Spark MLIib

Spark MLIib

Spark MLlIib is the Spark component
providing the machine learning/data mining
algorithms

Pre-processing techniques

Classification (supervised learning)

Clustering (unsupervised learning)

ltemset mining

Spark MLIib

MLIib APIs are divided into two packages:

pyspark.mllib
It contains the original APIs built on top of RDDs

This version of the APIs is in maintenance mode and will
be probably deprecated in the next releases of Spark

pyspark.ml

It provides higher-level API built on top of DataFrames
(i.e, Dataset<Row>) for constructing ML pipelines

It is recommended because the DataFrame-based APl is
more versatile and flexible

It provides the pipeline concept

Spark MLIib

MLIib APIs are divided into two packages:

pyspark.mllib
It conta | | DDs
_ We will use the DataFrame-based version _
This ver rode and will
be probably deprecated i the next releases of Spark
pyspark.ml

It provides higher-level API built on top of DataFrames
(i.e, Dataset<Row>) for constructing ML pipelines

It is recommended because the DataFrame-based APl is
more versatile and flexible

It provides the pipeline concept

Spark MLIib — Data types

Spark MLIib — Data types

Spark MLIib is based on a set of basic local
and distributed data types

Local vector

Local matrix

Distributed matrix

DataFrames for ML-based applications
contain objects based on these basic data

types

Local vectors

Local pyspark.ml.linalg.Vector objects in MLIib
are used to store vectors of double values

Dense and sparse vectors are supported
The MLIib algorithms work on vectors of doubles
Vectors of doubles are used to represent the input

records/data
One vector for each input record

Non double attributes/values must be mapped to
double values before applying MLIib algorithms

Local vectors

Dense and sparse representations are
supported

E.g., the vector of doubles [1.0, 0.0, 3.0] can
be represented

in dense format as [1.0, 0.0, 3.0]

or in sparse format as (3, [0, 2], [1.0, 3.0])
where 3 is the size of the vector
The array [0,2] contains the indexes of the non-zero cells

The array [1.0, 3.0] contains the values of the non-zero
cells

Local vectors

The following code shows how dense and sparse
vectors can be created in Spark

from pyspark.ml.linalg importVectors

Create a dense vector [1.0, 0.0, 3.0]
dv =Vectors.dense([1.0, 0.0, 3.0])

Create a sparse vector [1.0, 0.0, 3.0] by specifying

its indices and values corresponding to non-zero entries
by means of a dictionary

sv =Vectors.sparse(3, { 0:1.0, 2:3.0})

Local vectors

The following code shows how dense and sparse

vectors can be created in Spark

from pyspark.ml.linalg importVectors

Create a dense vector [1.0, 0.0, 3.0]
dv =Vectors.dense([1.0, 0.0, 3.0])

Create a sparse vector [1.0, 0.0, 3.0] by specifying

its indices and value| index and value of 2 non-empty cell

by means of a dictionary

(3

SV = Vec‘tors-ys

Size of the vector

{0:1.0,2:3.0 K

_|entries

Dictionary of index:value pairs

10

Spark MLIib - Main concepts

Spark MLIib - Main concepts

Spark MLIib uses DataFrames as input data
The input of the MLIib algorithms are
structured data (i.e., tables)

All input data must be represented by means
of “tables” before applying the MLIib
algorithms

Also document collections must be transformed
in a tabular format before applying the MLIib
algorithms

Spark MLIib - Main concepts

The DataFrames used and created by the MLIib
algorithms are characterized by several columns
Each column is associated with a different role/meaning

label
Target of a classification/regression analysis

features

A vector containing the values of the attributes/features of the input
record/data points

text

The original text of a document before being transformed in a tabular
format

prediction
Predicted value of a classification/regression analysis

17

Spark MLIib - Main concepts

Transformer

ATransformer is an ML algorithm/procedure that
transforms one DataFrame into another DataFrame
by means of the method transform(inputDataFrame)

E.g., A feature transformer might take a DataFrame, read a
column (e.g., text), map it into a new column (e.g., feature
vectors), and output a new DataFrame with the mapped
column appended

E.g., a classification model is a Transformer that can be
applied on a DataFrame with features and transforms it into a
DataFrame with also the prediction column

18

Spark MLIib - Main concepts

Estimator

An Estimator is an ML algorithm/procedure that is fit
on an input (training) DataFrame to produce a
Transformer

Each Estimator implements a method fit(), which accepts a
DataFrame and produces a Model of type Transformer

An Estimator abstracts the concept of a learning
algorithm or any algorithm that fits/trains on an input
dataset and returns a model

E.g., The Logistic Regression classification algorithm is an
Estimator

Calling fit(input training DataFrame) on it a Logistic Regression
Model is built, which is a Model/a Transformer

19

Spark MLIib - Main concepts

Pipeline
A Pipeline chains multiple Transformers and
Estimators together to specify a Machine
learning/Data Mining workflow
The output of a transformer/estimator is the input of the next
one in the pipeline

E.g., a simple text document processing workflow
aiming at building a classification model includes
several steps

Split each document into a set of words

Convert each set of words into a numerical feature vector

Learn a prediction model using the feature vectors and the
associated class labels

20

Spark MLIib - Main concepts

Parameters

Transformers and Estimators share common APIs
for specifying the values of their parameters

Spark MLIib - Main concepts

In the new APIs of Spark MLIib the use of the
pipeline approach is preferred/recommended
This approach is based on the following steps

The set of Transformers and Estimators that are
needed are instantiated

A pipeline object is created and the sequence of
transformers and estimators associated with the
pipeline are specified

The pipeline is executed and a model is trained
(optional) The model is applied on new data

Data Preprocessing

Data preprocessing

Input data must be preprocessed before
applying machine learning and data mining
algorithms

To organize data in a format consistent with the
one expected by the applied algorithms

To define good (predictive) features

To remove bias
E.g., normalization

To remove noise and missing values

Extracting, transforming and
selecting features

MLIib provides a set of transformers than can be
used to extract, transform and select features
from DataFrames
Feature Extractors
TF-IDF, Word2Vec, ..

Feature Transformers

Tokenizer, StopWordsRemover, Stringlndexer, IndexToString,
OneHotEncoderEstimator, Normalizer, ...

Feature Selectors
VectorSlicer, ...

Up-to-date list
https://spark.apache.org/docs/latest/ml-features.html

25

Feature Transformations

Feature Transformations

Several techniques are provided by MLIib to
transform features

They are used to create new columns/features by
combining or transforming other features

You can perform feature transformations and
feature creations by using the standard methods
you already know for DataFrames and RDDs

Vector Assembler

VectorAssembler
(pyspark.ml.feature.VectorAssembler) is a
transformer that combines a given list of
columns into a single vector column

Useful for combining features into a single feature
vector before applying ML algorithms

Vector Assembler

VectorAssembler(inputCols, outputCol)
inputCols

The list of original columns to include in the new column
of type Vector

The following input column types are accepted

all numeric types, boolean type, and vector type
Boolean values are mapped to 1 (True) and o (False)

outputCol

The name of the new output column

29

Vector Assembler

When the transform method of
VectorAssembleris invoked on a DataFrame
the returned DataFrame

Has a new column (outputCol)

For each record, the value of the new columniis the
“concatenation” of the values of the input columns

Has also all the columns of the input DataFrame

30

Vector Assembler: Example

Consider an input DataFrame with three
columns

Create a new DataFrame with a new column
containing the “concatenation” of colB and
colCin a new vector column

The name of the new column is set to features

1 45 True 1 45 True [4.51.0]
> 06 True |:>> > 06 True [0.6,1.0]
3 15 False 3 15 False [1.5,0.0]
4 12.1 True 4 12.1 True [12.1,1.0]
5 0.0 True 5 0.0 True [0.0,1.0]

31

Vector Assembler: Example

Consider an input DataFrame with three
columns

Create a new DataFrame with a new column
containing the “concatenation” of colB and
colCinanew vectq:

Columns of DataFrames can also be vectors
The name of the new column is set\lio features

45 True | [4.5,1.0]
0.6 True [0.6,1.0]
15 False [1.5,0.0]
12.1 True | [12.1,1.0]
0.0 True [0.0,1.0]

45 True

1
2 0.6 True E:>>
3 15 False
4 12.1 True
5 0.0 True

g A~ W N P

32

Vector Assembler: Example

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

input and output folders
inputPath = "data/exampleDataAssembler.csv*
Create a DataFrame from the input data
inputDF = spark.read.load(inputPath,\
format="csv", header=True, inferSchema=True)

Create a VectorAssembler that combines columns colB and colC

The new vetor column is called features

myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\
outputCol = 'features')

Apply myVectorAssembler on the input DataFrame
transformedDF = myVectorAssembler.transform(inputDF)

33

Data Normalization

MLIib provides a set of normalization
algorithms (called scalers)
StandardScaler
MinMaxScaler
Normalizer

MaxAbsScaler

34

Standard Scaler

StandardScaler (pyspark.ml.feature.
StandardScaler) is an Estimator that returns a
Transformer
(pyspark.ml.feature.StandardScalerModel)
StandardScalerModel transforms a vector
column of an input DataFrame normalizing
each “feature” of the input vector column to
have unit standard deviation and/or zero
mean

35

Standard Scaler

StandardScaler(inputCol, outputCol)

inputCol

The name of the input vector column (of doubles) to
normalize

outputCol

The name of the new output normalized vector column
Invoke the fit method of StandardScaler on

the input DataFrame to infer a
StandardScalerModel

The returned model is a Transformer

36

Standard Scaler

Invoke the transform method of
StandardScalerModel on the input
DataFrame to create a new DataFrame that

Has a new column (outputCol)

For each record, the value of the new columniis the
normalized version of the input vector column

Has also all the columns of the input DataFrame

37

Standard Scaler: Example

aa A W N PP

Consider an input DataFrame with four
columns

Create a new DataFrame with a new column
containing the normalized version of the
vector column features

Set the name of the new column to scaledFeatures

45 True [4.5,1.0] 1 4.5 True [4.5,1.0] [0.903,2.236]
0.6 True [0.6,1.0] 2 0.6 True [0.6,1.0] [0.120,2.236]
15 False [1.5,0.0] 3 1.5 False [1.5,0.0] [0.301, 0.0]
121 True [12.1,1.0] 4 12.1 True [12.1,1.0] [2.428,2.236]
0.0 True [0.0,1.0] 5 0.0 True [0.0,1.0] [0.0 ,2.236]

38

Standard Scaler: Example

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StandardScaler

input and output folders
inputPath = "data/exampleDataAssembler.csv"
Create a DataFrame from the input data
inputDF = spark.read.load(inputPath,\
format="csv", header=True, inferSchema=True)
Create a VectorAssembler that combines columns colB and colC
The new vetor column is called features
myVectorAssembler = VectorAssembler(inputCols = ['colB', 'colC'],\
outputCol = 'features')

Apply myVectorAssembler on the input DataFrame
transformedDF = myVectorAssembler.transform(inputDF)

39

Standard Scaler: Example

Create a Standard Scaler to scale the content of features
myScaler = StandardScaler(inputCol="features", outputCol="scaledFeatures")

Compute summary statistics by fitting the StandardScaler

Before normalizing the content of the data we need to compute mean and
standard deviation of the analyzed data

scalerModel = myScaler.fit(transformedDF)

Apply myScaler on the input column features
scaledDF = scalerModel.transform(transformedDF)

40

Categorical columns

Frequently the input data are characterized
by categorical attributes (i.e., string columns)

The class label of the classification problem is a
categorical attribute

The Spark MLIib classification and regression
algorithms work only with numerical values

Categorical columns must be mapped to
double values

Stringlndexer

Stringlndexer (pyspark.ml.feature.
Stringlndexer) is an Estimator that returns a
Transformer of type
pyspark.ml.feature.StringIndexerModel
StringlndexerModel encodes a string column
of “labels” to a column of “label indices”

Each distinct value of the input string column is

mapped to an integer value in [0, num. distinct
values)

Stringlndexer

Stringlndexer(inputCol, outputCol)

inputCol

The name of the input string column to map to a set of
Integers

outputCol
The name of the new output column

Invoke the fit method of StringIndexer on the
input DataFrame to infer a
StringlndexerModel

The returned model is a Transformer

43

Stringlndexer

Invoke the transform method of
StringIndexerModel on the input DataFrame
to create a new DataFrame that

Has a new column (outputCol)

For each record, the value of the new columniis the
integer (casted to a double) associated with the value of
the input string column

Has also all the columns of the input DataFrame

A

Stringlndexer : Example

Consider an input DataFrame with two
columns

Create a new DataFrame with a new column
containing the “integer” version of the string
column category

Set the name of the new column to categorylndex

=

0.0
2.0
1.0
1.0
0.0

gaa b~ W N PP
Q (@) (@) o
g b~ W N PP
fab) (@) () o @

45

Stringlndexer : Example

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import Stringindexer

input DataFrame
df = spark.createDataFrame([(z, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a™)],\
["id", "category"])

Create a Stringlndexer to map the content of category to a set of “integers”
indexer = Stringlndexer(inputCol="category", outputCol="categorylndex")

Analyze the input data to define the mapping string -> integer
indexerModel = indexer.fit(df)

Apply indexerModel on the input column category
indexedDF = indexerModel.transform(df)

46

IndexToString

IndexToString(pyspark.ml.feature.
IndexToString), which is symmetrical to
Stringindexer, is a Transformer that maps a
column of “label indices” back to a column
containing the original “labels” as strings

Classification models return the integer version of
the predicted label values. We must remap those
values to the original ones to obtain human

readable results

47

IndexToString

IndexToString(inputCol, outputCol, labels)

inputCol

The name of the input numerical column to map to the original a set of string
“labels”

outputCol
The name of the new output column
labels

The list of original “labels”/strings

The mapping with integer values is given by the positions of the strings inside
labels

Invoke the transform method of IndexToString on the input
DataFrame to create a new DataFrame that

Has a new column (outputCol)

For each record, the value of the new column is the original string associated
with the value of the input numerical column

Has also all the columns of the input DataFrame

48

IndexToString: Example

Consider an input DataFrame with two
columns

Create a new DataFrame with a new column
containing the “integer” version of the string
column category and then map it back to the
string version in a new column

0.0
2.0
1.0
1.0
0.0

gaa b~ W N PP
Q (@) (@) o
g A W N P
QD (@) (@) o
fab) (@) () o Q@

49

IndexToString: Example

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import Stringindexer
from pyspark.ml.feature import IndexToString

input DataFrame
df = spark.createDataFrame([(z, "a"), (2, "b"), (3, "c"), (4, "c"), (5, "a™)],\
["id", "category"])

Create a Stringlndexer to map the content of category to a set of “integers”
indexer = Stringlndexer(inputCol="category", outputCol="categorylndex")

Analyze the input data to define the mapping string -> integer
indexerModel = indexer.fit(df)

Apply indexerModel on the input column category
indexedDF = indexerModel.transform(df)

50

IndexToString: Example

Create an IndexToString to map the content of numerical attribute categorylndex

to the original string value

converter = IndexToString(inputCol="categorylndex", outputCol="originalCategory",\
labels=indexerModel.labels)

Apply converter on the input column categorylndex
reconvertedDF = converter.transform(indexedDF)

51

SQLTransformer

SQLTransformer (pyspark.ml.feature.
SQLTransformer) is a transformer that
implements the transformations which are
defined by SQL queries

“SELECT attributes, function(attributes)
FROM _THIS

[WHERE ...]

[HAVING ..]"

__THIS__ represents the DataFrame on which the
SQLTransformer is invoked

SQLTransformer executes an SQL query on the
input DataFrame and returns a new DataFrame
associated with the result of the query

SQLTransformer

SQLTransformer(statement)

statement
The SQL query to execute

53

SQLTransformer

When the transform method of
SQLTransformer is invoked on a DataFrame
the returned DataFrame is the result of the
executed statement query

54

SQLTransformer : Example

Consider an input DataFrame with two
columns: “text” and "“id"”

Create a new DataFrame with a new column,
called "numWords”, containing the number
of words occurring in column “text”

1 This is Spark 1 This is Spark 3
2 Spark 2 Spark 1
3 Another sample sentence of words 3 Another sample sentence of words 5
4 Paolo Rossi 4 Paolo Rossi 2
5 Giovanni 5 Giovanni 1

55

SQLTransformer : Example

from pyspark.sql.types import *
from pyspark.ml.feature import SQLTransformer

#Local Input data

inputList = [(1, "Thisis Spark"),\

2, "Spark"),\

3, "Another sample sentence of words"),\
4, "Paolo Rossi"),\

5, "Giovanni")]

A~ N N A~

Create the initial DataFrame
dflnput = spark.createDataFrame(inputList, ["id", "text"])

56

SQLTransformer : Example

Define a UDF function that that counts the number of words in an input string
spark.udf.register("countWords", lambda text: len(text.split(" ")), IntegerType())

Define an SQLTranformer to create the columns we are interested in
sqlTrans = SQLTransformer(statement="""SELECT *,
countWords(text) AS numLines

FROM _THIS__ """

Create the new DataFrame by invoking the transform method of the
defined SQLTranformer
newDF = sqlTrans.transform(dfinput)

57

