

 Spark MLlib is the Spark component
providing the machine learning/data mining
algorithms

 Pre-processing techniques

 Classification (supervised learning)

 Clustering (unsupervised learning)

 Itemset mining

2

 MLlib APIs are divided into two packages:
 pyspark.mllib

▪ It contains the original APIs built on top of RDDs

▪ This version of the APIs is in maintenance mode and will
be probably deprecated in the next releases of Spark

 pyspark.ml
▪ It provides higher-level API built on top of DataFrames

(i.e, Dataset<Row>) for constructing ML pipelines

▪ It is recommended because the DataFrame-based API is
more versatile and flexible

▪ It provides the pipeline concept

3

 MLlib APIs are divided into two packages:
 pyspark.mllib

▪ It contains the original APIs built on top of RDDs

▪ This version of the APIs is in maintenance mode and will
be probably deprecated in the next releases of Spark

 pyspark.ml
▪ It provides higher-level API built on top of DataFrames

(i.e, Dataset<Row>) for constructing ML pipelines

▪ It is recommended because the DataFrame-based API is
more versatile and flexible

▪ It provides the pipeline concept

4

We will use the DataFrame-based version

 Spark MLlib is based on a set of basic local
and distributed data types

 Local vector

 Local matrix

 Distributed matrix

 ..

 DataFrames for ML-based applications
contain objects based on these basic data
types

6

 Local pyspark.ml.linalg.Vector objects in MLlib
are used to store vectors of double values

 Dense and sparse vectors are supported

 The MLlib algorithms work on vectors of doubles

 Vectors of doubles are used to represent the input
records/data

▪ One vector for each input record

 Non double attributes/values must be mapped to
double values before applying MLlib algorithms

7

 Dense and sparse representations are
supported

 E.g., the vector of doubles [1.0, 0.0, 3.0] can
be represented
 in dense format as [1.0, 0.0, 3.0]

 or in sparse format as (3, [0, 2], [1.0, 3.0])
▪ where 3 is the size of the vector

▪ The array [0,2] contains the indexes of the non-zero cells

▪ The array [1.0, 3.0] contains the values of the non-zero
cells

8

 The following code shows how dense and sparse
vectors can be created in Spark

 from pyspark.ml.linalg import Vectors

 # Create a dense vector [1.0, 0.0, 3.0]
 dv = Vectors.dense([1.0, 0.0, 3.0])

 # Create a sparse vector [1.0, 0.0, 3.0] by specifying
 # its indices and values corresponding to non-zero entries
 # by means of a dictionary
 sv = Vectors.sparse(3, { 0:1.0, 2:3.0 })

9

 The following code shows how dense and sparse
vectors can be created in Spark

 from pyspark.ml.linalg import Vectors

 # Create a dense vector [1.0, 0.0, 3.0]
 dv = Vectors.dense([1.0, 0.0, 3.0])

 # Create a sparse vector [1.0, 0.0, 3.0] by specifying
 # its indices and values corresponding to non-zero entries
 # by means of a dictionary
 sv = Vectors.sparse(3, { 0:1.0, 2:3.0 })

10

Size of the vector

Index and value of a non-empty cell

Dictionary of index:value pairs

 Spark MLlib uses DataFrames as input data
 The input of the MLlib algorithms are

structured data (i.e., tables)
 All input data must be represented by means

of “tables” before applying the MLlib
algorithms

 Also document collections must be transformed
in a tabular format before applying the MLlib
algorithms

16

 The DataFrames used and created by the MLlib
algorithms are characterized by several columns

 Each column is associated with a different role/meaning
 label

▪ Target of a classification/regression analysis

 features
▪ A vector containing the values of the attributes/features of the input

record/data points

 text
▪ The original text of a document before being transformed in a tabular

format

 prediction
▪ Predicted value of a classification/regression analysis

 ..

17

 Transformer

 A Transformer is an ML algorithm/procedure that
transforms one DataFrame into another DataFrame
by means of the method transform(inputDataFrame)

▪ E.g., A feature transformer might take a DataFrame, read a
column (e.g., text), map it into a new column (e.g., feature
vectors), and output a new DataFrame with the mapped
column appended

▪ E.g., a classification model is a Transformer that can be
applied on a DataFrame with features and transforms it into a
DataFrame with also the prediction column

18

 Estimator
 An Estimator is an ML algorithm/procedure that is fit

on an input (training) DataFrame to produce a
Transformer
▪ Each Estimator implements a method fit(), which accepts a

DataFrame and produces a Model of type Transformer

 An Estimator abstracts the concept of a learning
algorithm or any algorithm that fits/trains on an input
dataset and returns a model
▪ E.g., The Logistic Regression classification algorithm is an

Estimator
▪ Calling fit(input training DataFrame) on it a Logistic Regression

Model is built, which is a Model/a Transformer

19

 Pipeline
 A Pipeline chains multiple Transformers and

Estimators together to specify a Machine
learning/Data Mining workflow
▪ The output of a transformer/estimator is the input of the next

one in the pipeline

 E.g., a simple text document processing workflow
aiming at building a classification model includes
several steps
▪ Split each document into a set of words
▪ Convert each set of words into a numerical feature vector
▪ Learn a prediction model using the feature vectors and the

associated class labels

20

 Parameters

 Transformers and Estimators share common APIs
for specifying the values of their parameters

21

 In the new APIs of Spark MLlib the use of the
pipeline approach is preferred/recommended

 This approach is based on the following steps
1. The set of Transformers and Estimators that are

needed are instantiated

2. A pipeline object is created and the sequence of
transformers and estimators associated with the
pipeline are specified

3. The pipeline is executed and a model is trained

4. (optional) The model is applied on new data

22

 Input data must be preprocessed before
applying machine learning and data mining
algorithms
 To organize data in a format consistent with the

one expected by the applied algorithms

 To define good (predictive) features

 To remove bias
▪ E.g., normalization

 To remove noise and missing values

 …

 24

 MLlib provides a set of transformers than can be
used to extract, transform and select features
from DataFrames
 Feature Extractors

▪ TF-IDF, Word2Vec, ..

 Feature Transformers
▪ Tokenizer, StopWordsRemover, StringIndexer, IndexToString,

OneHotEncoderEstimator, Normalizer, …

 Feature Selectors
▪ VectorSlicer, …

 Up-to-date list
 https://spark.apache.org/docs/latest/ml-features.html

 25

26

 Several techniques are provided by MLlib to
transform features

 They are used to create new columns/features by
combining or transforming other features

 You can perform feature transformations and
feature creations by using the standard methods
you already know for DataFrames and RDDs

27

 VectorAssembler
(pyspark.ml.feature.VectorAssembler) is a
transformer that combines a given list of
columns into a single vector column

 Useful for combining features into a single feature
vector before applying ML algorithms

28

 VectorAssembler(inputCols, outputCol)

 inputCols

▪ The list of original columns to include in the new column
of type Vector

▪ The following input column types are accepted
▪ all numeric types, boolean type, and vector type

▪ Boolean values are mapped to 1 (True) and 0 (False)

 outputCol

▪ The name of the new output column

29

 When the transform method of
VectorAssembler is invoked on a DataFrame
the returned DataFrame

 Has a new column (outputCol)

▪ For each record, the value of the new column is the
“concatenation” of the values of the input columns

 Has also all the columns of the input DataFrame

30

 Consider an input DataFrame with three
columns

 Create a new DataFrame with a new column
containing the “concatenation” of colB and
colC in a new vector column

 The name of the new column is set to features

31

colA colB colC

1 4.5 True

2 0.6 True

3 1.5 False

4 12.1 True

5 0.0 True

colA colB colC features

1 4.5 True [4.5,1.0]

2 0.6 True [0.6,1.0]

3 1.5 False [1.5,0.0]

4 12.1 True [12.1,1.0]

5 0.0 True [0.0,1.0]

 Consider an input DataFrame with three
columns

 Create a new DataFrame with a new column
containing the “concatenation” of colB and
colC in a new vector column

 The name of the new column is set to features

32

colA colB colC

1 4.5 True

2 0.6 True

3 1.5 False

4 12.1 True

5 0.0 True

colA colB colC features

1 4.5 True [4.5,1.0]

2 0.6 True [0.6,1.0]

3 1.5 False [1.5,0.0]

4 12.1 True [12.1,1.0]

5 0.0 True [0.0,1.0]

Columns of DataFrames can also be vectors

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

input and output folders
inputPath = "data/exampleDataAssembler.csv“
Create a DataFrame from the input data
inputDF = spark.read.load(inputPath,\
 format="csv", header=True, inferSchema=True)

Create a VectorAssembler that combines columns colB and colC
The new vetor column is called features
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\
 outputCol = 'features')

Apply myVectorAssembler on the input DataFrame
transformedDF = myVectorAssembler.transform(inputDF)

33

 MLlib provides a set of normalization
algorithms (called scalers)

 StandardScaler

 MinMaxScaler

 Normalizer

 MaxAbsScaler

34

 StandardScaler (pyspark.ml.feature.
StandardScaler) is an Estimator that returns a
Transformer
(pyspark.ml.feature.StandardScalerModel)

 StandardScalerModel transforms a vector
column of an input DataFrame normalizing
each “feature” of the input vector column to
have unit standard deviation and/or zero
mean

35

 StandardScaler(inputCol, outputCol)
 inputCol

▪ The name of the input vector column (of doubles) to
normalize

 outputCol
▪ The name of the new output normalized vector column

 Invoke the fit method of StandardScaler on
the input DataFrame to infer a
StandardScalerModel
 The returned model is a Transformer

36

 Invoke the transform method of
StandardScalerModel on the input
DataFrame to create a new DataFrame that

 Has a new column (outputCol)

▪ For each record, the value of the new column is the
normalized version of the input vector column

 Has also all the columns of the input DataFrame

37

 Consider an input DataFrame with four
columns

 Create a new DataFrame with a new column
containing the normalized version of the
vector column features

 Set the name of the new column to scaledFeatures

38

colA colB colC features scaledFeatures

1 4.5 True [4.5,1.0] [0.903,2.236]

2 0.6 True [0.6,1.0] [0.120,2.236]

3 1.5 False [1.5,0.0] [0.301, 0.0]

4 12.1 True [12.1,1.0] [2.428,2.236]

5 0.0 True [0.0,1.0] [0.0 ,2.236]

colA colB colC features

1 4.5 True [4.5,1.0]

2 0.6 True [0.6,1.0]

3 1.5 False [1.5,0.0]

4 12.1 True [12.1,1.0]

5 0.0 True [0.0,1.0]

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StandardScaler

input and output folders
inputPath = "data/exampleDataAssembler.csv“
Create a DataFrame from the input data
inputDF = spark.read.load(inputPath,\
 format="csv", header=True, inferSchema=True)
Create a VectorAssembler that combines columns colB and colC
The new vetor column is called features
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\
 outputCol = 'features')

Apply myVectorAssembler on the input DataFrame
transformedDF = myVectorAssembler.transform(inputDF)

39

Create a Standard Scaler to scale the content of features
myScaler = StandardScaler(inputCol="features", outputCol="scaledFeatures")

Compute summary statistics by fitting the StandardScaler
Before normalizing the content of the data we need to compute mean and
standard deviation of the analyzed data
scalerModel = myScaler.fit(transformedDF)

Apply myScaler on the input column features
scaledDF = scalerModel.transform(transformedDF)

40

 Frequently the input data are characterized
by categorical attributes (i.e., string columns)

 The class label of the classification problem is a
categorical attribute

 The Spark MLlib classification and regression
algorithms work only with numerical values

 Categorical columns must be mapped to
double values

41

 StringIndexer (pyspark.ml.feature.
StringIndexer) is an Estimator that returns a
Transformer of type
pyspark.ml.feature.StringIndexerModel

 StringIndexerModel encodes a string column
of “labels” to a column of “label indices”

 Each distinct value of the input string column is
mapped to an integer value in [0, num. distinct
values)

42

 StringIndexer(inputCol, outputCol)
 inputCol

▪ The name of the input string column to map to a set of
integers

 outputCol
▪ The name of the new output column

 Invoke the fit method of StringIndexer on the
input DataFrame to infer a
StringIndexerModel
 The returned model is a Transformer

43

 Invoke the transform method of
StringIndexerModel on the input DataFrame
to create a new DataFrame that

 Has a new column (outputCol)

▪ For each record, the value of the new column is the
integer (casted to a double) associated with the value of
the input string column

 Has also all the columns of the input DataFrame

44

 Consider an input DataFrame with two
columns

 Create a new DataFrame with a new column
containing the “integer” version of the string
column category

 Set the name of the new column to categoryIndex

45

id category categoryIndex

1 a 0.0

2 b 2.0

3 c 1.0

4 c 1.0

5 a 0.0

id category

1 a

2 b

3 c

4 c

5 a

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import StringIndexer

input DataFrame
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\
 ["id", "category"])

Create a StringIndexer to map the content of category to a set of “integers”
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")

Analyze the input data to define the mapping string -> integer
indexerModel = indexer.fit(df)

Apply indexerModel on the input column category
indexedDF = indexerModel.transform(df)

46

 IndexToString(pyspark.ml.feature.
IndexToString), which is symmetrical to
StringIndexer, is a Transformer that maps a
column of “label indices” back to a column
containing the original “labels” as strings

 Classification models return the integer version of
the predicted label values. We must remap those
values to the original ones to obtain human
readable results

47

 IndexToString(inputCol, outputCol, labels)
 inputCol

▪ The name of the input numerical column to map to the original a set of string
“labels”

 outputCol
▪ The name of the new output column

 labels
▪ The list of original “labels”/strings
▪ The mapping with integer values is given by the positions of the strings inside

labels
 Invoke the transform method of IndexToString on the input

DataFrame to create a new DataFrame that
 Has a new column (outputCol)

▪ For each record, the value of the new column is the original string associated
with the value of the input numerical column

 Has also all the columns of the input DataFrame

48

 Consider an input DataFrame with two
columns

 Create a new DataFrame with a new column
containing the “integer” version of the string
column category and then map it back to the
string version in a new column

49

id category categoryIndex originalCategory

1 a 0.0 a

2 b 2.0 b

3 c 1.0 c

4 c 1.0 c

5 a 0.0 a

id category

1 a

2 b

3 c

4 c

5 a

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import IndexToString

input DataFrame
df = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a")],\
 ["id", "category"])

Create a StringIndexer to map the content of category to a set of “integers”
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")

Analyze the input data to define the mapping string -> integer
indexerModel = indexer.fit(df)

Apply indexerModel on the input column category
indexedDF = indexerModel.transform(df)

50

Create an IndexToString to map the content of numerical attribute categoryIndex
to the original string value
converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory",\
 labels=indexerModel.labels)

Apply converter on the input column categoryIndex
reconvertedDF = converter.transform(indexedDF)

51

 SQLTransformer (pyspark.ml.feature.
SQLTransformer) is a transformer that
implements the transformations which are
defined by SQL queries

▪ “SELECT attributes, function(attributes)
FROM __THIS__
[WHERE …]
[HAVING ..]”

▪ __THIS__ represents the DataFrame on which the
SQLTransformer is invoked

 SQLTransformer executes an SQL query on the
input DataFrame and returns a new DataFrame
associated with the result of the query

52

 SQLTransformer(statement)

 statement

▪ The SQL query to execute

53

 When the transform method of
SQLTransformer is invoked on a DataFrame
the returned DataFrame is the result of the
executed statement query

54

 Consider an input DataFrame with two
columns: “text” and “id”

 Create a new DataFrame with a new column,
called “numWords”, containing the number
of words occurring in column “text”

55

id text

1 This is Spark

2 Spark

3 Another sample sentence of words

4 Paolo Rossi

5 Giovanni

id text numWords

1 This is Spark 3

2 Spark 1

3 Another sample sentence of words 5

4 Paolo Rossi 2

5 Giovanni 1

from pyspark.sql.types import *
from pyspark.ml.feature import SQLTransformer

#Local Input data
inputList = [(1, "This is Spark"),\
 (2, "Spark"),\
 (3, "Another sample sentence of words"),\
 (4, "Paolo Rossi"),\
 (5, "Giovanni")]

Create the initial DataFrame
dfInput = spark.createDataFrame(inputList, ["id", "text"])

56

Define a UDF function that that counts the number of words in an input string
spark.udf.register("countWords", lambda text: len(text.split(" ")), IntegerType())

Define an SQLTranformer to create the columns we are interested in
sqlTrans = SQLTransformer(statement="""SELECT *,
countWords(text) AS numLines
FROM __THIS__""")

Create the new DataFrame by invoking the transform method of the
defined SQLTranformer
newDF = sqlTrans.transform(dfInput)

57

