Regression algorithms

Regression algorithms

Spark MLIib provides also a set of regression
algorithms

Linear regression

Decision tree regression

Random forest regression

Survival regression

Isotonic regression

Regression algorithms

A regression algorithm is used to predict the
value of a continuous attribute (the target
attribute) by applying a model on the
predictive attributes

The modelis trained on a set of training data

i.e., a set of data for which the value of the target
attribute is know

And itis applied on new data to predict the
target attribute

Regression algorithms

The regression algorithms available in Spark
work only on numerical data
They work similarly to classification algorithms, but

they predict continuous numerical values (the target
attribute is a continuous numerical attribute)

The input data must be transformed in a
DataFrame having the following attributes:
label: double

The continuous numerical value to be predicted

features: Vector of doubles
Predictive features

Regression algorithms

The main steps used to infer a regression
model with MLIib are the same we use to
infer a classification model

The differenceis only given by the type of the
target attribute to predict

Linear regression and
structured data

Linear regression and structured
data

Linear regression is a popular, effective and
efficient regression algorithm
The following slides show how to instantiate a
linear regression algorithm in Spark and apply it
on new data
The input dataset is a structured dataset with a
fixed number of attributes
One attribute is the target attribute (the label)
We suppose the first column contains the target attribute

The others are predictive attributes that are used to
predict the value of the target attribute

Linear regression and structured
data

Consider the following example file
label attri,attr2,attr3
2.0,0.0,1.1,0.1
5.0,2.0,1.0,-1.0
5.0,2.0,1.3,1.0
2.0,0.0,1.2,-0.5
Each record has three predictive attributes and the target
attribute
The first attribute (label) is the target attribute

The other attributes (attra, attr2, attr3) are the predictive
attributes

Linear regression and structured
data: Example

from pyspark.mllib.linalg import Vectors

from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.mlimport Pipeline

from pyspark.mlimport PipelineModel

input and output folders

trainingData = "ex_dataregression/trainingData.csv"
unlabeledData = "ex_dataregression/unlabeledData.csv"
outputPath = "predictionsLinearRegressionPipeline/"

Linear regression and structured
data: Example

H rAxhxhkhkkhhhdhkdhdhrhrdrdrx

Training step

H FrxFhrhhkrhkdhrhhhdhrrhixsk

Create a DataFrame from trainingData.csv

Training data in raw format

trainingData = spark.read.load(trainingData,\
format="csv", header=True,\
inferSchema=True)

Define an assembler to create a column (features) of type Vector

containing the double values associated with columns attra, attr2, attr3

assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
outputCol="features")

10

Linear regression and structured
data: Example

Create a LinearRegression object.

LinearRegression is an Estimator that is used to

create a regression model based on linear regression
Ir = LinearRegression()

We can set the values of the parameters of the

Linear Regression algorithm using the setter methods.

There is one set method for each parameter

For example, we are setting the number of maximum iterations to 10
and the reqgularization parameter. to 0.0.1

Ir.setMaxIter(10)

Ir.setRegParam(0.01)

11

Linear regression and structured
data: Example

Define a pipeline that is used to create the linear regression
model on the training data. The pipeline includes also

the preprocessing step

pipeline = Pipeline().setStages([assembler, Ir])

Execute the pipeline on the training data to build the
regression model
regressionModel = pipeline.fit(trainingData)

Now, the regression model can be used to predict the target attribute value
of new unlabeled data

12

Linear regression and structured
data: Example

Create a DataFrame from unlabeledData.csv

Unlabeled data in raw format

unlabeledData = spark.read.load(unlabeledData,\
format="csv", header=True, inferSchema=True)

Make predictions on the unlabled data using the transform() method of the

trained regression model transform uses only the content of 'features'

to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed

predictionsDF = regressionModel.transform(unlabeledData)

13

Linear regression and structured
data: Example

#The returned DataFrame has the following schema (attributes)

- attra

- attr2

- attr3

- original attributes

- features: vector (values of the attributes)

- label: double (actual value of the target variable)

- prediction: double (the predicted continuous value of the target variable)

Select only the original features (i.e., the value of the original attributes
attra, attr2, attr3) and the predicted value of the target variable for each record

predictions = predictionsDF.select("attr1", " prediction")

attr2", "attr3",

Save the resultin an HDFS output folder
predictions.write.csv(outputPath, header="true")

14

Linear regression and textual
data

Linear regression and textual data

The linear regression algorithms can be used
also when the input dataset is a collection of
documents/texts

Also in this case the text must be mapped to
a set of continuous attributes

Linear regression and
parameter setting

Linear regression and parameter
setting

The tuning approach that we used for the
classification problem can also be used to
optimize the regression problem

The only difference is given by the used
evaluator

In this case the difference between the actual
value and the predicted one must be computed

