

 Spark MLlib is the Spark component
providing the machine learning/data mining
algorithms

 Pre-processing techniques

 Classification (supervised learning)

 Clustering (unsupervised learning)

 Itemset mining

2

 MLlib APIs are divided into two packages:
 pyspark.mllib

▪ It contains the original APIs built on top of RDDs

▪ This version of the APIs is in maintenance mode and will
be probably deprecated in the next releases of Spark

 pyspark.ml
▪ It provides higher-level API built on top of DataFrames

(i.e, Dataset<Row>) for constructing ML pipelines

▪ It is recommended because the DataFrame-based API is
more versatile and flexible

▪ It provides the pipeline concept

3

 MLlib APIs are divided into two packages:
 pyspark.mllib

▪ It contains the original APIs built on top of RDDs

▪ This version of the APIs is in maintenance mode and will
be probably deprecated in the next releases of Spark

 pyspark.ml
▪ It provides higher-level API built on top of DataFrames

(i.e, Dataset<Row>) for constructing ML pipelines

▪ It is recommended because the DataFrame-based API is
more versatile and flexible

▪ It provides the pipeline concept

4

We will use the DataFrame-based version

 Spark MLlib is based on a set of basic local
and distributed data types

 Local vector

 Local matrix

 Distributed matrix

 ..

 DataFrames for ML-based applications
contain objects based on these basic data
types

6

 Local pyspark.ml.linalg.Vector objects in MLlib
are used to store vectors of double values

 Dense and sparse vectors are supported

 The MLlib algorithms work on vectors of doubles

 Vectors of doubles are used to represent the input
records/data

▪ One vector for each input record

 Non double attributes/values must be mapped to
double values before applying MLlib algorithms

7

 Dense and sparse representations are
supported

 E.g., the vector of doubles [1.0, 0.0, 3.0] can
be represented
 in dense format as [1.0, 0.0, 3.0]

 or in sparse format as (3, [0, 2], [1.0, 3.0])
▪ where 3 is the size of the vector

▪ The array [0,2] contains the indexes of the non-zero cells

▪ The array [1.0, 3.0] contains the values of the non-zero
cells

8

 The following code shows how dense and sparse
vectors can be created in Spark

 from pyspark.ml.linalg import Vectors

 # Create a dense vector [1.0, 0.0, 3.0]
 dv = Vectors.dense([1.0, 0.0, 3.0])

 # Create a sparse vector [1.0, 0.0, 3.0] by specifying
 # its indices and values corresponding to non-zero entries
 # by means of a dictionary
 sv = Vectors.sparse(3, { 0:1.0, 2:3.0 })

9

 The following code shows how dense and sparse
vectors can be created in Spark

 from pyspark.ml.linalg import Vectors

 # Create a dense vector [1.0, 0.0, 3.0]
 dv = Vectors.dense([1.0, 0.0, 3.0])

 # Create a sparse vector [1.0, 0.0, 3.0] by specifying
 # its indices and values corresponding to non-zero entries
 # by means of a dictionary
 sv = Vectors.sparse(3, { 0:1.0, 2:3.0 })

10

Size of the vector

Index and value of a non-empty cell

Dictionary of index:value pairs

 Spark MLlib uses DataFrames as input data
 The input of the MLlib algorithms are

structured data (i.e., tables)
 All input data must be represented by means

of “tables” before applying the MLlib
algorithms

 Also document collections must be transformed
in a tabular format before applying the MLlib
algorithms

16

 The DataFrames used and created by the MLlib
algorithms are characterized by several columns

 Each column is associated with a different role/meaning
 label

▪ Target of a classification/regression analysis

 features
▪ A vector containing the values of the attributes/features of the input

record/data points

 text
▪ The original text of a document before being transformed in a tabular

format

 prediction
▪ Predicted value of a classification/regression analysis

 ..

17

 Transformer

 A Transformer is an ML algorithm/procedure that
transforms one DataFrame into another DataFrame
by means of the method transform(inputDataFrame)

▪ E.g., A feature transformer might take a DataFrame, read a
column (e.g., text), map it into a new column (e.g., feature
vectors), and output a new DataFrame with the mapped
column appended

▪ E.g., a classification model is a Transformer that can be
applied on a DataFrame with features and transforms it into a
DataFrame with also the prediction column

18

 Estimator
 An Estimator is an ML algorithm/procedure that is fit

on an input (training) DataFrame to produce a
Transformer
▪ Each Estimator implements a method fit(), which accepts a

DataFrame and produces a Model of type Transformer

 An Estimator abstracts the concept of a learning
algorithm or any algorithm that fits/trains on an input
dataset and returns a model
▪ E.g., The Logistic Regression classification algorithm is an

Estimator
▪ Calling fit(input training DataFrame) on it a Logistic Regression

Model is built, which is a Model/a Transformer

19

 Pipeline
 A Pipeline chains multiple Transformers and

Estimators together to specify a Machine
learning/Data Mining workflow
▪ The output of a transformer/estimator is the input of the next

one in the pipeline

 E.g., a simple text document processing workflow
aiming at building a classification model includes
several steps
▪ Split each document into a set of words
▪ Convert each set of words into a numerical feature vector
▪ Learn a prediction model using the feature vectors and the

associated class labels

20

 Parameters

 Transformers and Estimators share common APIs
for specifying the values of their parameters

21

 In the new APIs of Spark MLlib the use of the
pipeline approach is preferred/recommended

 This approach is based on the following steps
1. The set of Transformers and Estimators that are

needed are instantiated

2. A pipeline object is created and the sequence of
transformers and estimators associated with the
pipeline are specified

3. The pipeline is executed and a model is trained

4. (optional) The model is applied on new data

22

 Input data must be preprocessed before
applying machine learning and data mining
algorithms
 To organize data in a format consistent with the

one expected by the applied algorithms

 To define good (predictive) features

 To remove bias
▪ E.g., normalization

 To remove noise and missing values

 …

 24

 MLlib provides a set of transformers than can be
used to extract, transform and select features
from DataFrames
 Feature Extractors

▪ TF-IDF, Word2Vec, ..

 Feature Transformers
▪ Tokenizer, StopWordsRemover, StringIndexer, IndexToString,

OneHotEncoderEstimator, Normalizer, …

 Feature Selectors
▪ VectorSlicer, …

 Up-to-date list
 https://spark.apache.org/docs/latest/ml-features.html

 25

26

 Several techniques are provided by MLlib to
transform features

 They are used to create new columns/features by
combining or transforming other features

 You can perform feature transformations and
feature creations by using the standard methods
you already know for DataFrames and RDDs

27

 VectorAssembler
(pyspark.ml.feature.VectorAssembler) is a
transformer that combines a given list of
columns into a single vector column

 Useful for combining features into a single feature
vector before applying ML algorithms

28

 VectorAssembler(inputCols, outputCol)

 inputCols

▪ The list of original columns to include in the new column
of type Vector

▪ The following input column types are accepted
▪ all numeric types, boolean type, and vector type

▪ Boolean values are mapped to 1 (True) and 0 (False)

 outputCol

▪ The name of the new output column

29

 When the transform method of
VectorAssembler is invoked on a DataFrame
the returned DataFrame

 Has a new column (outputCol)

▪ For each record, the value of the new column is the
“concatenation” of the values of the input columns

 Has also all the columns of the input DataFrame

30

 Consider an input DataFrame with three
columns

 Create a new DataFrame with a new column
containing the “concatenation” of colB and
colC in a new vector column

 The name of the new column is set to features

31

colA colB colC

1 4.5 True

2 0.6 True

3 1.5 False

4 12.1 True

5 0.0 True

colA colB colC features

1 4.5 True [4.5,1.0]

2 0.6 True [0.6,1.0]

3 1.5 False [1.5,0.0]

4 12.1 True [12.1,1.0]

5 0.0 True [0.0,1.0]

 Consider an input DataFrame with three
columns

 Create a new DataFrame with a new column
containing the “concatenation” of colB and
colC in a new vector column

 The name of the new column is set to features

32

colA colB colC

1 4.5 True

2 0.6 True

3 1.5 False

4 12.1 True

5 0.0 True

colA colB colC features

1 4.5 True [4.5,1.0]

2 0.6 True [0.6,1.0]

3 1.5 False [1.5,0.0]

4 12.1 True [12.1,1.0]

5 0.0 True [0.0,1.0]

Columns of DataFrames can also be vectors

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

input and output folders
inputPath = "data/exampleDataAssembler.csv“
Create a DataFrame from the input data
inputDF = spark.read.load(inputPath,\
 format="csv", header=True, inferSchema=True)

Create a VectorAssembler that combines columns colB and colC
The new vetor column is called features
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\
 outputCol = 'features')

Apply myVectorAssembler on the input DataFrame
transformedDF = myVectorAssembler.transform(inputDF)

33

 MLlib provides a set of normalization
algorithms (called scalers)

 StandardScaler

 MinMaxScaler

 Normalizer

 MaxAbsScaler

34

 StandardScaler (pyspark.ml.feature.
StandardScaler) is an Estimator that returns a
Transformer
(pyspark.ml.feature.StandardScalerModel)

 StandardScalerModel transforms a vector
column of an input DataFrame normalizing
each “feature” of the input vector column to
have unit standard deviation and/or zero
mean

35

 StandardScaler(inputCol, outputCol)
 inputCol

▪ The name of the input vector column (of doubles) to
normalize

 outputCol
▪ The name of the new output normalized vector column

 Invoke the fit method of StandardScaler on
the input DataFrame to infer a
StandardScalerModel
 The returned model is a Transformer

36

 Invoke the transform method of
StandardScalerModel on the input
DataFrame to create a new DataFrame that

 Has a new column (outputCol)

▪ For each record, the value of the new column is the
normalized version of the input vector column

 Has also all the columns of the input DataFrame

37

 Consider an input DataFrame with four
columns

 Create a new DataFrame with a new column
containing the normalized version of the
vector column features

 Set the name of the new column to scaledFeatures

38

colA colB colC features scaledFeatures

1 4.5 True [4.5,1.0] [0.903,2.236]

2 0.6 True [0.6,1.0] [0.120,2.236]

3 1.5 False [1.5,0.0] [0.301, 0.0]

4 12.1 True [12.1,1.0] [2.428,2.236]

5 0.0 True [0.0,1.0] [0.0 ,2.236]

colA colB colC features

1 4.5 True [4.5,1.0]

2 0.6 True [0.6,1.0]

3 1.5 False [1.5,0.0]

4 12.1 True [12.1,1.0]

5 0.0 True [0.0,1.0]

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StandardScaler

input and output folders
inputPath = "data/exampleDataAssembler.csv“
Create a DataFrame from the input data
inputDF = spark.read.load(inputPath,\
 format="csv", header=True, inferSchema=True)
Create a VectorAssembler that combines columns colB and colC
The new vetor column is called features
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\
 outputCol = 'features')

Apply myVectorAssembler on the input DataFrame
transformedDF = myVectorAssembler.transform(inputDF)

39

Create a Standard Scaler to scale the content of features
myScaler = StandardScaler(inputCol="features", outputCol="scaledFeatures")

Compute summary statistics by fitting the StandardScaler
Before normalizing the content of the data we need to compute mean and
standard deviation of the analyzed data
scalerModel = myScaler.fit(transformedDF)

Apply myScaler on the input column features
scaledDF = scalerModel.transform(transformedDF)

40

 Frequently the input data are characterized
by categorical attributes (i.e., string columns)

 The class label of the classification problem is a
categorical attribute

 The Spark MLlib classification and regression
algorithms work only with numerical values

 Categorical columns must be mapped to
double values

41

 StringIndexer (pyspark.ml.feature.
StringIndexer) is an Estimator that returns a
Transformer of type
pyspark.ml.feature.StringIndexerModel

 StringIndexerModel encodes a string column
of “labels” to a column of “label indices”

 Each distinct value of the input string column is
mapped to an integer value in [0, num. distinct
values)

42

 StringIndexer(inputCol, outputCol)
 inputCol

▪ The name of the input string column to map to a set of
integers

 outputCol
▪ The name of the new output column

 Invoke the fit method of StringIndexer on the
input DataFrame to infer a
StringIndexerModel
 The returned model is a Transformer

43

 Invoke the transform method of
StringIndexerModel on the input DataFrame
to create a new DataFrame that

 Has a new column (outputCol)

▪ For each record, the value of the new column is the
integer (casted to a double) associated with the value of
the input string column

 Has also all the columns of the input DataFrame

44

 Consider an input DataFrame with two
columns

 Create a new DataFrame with a new column
containing the “integer” version of the string
column category

 Set the name of the new column to categoryIndex

45

id category categoryIndex

1 a 0.0

2 b 2.0

3 c 1.0

4 c 1.0

5 a 0.0

id category

1 a

2 b

3 c

4 c

5 a

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import StringIndexer

input DataFrame
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\
 ["id", "category"])

Create a StringIndexer to map the content of category to a set of “integers”
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")

Analyze the input data to define the mapping string -> integer
indexerModel = indexer.fit(df)

Apply indexerModel on the input column category
indexedDF = indexerModel.transform(df)

46

 IndexToString(pyspark.ml.feature.
IndexToString), which is symmetrical to
StringIndexer, is a Transformer that maps a
column of “label indices” back to a column
containing the original “labels” as strings

 Classification models return the integer version of
the predicted label values. We must remap those
values to the original ones to obtain human
readable results

47

 IndexToString(inputCol, outputCol, labels)
 inputCol

▪ The name of the input numerical column to map to the original a set of string
“labels”

 outputCol
▪ The name of the new output column

 labels
▪ The list of original “labels”/strings
▪ The mapping with integer values is given by the positions of the strings inside

labels
 Invoke the transform method of IndexToString on the input

DataFrame to create a new DataFrame that
 Has a new column (outputCol)

▪ For each record, the value of the new column is the original string associated
with the value of the input numerical column

 Has also all the columns of the input DataFrame

48

 Consider an input DataFrame with two
columns

 Create a new DataFrame with a new column
containing the “integer” version of the string
column category and then map it back to the
string version in a new column

49

id category categoryIndex originalCategory

1 a 0.0 a

2 b 2.0 b

3 c 1.0 c

4 c 1.0 c

5 a 0.0 a

id category

1 a

2 b

3 c

4 c

5 a

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import IndexToString

input DataFrame
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\
 ["id", "category"])

Create a StringIndexer to map the content of category to a set of “integers”
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")

Analyze the input data to define the mapping string -> integer
indexerModel = indexer.fit(df)

Apply indexerModel on the input column category
indexedDF = indexerModel.transform(df)

50

Create an IndexToString to map the content of numerical attribute categoryIndex
to the original string value
converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory",\
 labels=indexerModel.labels)

Apply converter on the input column categoryIndex
reconvertedDF = converter.transform(indexedDF)

51

 SQLTransformer (pyspark.ml.feature.
SQLTransformer) is a transformer that
implements the transformations which are
defined by SQL queries

▪ “SELECT attributes, function(attributes)
FROM __THIS__
[WHERE …]
[HAVING ..]”

▪ __THIS__ represents the DataFrame on which the
SQLTransformer is invoked

 SQLTransformer executes an SQL query on the
input DataFrame and returns a new DataFrame
associated with the result of the query

52

 SQLTransformer(statement)

 statement

▪ The SQL query to execute

53

 When the transform method of
SQLTransformer is invoked on a DataFrame
the returned DataFrame is the result of the
executed statement query

54

 Consider an input DataFrame with two
columns: “text” and “id”

 Create a new DataFrame with a new column,
called “numWords”, containing the number
of words occurring in column “text”

55

id text

1 This is Spark

2 Spark

3 Another sample sentence of words

4 Paolo Rossi

5 Giovanni

id text numWords

1 This is Spark 3

2 Spark 1

3 Another sample sentence of words 5

4 Paolo Rossi 2

5 Giovanni 1

from pyspark.sql.types import *
from pyspark.ml.feature import SQLTransformer

#Local Input data
inputList = [(1, "This is Spark"),\
 (2, "Spark"),\
 (3, "Another sample sentence of words"),\
 (4, "Paolo Rossi"),\
 (5, "Giovanni")]

Create the initial DataFrame
dfInput = spark.createDataFrame(inputList, ["id", "text"])

56

Define a UDF function that that counts the number of words in an input string
spark.udf.register("countWords", lambda text: len(text.split(" ")), IntegerType())

Define an SQLTranformer to create the columns we are interested in
sqlTrans = SQLTransformer(statement="""SELECT *,
countWords(text) AS numLines
FROM __THIS__""")

Create the new DataFrame by invoking the transform method of the
defined SQLTranformer
newDF = sqlTrans.transform(dfInput)

57

