

 Spark MLlib provides also a set of regression
algorithms

 Linear regression

 Decision tree regression

 Random forest regression

 Survival regression

 Isotonic regression

2

 A regression algorithm is used to predict the
value of a continuous attribute (the target
attribute) by applying a model on the
predictive attributes

 The model is trained on a set of training data

 i.e., a set of data for which the value of the target
attribute is know

 And it is applied on new data to predict the
target attribute

3

 The regression algorithms available in Spark
work only on numerical data
 They work similarly to classification algorithms, but

they predict continuous numerical values (the target
attribute is a continuous numerical attribute)

 The input data must be transformed in a
DataFrame having the following attributes:
 label: double

▪ The continuous numerical value to be predicted

 features: Vector of doubles
▪ Predictive features

4

 The main steps used to infer a regression
model with MLlib are the same we use to
infer a classification model

 The difference is only given by the type of the
target attribute to predict

5

 Linear regression is a popular, effective and
efficient regression algorithm

 The following slides show how to instantiate a
linear regression algorithm in Spark and apply it
on new data

 The input dataset is a structured dataset with a
fixed number of attributes
 One attribute is the target attribute (the label)

▪ We suppose the first column contains the target attribute

 The others are predictive attributes that are used to
predict the value of the target attribute

7

 Consider the following example file
label,attr1,attr2,attr3
2.0,0.0,1.1,0.1
5.0,2.0,1.0,-1.0
5.0,2.0,1.3,1.0
2.0,0.0,1.2,-0.5
…..

 Each record has three predictive attributes and the target
attribute
 The first attribute (label) is the target attribute
 The other attributes (attr1, attr2, attr3) are the predictive

attributes

8

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

input and output folders
trainingData = "ex_dataregression/trainingData.csv"
unlabeledData = "ex_dataregression/unlabeledData.csv"
outputPath = "predictionsLinearRegressionPipeline/“

9

Training step

Create a DataFrame from trainingData.csv
Training data in raw format
trainingData = spark.read.load(trainingData,\
 format="csv", header=True,\
 inferSchema=True)

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

10

Create a LinearRegression object.
LinearRegression is an Estimator that is used to
create a regression model based on linear regression
lr = LinearRegression()

We can set the values of the parameters of the
Linear Regression algorithm using the setter methods.
There is one set method for each parameter
For example, we are setting the number of maximum iterations to 10
and the regularization parameter. to 0.0.1
lr.setMaxIter(10)
lr.setRegParam(0.01)

11

Define a pipeline that is used to create the linear regression
model on the training data. The pipeline includes also
the preprocessing step
pipeline = Pipeline().setStages([assembler, lr])

Execute the pipeline on the training data to build the
regression model
regressionModel = pipeline.fit(trainingData)

Now, the regression model can be used to predict the target attribute value
of new unlabeled data

12

Create a DataFrame from unlabeledData.csv
Unlabeled data in raw format
unlabeledData = spark.read.load(unlabeledData,\
 format="csv", header=True, inferSchema=True)

Make predictions on the unlabled data using the transform() method of the
trained regression model transform uses only the content of 'features'
to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed
predictionsDF = regressionModel.transform(unlabeledData)

13

The returned DataFrame has the following schema (attributes)
- attr1
- attr2
- attr3
- original attributes
- features: vector (values of the attributes)
- label: double (actual value of the target variable)
- prediction: double (the predicted continuous value of the target variable)

Select only the original features (i.e., the value of the original attributes
attr1, attr2, attr3) and the predicted value of the target variable for each record
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction")

Save the result in an HDFS output folder
predictions.write.csv(outputPath, header="true")

14

 The linear regression algorithms can be used
also when the input dataset is a collection of
documents/texts

 Also in this case the text must be mapped to
a set of continuous attributes

16

 The tuning approach that we used for the
classification problem can also be used to
optimize the regression problem

 The only difference is given by the used
evaluator

 In this case the difference between the actual
value and the predicted one must be computed

18

