrame that 

 Has a new column (outputCol) 

▪ For each record, the value of the new column is the 
integer (casted to a double) associated with the value of 
the input string column 

 Has also all the columns of the input DataFrame 
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 Consider an input DataFrame with two 
columns 

 Create a new DataFrame with a new column 
containing the “integer” version of the string 
column category 

 Set the name of the new column to categoryIndex 
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id category categoryIndex 

1 a 0.0 

2 b 2.0 

3 c 1.0 

4 c 1.0 

5 a 0.0 

id category 

1 a 

2 b 

3 c 

4 c 

5 a 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import StringIndexer 
 
# input DataFrame 
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\ 
                         ["id", "category"]) 
 
# Create a StringIndexer to map the content of category to a set of “integers” 
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex") 
 
# Analyze the input data to define the mapping string -> integer 
indexerModel = indexer.fit(df) 
 
# Apply indexerModel on the input column category 
indexedDF = indexerModel.transform(df) 
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 IndexToString(pyspark.ml.feature. 
IndexToString), which is symmetrical to 
StringIndexer, is a Transformer that maps a 
column of “label indices” back to a column 
containing the original “labels” as strings 

 Classification models return the integer version of 
the predicted label values. We must remap those 
values to the original ones to obtain human 
readable results 
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 IndexToString(inputCol, outputCol, labels) 
 inputCol 

▪ The name of the input numerical column to map to the original a set of string 
“labels” 

 outputCol 
▪ The name of the new output column 

 labels 
▪ The list of original “labels”/strings 
▪ The mapping with integer values is given by the positions of the strings inside 

labels 
 Invoke the transform method of IndexToString on the input 

DataFrame to create a new DataFrame that 
 Has a new column (outputCol) 

▪ For each record, the value of the new column is the original string associated 
with the value of the input numerical column 

 Has also all the columns of the input DataFrame 

48 



 Consider an input DataFrame with two 
columns 

 Create a new DataFrame with a new column 
containing the “integer” version of the string 
column category and then map it back to the 
string version in a new column 
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id category categoryIndex originalCategory 

1 a 0.0 a 

2 b 2.0 b 

3 c 1.0 c 

4 c 1.0 c 

5 a 0.0 a 

id category 

1 a 

2 b 

3 c 

4 c 

5 a 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import StringIndexer 
from pyspark.ml.feature import IndexToString 
 
# input DataFrame 
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\ 
                         ["id", "category"]) 
 
# Create a StringIndexer to map the content of category to a set of “integers” 
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex") 
 
# Analyze the input data to define the mapping string -> integer 
indexerModel = indexer.fit(df) 
 
# Apply indexerModel on the input column category 
indexedDF = indexerModel.transform(df) 
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# Create an IndexToString to map the content of numerical attribute categoryIndex  
# to the original string value 
converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory",\ 
                    labels=indexerModel.labels) 
 
# Apply converter on the input column categoryIndex 
reconvertedDF = converter.transform(indexedDF) 
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 SQLTransformer (pyspark.ml.feature. 
SQLTransformer) is a transformer that 
implements  the transformations which are 
defined by SQL queries 

▪ “SELECT attributes, function(attributes) 
FROM __THIS__ 
[WHERE …] 
[HAVING ..]” 

▪ __THIS__ represents the DataFrame on which the 
SQLTransformer is invoked 

 SQLTransformer  executes an SQL query on the 
input DataFrame and returns a new DataFrame 
associated with the result of the query  
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 SQLTransformer(statement) 

 statement 

▪ The SQL query to execute 
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 When the transform method of 
SQLTransformer is invoked on a DataFrame 
the returned DataFrame is the result of the 
executed statement query 
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 Consider an input DataFrame with two 
columns: “text” and “id” 

 Create a new DataFrame with a new column, 
called “numWords”, containing the number 
of words occurring in column “text” 
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id text 

1 This is Spark  

2 Spark  

3 Another  sample sentence of words  

4 Paolo Rossi 

5 Giovanni 

id text numWords 

1 This is Spark  3 

2 Spark  1 

3 Another  sample sentence of words  5 

4 Paolo Rossi 2 

5 Giovanni 1 



from pyspark.sql.types import * 
from pyspark.ml.feature import SQLTransformer 
 
#Local Input data 
inputList = [(1, "This is Spark"),\ 
                     (2, "Spark"),\ 
                        (3, "Another  sample sentence of words"),\ 
          (4, "Paolo Rossi"),\ 
                     (5, "Giovanni")] 
 
# Create the initial DataFrame 
dfInput = spark.createDataFrame(inputList, ["id", "text"]) 
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# Define a UDF function that that counts the number of words in an input string 
spark.udf.register("countWords", lambda text: len(text.split(" ")), IntegerType()) 
 
# Define an SQLTranformer to create the columns we are interested in 
sqlTrans = SQLTransformer(statement="""SELECT *, 
countWords(text) AS numLines 
FROM __THIS__""") 
 
# Create the new DataFrame by invoking the transform method of the  
# defined SQLTranformer  
newDF = sqlTrans.transform(dfInput) 
 

57 


