

 Spark MLlib provides a (limited) set of
clustering algorithms

 K-means

 Bisecting k-means

 Gaussian Mixture Model (GMM)

2

 Each clustering algorithm has its own
parameters

 However, all the provided algorithms identify
a set of groups of objects/clusters and assign
each input object to one single cluster

 All the clustering algorithms available in
Spark work only with numerical data

 Categorical values must be mapped to integer
values (i.e., numerical values)

3

 The input of the MLlib clustering algorithms
is a DataFrame containing a column called
features of type Vector

 The clustering algorithm clusters the input
records by considering only the content of
features

 The other columns, if any, are not considered

4

 Example of input data

 A set of customer profiles

 We want to group customers in groups based on
their characteristics

5

MonthlyIncome NumChildren

1400.0 2

11105.5 0

2150.0 2

 Input training data

 Input DataFrame that must be generated as input
for the MLlib clustering algorithms

 6

features

[1400.0 , 2.0]

[11105.5, 0.0]

[2150.0 , 2.0]

MonthlyIncome NumChildren

1400.0 2

11105.5 0

2150.0 2

 Input training data

 Input DataFrame that must be generated as input
for the MLlib clustering algorithms

 7

MonthlyIncome NumChildren

1400.0 2

11105.5 0

2150.0 2

The values of all input attributes are “stored” in a vector of
doubles (one vector for each input record).
The generated DataFrame contains a column called features
containing the vectors associated with the input records.

features

[1400.0 , 2.0]

[11105.5, 0.0]

[2150.0 , 2.0]

 Clustering with Mllib
1. Create a DataFrame with the features column

2. Define the clustering pipeline and run the fit()
method on the input data to infer the clustering
model (e.g., the centroids of the k-means algorithm)

▪ This step returns a clustering model

3. Invoke the transform() method of the inferred
clustering model on the input data to assign each
input record to a cluster

▪ This step returns a new DataFrame with the new column
“prediction” in which the cluster identifier is stored for each
input record

8

 K-means is one of the most popular
clustering algorithms

 It is characterized by one important
parameter

 The number of clusters K

▪ The choice of K is a complex operation

 It is able to identify only spherical shaped
clusters

10

 The following slides show how to apply the K-
means algorithm provided by MLlib

 The input dataset is a structured dataset with
a fixed number of attributes

 All the attributes are numerical attributes

11

 Example of input file
attr1,attr2,attr3

0.5,0.9,1.0

0.6,0.6,0.7

……………
 In the following example code we suppose that

the input data are already normalized
 I.e., all values are already in the range [0-1]

 Scalers/Normalizers can be used to normalized data if
it is needed

12

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

input and output folders
inputData = "ex_datakmeans/dataClusteering.csv"
outputPath = "clusterskmeans/“

Create a DataFrame from dataClusteering.csv
Training data in raw format
inputDataDF = spark.read.load(inputData,\
 format="csv", header=True,\
 inferSchema=True)

13

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

Create a k-means object.
k-means is an Estimator that is used to
create a k-means algorithm
km = KMeans()

Set the value of k (= number of clusters)
km.setK(2)

14

Define the pipeline that is used to cluster
the input data
pipeline = Pipeline().setStages([assembler, km])

Execute the pipeline on the data to build the
clustering model
kmeansModel = pipeline.fit(inputDataDF)

Now the clustering model can be applied on the input data
to assign them to a cluster (i.e., assign a cluster id)
The returned DataFrame has the following schema (attributes)
- features: vector (values of the attributes)
- prediction: double (the predicted cluster id)
- original attributes attr1, attr2, attr3
clusteredDataDF = kmeansModel.transform(inputDataDF)

15

Define the pipeline that is used to cluster
the input data
pipeline = Pipeline().setStages([assembler, km])

Execute the pipeline on the data to build the
clustering model
kmeansModel = pipeline.fit(inputDataDF)

Now the clustering model can be applied on the input data
to assign them to a cluster (i.e., assign a cluster id)
The returned DataFrame has the following schema (attributes)
- features: vector (values of the attributes)
- prediction: double (the predicted cluster id)
- original attributes attr1, attr2, attr3
clusteredDataDF = kmeansModel.transform(inputDataDF)

16

The returned DataFrame has a new column (prediction) in which the
“predicted” cluster identifier (an integer) is stored for each input
record.

Select only the original columns and the clusterID (prediction) one
I rename prediction to clusterID
clusteredData = clusteredDataDF\
.select("attr1", "attr2", "attr3", "prediction")\
.withColumnRenamed("prediction","clusterID")

Save the result in an HDFS output folder
clusteredData.write.csv(outputPath, header="true")

17

