


 Spark MLlib is the Spark component 
providing the machine learning/data mining 
algorithms 

 Pre-processing techniques 

 Classification (supervised learning) 

 Clustering (unsupervised learning) 

 Itemset mining 
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 MLlib APIs are divided into two packages: 
 pyspark.mllib 

▪ It contains the original APIs built on top of RDDs 

▪ This version of the APIs is in maintenance mode and will 
be probably deprecated in the next releases of Spark 

 pyspark.ml 
▪ It provides higher-level API built on top of DataFrames 

(i.e, Dataset<Row>) for constructing ML pipelines 

▪ It is recommended because the DataFrame-based API is 
more versatile and flexible 

▪ It provides the pipeline concept 
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We will use the DataFrame-based  version 

 





 Spark MLlib is based on a set of basic local 
and distributed data types 

 Local vector 

 Local matrix 

 Distributed matrix 

 .. 

 DataFrames for ML-based applications 
contain objects based on these basic data 
types 
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 Local pyspark.ml.linalg.Vector objects in MLlib 
are used to store vectors of double values 

 Dense and sparse vectors are supported 

 The MLlib algorithms work on vectors of doubles 

 Vectors of doubles are used to represent the input 
records/data 

▪ One vector for each input record 

 Non double attributes/values must be mapped to 
double values before applying MLlib algorithms 
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 Dense and sparse representations are 
supported 

 E.g., the vector of doubles [1.0, 0.0, 3.0] can 
be represented 
 in dense format as [1.0, 0.0, 3.0]  

 or in sparse format as (3, [0, 2], [1.0, 3.0]) 
▪ where 3 is the size of the vector 

▪ The array [0,2] contains the indexes of the non-zero cells 

▪ The array [1.0, 3.0] contains the values of the non-zero 
cells 
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 The following code shows how dense and sparse 
vectors can be created in Spark 

 

 from pyspark.ml.linalg import Vectors 
 
 # Create a dense vector [1.0, 0.0, 3.0] 
 dv = Vectors.dense([1.0, 0.0, 3.0]) 
  
 # Create a sparse vector [1.0, 0.0, 3.0] by specifying  
 # its indices and values corresponding to non-zero entries 
 #  by means of a dictionary 
 sv = Vectors.sparse(3, { 0:1.0, 2:3.0 }) 
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Size of the vector 

Index and value of a non-empty cell 

Dictionary of index:value pairs 





 Spark MLlib uses DataFrames as input data 
 The input of the MLlib algorithms are 

structured data (i.e., tables) 
 All input data must be represented by means 

of “tables” before applying the MLlib 
algorithms 

 Also document collections must be transformed 
in a tabular format before applying the MLlib 
algorithms 
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 The DataFrames used and created by the MLlib 
algorithms are characterized by several columns 

 Each column is associated with a different role/meaning 
 label 

▪ Target of a classification/regression analysis 

 features 
▪ A vector containing the values of the attributes/features of the input 

record/data points 

 text  
▪ The original text of a document before being transformed in a tabular 

format 

 prediction 
▪ Predicted value of a classification/regression analysis 

 .. 
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 Transformer 

 A Transformer is an ML algorithm/procedure that 
transforms one DataFrame into another DataFrame 
by means of the method transform(inputDataFrame) 

▪ E.g., A feature transformer might take a DataFrame, read a 
column (e.g., text), map it into a new column (e.g., feature 
vectors), and output a new DataFrame with the mapped 
column appended 

▪ E.g., a classification model is a Transformer that can be 
applied on a DataFrame with features and transforms it into a 
DataFrame with also the prediction column 
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 Estimator 
 An Estimator is an ML algorithm/procedure that is fit 

on an input (training) DataFrame to produce a 
Transformer 
▪ Each Estimator implements a method fit(), which accepts a 

DataFrame and produces a Model of type Transformer 

 An Estimator abstracts the concept of a learning 
algorithm or any algorithm that fits/trains on an input 
dataset and returns a model 
▪ E.g., The Logistic Regression classification algorithm is an 

Estimator 
▪ Calling fit(input training DataFrame) on it a Logistic Regression 

Model is built, which is a Model/a Transformer 
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 Pipeline 
 A Pipeline chains multiple Transformers and 

Estimators together to specify a Machine 
learning/Data Mining workflow 
▪ The output of a transformer/estimator is the input of the next 

one in the pipeline 

 E.g., a simple text document processing workflow 
aiming at building a classification model includes 
several steps 
▪ Split each document into a set of words 
▪ Convert each set of words into a numerical feature vector 
▪ Learn a prediction model using the feature vectors and the 

associated class labels 
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 Parameters 

 Transformers and Estimators share common APIs 
for specifying the values of their parameters 
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 In the new APIs of Spark MLlib the use of the 
pipeline approach is preferred/recommended 

 This approach is based on the following steps 
1. The set of Transformers and Estimators that are 

needed are instantiated 

2. A pipeline object is created and the sequence of 
transformers and estimators associated with the 
pipeline are specified 

3. The pipeline is executed and a model is trained 

4. (optional) The model is applied on new data     

22 





 Input data must be preprocessed before 
applying machine learning and data mining 
algorithms 
 To organize data in a format consistent with the 

one expected by the applied algorithms 

 To define good (predictive) features 

 To remove bias 
▪ E.g., normalization 

 To remove noise and missing values 

 … 
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 MLlib provides a set of transformers than can be 
used to extract, transform and select features 
from DataFrames 
 Feature Extractors 

▪ TF-IDF, Word2Vec, .. 

 Feature Transformers 
▪ Tokenizer, StopWordsRemover, StringIndexer, IndexToString, 

OneHotEncoderEstimator, Normalizer, … 

 Feature Selectors 
▪ VectorSlicer, … 

 Up-to-date list 
 https://spark.apache.org/docs/latest/ml-features.html 
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 Several techniques are provided by MLlib to 
transform features 

 They are used to create new columns/features by 
combining or transforming other features 

 You can perform feature transformations and 
feature creations by using the standard methods 
you already know for DataFrames and RDDs 
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 VectorAssembler  
(pyspark.ml.feature.VectorAssembler) is a 
transformer that combines a given list of 
columns into a single vector column 

 Useful for combining features into a single feature 
vector before applying ML algorithms 
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 VectorAssembler(inputCols, outputCol) 

 inputCols 

▪ The list of original columns to include in the new column 
of type Vector 

▪ The following input column types are accepted 
▪ all numeric types, boolean type, and vector type  

▪ Boolean values are mapped to 1 (True) and 0 (False) 

 outputCol 

▪ The name of the new output column 
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 When the transform method of 
VectorAssembler is invoked on a DataFrame 
the returned DataFrame 

 Has a new column (outputCol) 

▪ For each record, the value of the new column is the 
“concatenation” of the values of the input columns 

 Has also all the columns of the input DataFrame 
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 Consider an input DataFrame with three 
columns 

 Create a new DataFrame with a new column 
containing the “concatenation” of colB and 
colC in a new vector column 

 The name of the new column is set to features 

31 

colA colB colC 

1 4.5 True 

2 0.6 True 

3 1.5 False 

4 12.1 True 

5 0.0 True 

colA colB colC features 

1 4.5 True [4.5,1.0] 

2 0.6 True [0.6,1.0] 

3 1.5 False [1.5,0.0] 

4 12.1 True [12.1,1.0] 

5 0.0 True [0.0,1.0] 
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colA colB colC 
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3 1.5 False 

4 12.1 True 

5 0.0 True 
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1 4.5 True [4.5,1.0] 

2 0.6 True [0.6,1.0] 

3 1.5 False [1.5,0.0] 

4 12.1 True [12.1,1.0] 

5 0.0 True [0.0,1.0] 

Columns of DataFrames can also be vectors 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
 
# input and output folders 
inputPath = "data/exampleDataAssembler.csv“ 
# Create a DataFrame from the input data 
inputDF = spark.read.load(inputPath,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Create a VectorAssembler that combines columns colB and colC 
# The new vetor column is called features 
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\ 
            outputCol = 'features') 
 
# Apply myVectorAssembler on the input DataFrame 
transformedDF = myVectorAssembler.transform(inputDF) 
 

33 



 MLlib provides a set of normalization 
algorithms (called scalers) 

 StandardScaler 

 MinMaxScaler 

 Normalizer 

 MaxAbsScaler 
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 StandardScaler (pyspark.ml.feature. 
StandardScaler) is an Estimator that returns a 
Transformer 
(pyspark.ml.feature.StandardScalerModel)  

 StandardScalerModel transforms a vector 
column of an input DataFrame normalizing 
each “feature” of the input vector column to 
have unit standard deviation and/or zero 
mean 
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 StandardScaler(inputCol, outputCol) 
 inputCol 

▪ The name of the input vector column (of doubles) to 
normalize 

 outputCol 
▪ The name of the new output normalized vector column 

 Invoke the fit method of StandardScaler on 
the input DataFrame to infer a 
StandardScalerModel 
 The returned model is a Transformer 
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 Invoke the transform method of 
StandardScalerModel on the input 
DataFrame to create a new DataFrame that 

 Has a new column (outputCol) 

▪ For each record, the value of the new column is the 
normalized version of the input vector column 

 Has also all the columns of the input DataFrame 
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 Consider an input DataFrame with four 
columns 

 Create a new DataFrame with a new column 
containing the normalized version of the 
vector column features 

 Set the name of the new column to scaledFeatures 
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colA colB colC features scaledFeatures 

1 4.5 True [4.5,1.0] [0.903,2.236] 

2 0.6 True [0.6,1.0] [0.120,2.236] 

3 1.5 False [1.5,0.0] [0.301,  0.0] 

4 12.1 True [12.1,1.0] [2.428,2.236] 

5 0.0 True [0.0,1.0] [0.0  ,2.236] 

colA colB colC features 

1 4.5 True [4.5,1.0] 

2 0.6 True [0.6,1.0] 

3 1.5 False [1.5,0.0] 

4 12.1 True [12.1,1.0] 

5 0.0 True [0.0,1.0] 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.feature import StandardScaler 
 
# input and output folders 
inputPath = "data/exampleDataAssembler.csv“ 
# Create a DataFrame from the input data 
inputDF = spark.read.load(inputPath,\ 
                     format="csv", header=True, inferSchema=True) 
# Create a VectorAssembler that combines columns colB and colC 
# The new vetor column is called features 
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\ 
            outputCol = 'features') 
 
# Apply myVectorAssembler on the input DataFrame 
transformedDF = myVectorAssembler.transform(inputDF) 
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# Create a Standard Scaler to scale the content of features 
myScaler = StandardScaler(inputCol="features", outputCol="scaledFeatures") 
 
# Compute summary statistics by fitting the StandardScaler 
# Before normalizing the content of the data we need to compute mean and  
# standard deviation of the analyzed data 
scalerModel = myScaler.fit(transformedDF) 
 
# Apply myScaler on the input column features 
scaledDF = scalerModel.transform(transformedDF) 
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 Frequently the input data are characterized 
by categorical attributes (i.e., string columns) 

 The class label of the classification problem is a 
categorical attribute 

 The Spark MLlib classification and regression 
algorithms work only with numerical values 

 Categorical columns must be mapped to 
double values 

41 



 StringIndexer (pyspark.ml.feature. 
StringIndexer) is an Estimator that returns a 
Transformer of type 
pyspark.ml.feature.StringIndexerModel 

 StringIndexerModel encodes a string column 
of “labels” to a column of “label indices” 

 Each distinct value of the input string column is 
mapped to an integer value in [0, num. distinct 
values) 
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 StringIndexer(inputCol, outputCol) 
 inputCol 

▪ The name of the input string column to map to a set of 
integers 

 outputCol 
▪ The name of the new output column 

 Invoke the fit method of StringIndexer on the 
input DataFrame to infer a 
StringIndexerModel 
 The returned model is a Transformer 
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 Invoke the transform method of 
StringIndexerModel on the input DataFrame 
to create a new DataFrame that 

 Has a new column (outputCol) 

▪ For each record, the value of the new column is the 
integer (casted to a double) associated with the value of 
the input string column 

 Has also all the columns of the input DataFrame 
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 Consider an input DataFrame with two 
columns 

 Create a new DataFrame with a new column 
containing the “integer” version of the string 
column category 

 Set the name of the new column to categoryIndex 
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id category categoryIndex 

1 a 0.0 

2 b 2.0 

3 c 1.0 

4 c 1.0 

5 a 0.0 

id category 

1 a 

2 b 

3 c 

4 c 

5 a 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import StringIndexer 
 
# input DataFrame 
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\ 
                         ["id", "category"]) 
 
# Create a StringIndexer to map the content of category to a set of “integers” 
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex") 
 
# Analyze the input data to define the mapping string -> integer 
indexerModel = indexer.fit(df) 
 
# Apply indexerModel on the input column category 
indexedDF = indexerModel.transform(df) 
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 IndexToString(pyspark.ml.feature. 
IndexToString), which is symmetrical to 
StringIndexer, is a Transformer that maps a 
column of “label indices” back to a column 
containing the original “labels” as strings 

 Classification models return the integer version of 
the predicted label values. We must remap those 
values to the original ones to obtain human 
readable results 
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 IndexToString(inputCol, outputCol, labels) 
 inputCol 

▪ The name of the input numerical column to map to the original a set of string 
“labels” 

 outputCol 
▪ The name of the new output column 

 labels 
▪ The list of original “labels”/strings 
▪ The mapping with integer values is given by the positions of the strings inside 

labels 
 Invoke the transform method of IndexToString on the input 

DataFrame to create a new DataFrame that 
 Has a new column (outputCol) 

▪ For each record, the value of the new column is the original string associated 
with the value of the input numerical column 

 Has also all the columns of the input DataFrame 
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 Consider an input DataFrame with two 
columns 

 Create a new DataFrame with a new column 
containing the “integer” version of the string 
column category and then map it back to the 
string version in a new column 
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id category categoryIndex originalCategory 

1 a 0.0 a 

2 b 2.0 b 

3 c 1.0 c 

4 c 1.0 c 

5 a 0.0 a 

id category 

1 a 

2 b 

3 c 

4 c 

5 a 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import StringIndexer 
from pyspark.ml.feature import IndexToString 
 
# input DataFrame 
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\ 
                         ["id", "category"]) 
 
# Create a StringIndexer to map the content of category to a set of “integers” 
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex") 
 
# Analyze the input data to define the mapping string -> integer 
indexerModel = indexer.fit(df) 
 
# Apply indexerModel on the input column category 
indexedDF = indexerModel.transform(df) 
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# Create an IndexToString to map the content of numerical attribute categoryIndex  
# to the original string value 
converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory",\ 
                    labels=indexerModel.labels) 
 
# Apply converter on the input column categoryIndex 
reconvertedDF = converter.transform(indexedDF) 
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 SQLTransformer (pyspark.ml.feature. 
SQLTransformer) is a transformer that 
implements  the transformations which are 
defined by SQL queries 

▪ “SELECT attributes, function(attributes) 
FROM __THIS__ 
[WHERE …] 
[HAVING ..]” 

▪ __THIS__ represents the DataFrame on which the 
SQLTransformer is invoked 

 SQLTransformer  executes an SQL query on the 
input DataFrame and returns a new DataFrame 
associated with the result of the query  
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 SQLTransformer(statement) 

 statement 

▪ The SQL query to execute 
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 When the transform method of 
SQLTransformer is invoked on a DataFrame 
the returned DataFrame is the result of the 
executed statement query 
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 Consider an input DataFrame with two 
columns: “text” and “id” 

 Create a new DataFrame with a new column, 
called “numWords”, containing the number 
of words occurring in column “text” 
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id text 

1 This is Spark  

2 Spark  

3 Another  sample sentence of words  

4 Paolo Rossi 

5 Giovanni 

id text numWords 

1 This is Spark  3 

2 Spark  1 

3 Another  sample sentence of words  5 

4 Paolo Rossi 2 

5 Giovanni 1 



from pyspark.sql.types import * 
from pyspark.ml.feature import SQLTransformer 
 
#Local Input data 
inputList = [(1, "This is Spark"),\ 
                     (2, "Spark"),\ 
                        (3, "Another  sample sentence of words"),\ 
          (4, "Paolo Rossi"),\ 
                     (5, "Giovanni")] 
 
# Create the initial DataFrame 
dfInput = spark.createDataFrame(inputList, ["id", "text"]) 
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# Define a UDF function that that counts the number of words in an input string 
spark.udf.register("countWords", lambda text: len(text.split(" ")), IntegerType()) 
 
# Define an SQLTranformer to create the columns we are interested in 
sqlTrans = SQLTransformer(statement="""SELECT *, 
countWords(text) AS numLines 
FROM __THIS__""") 
 
# Create the new DataFrame by invoking the transform method of the  
# defined SQLTranformer  
newDF = sqlTrans.transform(dfInput) 
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