Itemset and Association rule mining

Itemset and Association rule mining

Spark MLlib provides

- An itemset mining algorithm based on the FPgrowth algorithm
 - That extracts all the sets of items (of any length) with a minimum frequency
- A rule mining algorithm
 - That extracts the association rules with a minimum frequency and a minimum confidence
 - Only the rules with one single item in the consequent of the rules are extracted

Itemset and Association rule mining

- The input dataset in this case is a set of transactions
- Each transaction is defined as a set of items
- Transactional dataset example
 - ABCD
 - AΒ
 - ВC
 - ADE
- The example dataset contains 4 transactions
 The distinct items are A, B, C, D, E

The FP-Growth algorithm and Association rule mining

The FP-Growth algorithm

- FP-growth is one of the most popular and efficient itemset mining algorithms
- It is characterized by one single parameter
 - The minimum support threshold (minsup)
 - i.e., the minimum frequency of the itemset in the input transational dataset
 - It is a real value in the range (0-1]
 - The minsup threshold is used to limit the number of mined itemsets
- The input dataset is a transactional dataset

Association Rule Mining

- Given a set of frequent itemsets, the frequent association rules can be mined
- An association rule is mined if
 - Its frequency is greater than the minimum support threshold (minsup)
 - i.e., a minimum frequency
 - The minsup value is specified during the itemset mining step and not during the association rule mining step
 - Its confidence is greater than the minimum confidence threshold (minconf)
 - i.e., a minimum "correlation"
 - It is a real value in the range [0-1]

The FP-Growth algorithm

- The MLlib implementation of FP-growth is based on DataFrames
- Differently from the other algorithms, the FPgrowth algorithm is not invoked by using pipelines

Itemset and Association Rule Mining

- Itemset and association rule mining
 - Instantiate an FP-Growth object
 - Invoke the fit(input data) method on the FP-Growth object
 - Retrieve the sets of frequent itemset and association rules by invoking the following methods of on the FP-Growth object
 - freqItemsets()
 - associationRules()

Itemset and Association Rule Mining: Input data

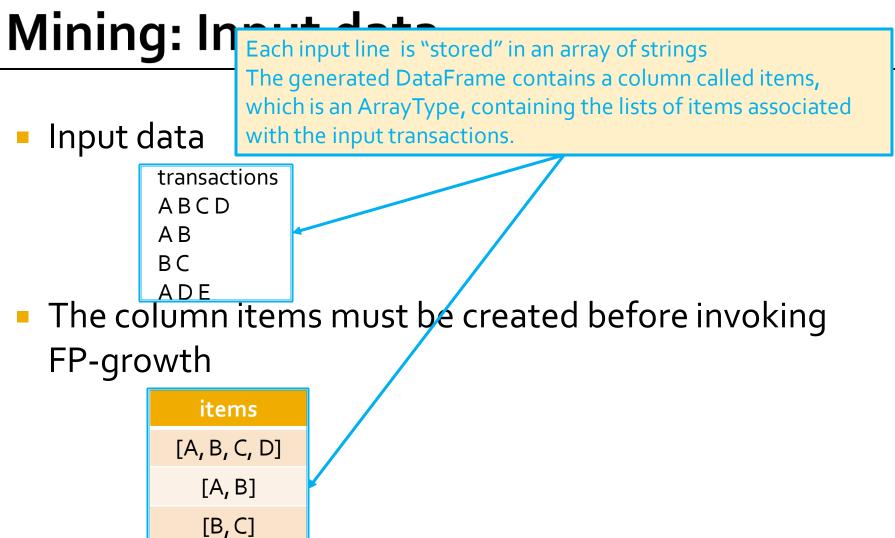
- The input of the MLlib itemset and rule mining algorithm is a DataFrame containing a column called items
 - Data type: array of values
- Each record of the input DataFrame contains one transaction, i.e., a set of items

Itemset and Association Rule Mining: Input data

- Example of input data transactions
 - ABCD
 - ΑB
 - ВC
 - ADE

Itemset and Association Rule Mining: Input data

Input data


transactions ABCD AB BC ADE

 The column items must be created before invoking FP-growth

items
[A, B, C, D]
[A, B]
[B,C]
[A, D, E]

Itemset and Association Rule

[A, D, E]

- The following slides show how to
 - Extract the set of frequent itemsets from a transactional dataset and the association rules from the extracted frequent itemsets
- The input dataset is a transactional dataset
 - Each line of the input file contains a transaction, i.e., a set of items

- Example of input data transactions
 - ABCD
 - ABCI
 - ΑB
 - ВC
 - A D E

from pyspark.ml.fpm import FPGrowth from pyspark.ml import Pipeline from pyspark.ml import PipelineModel from pyspark.sql.functions import col, split

input and output folders
transactionsData = "ex_dataitemsets/transactions.csv"
outputPathItemsets = "Itemsets/"
outputPathRules = "Rules/"

```
# Create a DataFrame from transactions.csv
transactionsDataDF = spark.read.load(transactionsData,\
    format="csv", header=True,\
    inferSchema=True)
```

Transform Column transactions into an ArrayType
trsDataDF = transactionsDataDF\
.selectExpr('split(transactions, " ")')\
.withColumnRenamed("split(transactions,)", "items")

Transform Column transactions into an ArrayType
trsDataDF = transactionsDataDF\
.selectExpr('split(transactions, " "))\
.withColumnRenamed("split(transactions,)", "items")

This is the pyspark.sql.functions.split() function. It returns an SQL ArrayType

Transform Column transactions into an ArrayType
trsDataDF = transactionsDataDF\
.selectExpr('split(transactions, " ")')\
.withColumnRenamed("split(transactions,)", "items")

Create an FP-growth Estimator
fpGrowth = FPGrowth(itemsCol="items", minSupport=0.5, minConfidence=0.6)

Extract itemsets and rules model = fpGrowth.fit(trsDataDF)

Retrieve the DataFrame associated with the frequent itemsets dfltemsets = model.freqltemsets

Retrieve the DataFrame associated with the frequent rules dfRules = model.associationRules

Save the result in an HDFS output folder dfltemsets.write.json(outputPathltemsets)

Save the result in an HDFS output folder dfRules.write.json(outputPathRules)

The result is stored in a JSON file because itemsets and rules are stored in columns associated with the data type Array. Hence, CSV files cannot be used to store the result.