


 Spark MLlib provides a (limited) set of 
clustering algorithms 

 K-means 

 Bisecting k-means 

 Gaussian Mixture Model (GMM) 
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 Each clustering algorithm has its own 
parameters 

 However, all the provided algorithms identify 
a set of groups of objects/clusters and assign 
each input object to one single cluster 

 All the clustering algorithms available in 
Spark work only with numerical data 

 Categorical values must be mapped to integer 
values (i.e., numerical values)  
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 The input of the MLlib clustering algorithms 
is a DataFrame containing a column called 
features of type Vector 

 The clustering algorithm clusters the input 
records by considering only the content of 
features 

 The other columns, if any, are not considered 
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 Example of input data 

 A set of customer profiles 

 We want to group customers in groups based on 
their characteristics 
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MonthlyIncome NumChildren 

1400.0 2 

11105.5 0 

2150.0 2 



 Input training data 
 
 
 
 

 Input DataFrame that must be generated as input 
for the MLlib clustering algorithms 
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features 

[1400.0  ,  2.0] 

[11105.5,  0.0] 

[2150.0  ,  2.0] 
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 Input DataFrame that must be generated as input 
for the MLlib clustering algorithms 
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MonthlyIncome NumChildren 

1400.0 2 

11105.5 0 

2150.0 2 

The values of all input attributes are “stored” in a vector of 
doubles (one vector for each input record). 
The generated DataFrame contains a column called features 
containing the vectors associated with the input records. 

features 

[1400.0  ,  2.0] 

[11105.5,  0.0] 

[2150.0  ,  2.0] 



 Clustering with Mllib 
1. Create a DataFrame with the features column 

2. Define the clustering pipeline and run the fit() 
method on the input data to infer the clustering 
model (e.g., the centroids of the k-means algorithm) 

▪ This step returns a clustering model 

3. Invoke the transform() method of the inferred 
clustering model on the input data to assign each 
input record to a cluster 

▪ This step returns a new DataFrame with the new column 
“prediction” in which the cluster identifier is stored for each 
input record 
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 K-means is one of the most popular 
clustering algorithms 

 It is characterized by one important 
parameter 

 The number of clusters K 

▪ The choice of K is a complex operation 

 It is able to identify only spherical shaped 
clusters 
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 The following slides show how to apply the K-
means algorithm provided by MLlib 

 The input dataset is a structured dataset with 
a fixed number of attributes 

 All the attributes are numerical attributes 
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 Example of input file 
attr1,attr2,attr3 

0.5,0.9,1.0 

0.6,0.6,0.7 

…………… 
 In the following example code we suppose that 

the input data are already normalized 
 I.e., all values are already in the range [0-1] 

 Scalers/Normalizers can be used to normalized data if 
it is needed 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.clustering import KMeans 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
 
# input and output folders 
inputData = "ex_datakmeans/dataClusteering.csv" 
outputPath = "clusterskmeans/“ 
 
# Create a DataFrame from dataClusteering.csv 
# Training data in raw format 
inputDataDF = spark.read.load(inputData,\ 
                     format="csv", header=True,\ 
                     inferSchema=True) 
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# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features") 
 
# Create a k-means object.   
# k-means is an Estimator that is used to  
# create a k-means algorithm 
km = KMeans() 
 
# Set the value of k ( = number of clusters) 
km.setK(2) 
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# Define the pipeline that is used to cluster 
# the input data 
pipeline = Pipeline().setStages([assembler, km]) 
 
# Execute the pipeline on the data to build the  
# clustering model 
kmeansModel = pipeline.fit(inputDataDF) 
 
# Now the clustering model can be applied on the input data 
# to assign them to a cluster (i.e., assign a cluster id) 
# The returned DataFrame has the following schema (attributes) 
# - features: vector (values of the attributes) 
# - prediction: double (the predicted cluster id) 
# - original attributes attr1, attr2, attr3 
clusteredDataDF = kmeansModel.transform(inputDataDF) 
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The returned DataFrame has a new column (prediction) in which the 
“predicted” cluster identifier (an integer) is stored for each input 
record. 



# Select only the original columns and the clusterID (prediction) one 
# I rename prediction to clusterID 
clusteredData = clusteredDataDF\ 
.select("attr1", "attr2", "attr3", "prediction")\ 
.withColumnRenamed("prediction","clusterID") 
 
# Save the result in an HDFS output folder 
clusteredData.write.csv(outputPath, header="true") 
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