


 Spark MLlib provides also a set of regression 
algorithms 

 Linear regression 

 Decision tree regression 

 Random forest regression 

 Survival regression 

 Isotonic regression 

 

2 



 A regression algorithm is used to predict the 
value of a continuous attribute (the target 
attribute) by applying a model on the 
predictive attributes 

 The model is trained on a set of training data 

 i.e., a set of data for which the value of the target 
attribute is know 

 And it is applied on new data to predict the 
target attribute 

3 



 The regression algorithms available in Spark 
work only on numerical data 
 They work similarly to classification algorithms, but 

they predict continuous numerical values (the target 
attribute is a continuous numerical attribute) 

 The input data must be transformed in a 
DataFrame having the following attributes: 
 label: double 

▪ The continuous numerical value to be predicted 

 features: Vector of doubles 
▪ Predictive features 

4 



 The main steps used to infer a regression 
model with MLlib are the same we use to 
infer a classification model 

 The difference is only given by the type of the 
target attribute to predict 

5 





 Linear regression is a popular, effective and 
efficient regression algorithm 

 The following slides show how to instantiate a 
linear regression algorithm in Spark and apply it 
on new data 

 The input dataset is a structured dataset with a 
fixed number of attributes 
 One attribute is the target attribute (the label) 

▪ We suppose the first column contains the target attribute 

 The others are predictive attributes that are used to 
predict the value of the target attribute 

7 



 Consider the following example file 
label,attr1,attr2,attr3 
2.0,0.0,1.1,0.1 
5.0,2.0,1.0,-1.0 
5.0,2.0,1.3,1.0 
2.0,0.0,1.2,-0.5 
….. 

 Each record has three predictive attributes and the target 
attribute  
 The first attribute (label) is the target attribute 
 The other attributes (attr1, attr2, attr3) are the predictive 

attributes 
  

8 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.regression import LinearRegression 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
 
# input and output folders 
trainingData = "ex_dataregression/trainingData.csv" 
unlabeledData = "ex_dataregression/unlabeledData.csv" 
outputPath = "predictionsLinearRegressionPipeline/“ 
 
 

9 



# ************************* 
# Training step 
# ************************* 
 
# Create a DataFrame from trainingData.csv 
# Training data in raw format 
trainingData = spark.read.load(trainingData,\ 
                     format="csv", header=True,\ 
                     inferSchema=True) 
 
# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features") 

10 



# Create a LinearRegression object.   
# LinearRegression is an Estimator that is used to  
# create a regression model based on linear regression 
lr = LinearRegression()  
 
# We can set the values of the parameters of the  
# Linear Regression algorithm using the setter methods. 
# There is one set method for each parameter 
# For example, we are setting the number of maximum iterations to 10 
# and the regularization parameter. to 0.0.1 
lr.setMaxIter(10) 
lr.setRegParam(0.01)    

11 



# Define a pipeline that is used to create the linear regression 
# model on the training data. The pipeline includes also  
# the preprocessing step 
pipeline = Pipeline().setStages([assembler, lr])  
 
# Execute the pipeline on the training data to build the  
# regression model 
regressionModel = pipeline.fit(trainingData)  
 
# Now, the regression model can be used to predict the target attribute value 
# of new unlabeled data     

12 



# Create a DataFrame from unlabeledData.csv 
# Unlabeled data in raw format 
unlabeledData = spark.read.load(unlabeledData,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Make predictions on the unlabled data using the transform() method of the  
# trained regression model transform uses only the content of 'features'  
# to perform the predictions. The model is associated with the pipeline and hence 
# also the assembler is executed 
predictionsDF = regressionModel.transform(unlabeledData) 
 
 

13 



# The returned DataFrame has the following schema (attributes) 
# - attr1 
# - attr2 
# - attr3 
# - original attributes 
# - features: vector (values of the attributes) 
# - label: double (actual value of the target variable) 
# - prediction: double (the predicted continuous value of the target variable) 
 
# Select only the original features (i.e., the value of the original attributes  
# attr1, attr2, attr3) and the predicted value of the target variable  for each record 
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction") 
 
# Save the result in an HDFS output folder 
predictions.write.csv(outputPath, header="true") 

14 





 The linear regression algorithms can be used 
also when the input dataset is a collection of 
documents/texts 

 Also in this case the text must be mapped to 
a set of continuous attributes 

16 





 The tuning approach that we used for the 
classification problem can also be used to 
optimize the regression problem 

 The only difference is given by the used 
evaluator 

 In this case the difference between the actual 
value and the predicted one must be computed 

18 


