

 Spark MLlib provides

 An itemset mining algorithm based on the FP-
growth algorithm

▪ That extracts all the sets of items (of any length) with a
minimum frequency

 A rule mining algorithm

▪ That extracts the association rules with a minimum
frequency and a minimum confidence

▪ Only the rules with one single item in the consequent of
the rules are extracted

2

 The input dataset in this case is a set of
transactions

 Each transaction is defined as a set of items
 Transactional dataset example

A B C D

A B

B C

A D E

 The example dataset contains 4 transactions
 The distinct items are A, B, C, D, E

3

 FP-growth is one of the most popular and
efficient itemset mining algorithms

 It is characterized by one single parameter
 The minimum support threshold (minsup)

▪ i.e., the minimum frequency of the itemset in the input
transational dataset

▪ It is a real value in the range (0-1]

 The minsup threshold is used to limit the number
of mined itemsets

 The input dataset is a transactional dataset

5

 Given a set of frequent itemsets, the frequent
association rules can be mined

 An association rule is mined if
 Its frequency is greater than the minimum support

threshold (minsup)
▪ i.e., a minimum frequency
▪ The minsup value is specified during the itemset mining step

and not during the association rule mining step

 Its confidence is greater than the minimum
confidence threshold (minconf)
▪ i.e., a minimum “correlation”
▪ It is a real value in the range [0-1]

6

 The MLlib implementation of FP-growth is
based on DataFrames

 Differently from the other algorithms, the FP-
growth algorithm is not invoked by using
pipelines

7

 Itemset and association rule mining

 Instantiate an FP-Growth object

 Invoke the fit(input data) method on the FP-
Growth object

 Retrieve the sets of frequent itemset and
association rules by invoking the following
methods of on the FP-Growth object

▪ freqItemsets()

▪ associationRules()

8

 The input of the MLlib itemset and rule
mining algorithm is a DataFrame containing a
column called items

 Data type: array of values

 Each record of the input DataFrame contains
one transaction, i.e., a set of items

9

 Example of input data
transactions

A B C D

A B

B C

A D E

10

 Input data

 The column items must be created before invoking
FP-growth

11

items

[A, B, C, D]

[A, B]

[B, C]

[A, D, E]

transactions
A B C D
A B
B C
A D E

 Input data

 The column items must be created before invoking
FP-growth

12

items

[A, B, C, D]

[A, B]

[B, C]

[A, D, E]

transactions
A B C D
A B
B C
A D E

Each input line is “stored” in an array of strings
The generated DataFrame contains a column called items,
which is an ArrayType, containing the lists of items associated
with the input transactions.

 The following slides show how to

 Extract the set of frequent itemsets from a
transactional dataset and the association rules
from the extracted frequent itemsets

 The input dataset is a transactional dataset

 Each line of the input file contains a transaction,
i.e., a set of items

13

 Example of input data
transactions

A B C D

A B

B C

A D E

14

from pyspark.ml.fpm import FPGrowth
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel
from pyspark.sql.functions import col, split

input and output folders
transactionsData = "ex_dataitemsets/transactions.csv"
outputPathItemsets = "Itemsets/"
outputPathRules = "Rules/“

Create a DataFrame from transactions.csv
transactionsDataDF = spark.read.load(transactionsData,\
 format="csv", header=True,\
 inferSchema=True)

15

Transform Column transactions into an ArrayType
trsDataDF = transactionsDataDF\
.selectExpr('split(transactions, " ")')\
.withColumnRenamed("split(transactions,)", "items")

16

Transform Column transactions into an ArrayType
trsDataDF = transactionsDataDF\
.selectExpr('split(transactions, " ")')\
.withColumnRenamed("split(transactions,)", "items")

17

This is the pyspark.sql.functions.split() function.
It returns an SQL ArrayType

Transform Column transactions into an ArrayType
trsDataDF = transactionsDataDF\
.selectExpr('split(transactions, " ")')\
.withColumnRenamed("split(transactions,)", "items")

Create an FP-growth Estimator
fpGrowth = FPGrowth(itemsCol="items", minSupport=0.5, minConfidence=0.6)

Extract itemsets and rules
model = fpGrowth.fit(trsDataDF)

Retrieve the DataFrame associated with the frequent itemsets
dfItemsets = model.freqItemsets

Retrieve the DataFrame associated with the frequent rules
dfRules = model.associationRules

18

Save the result in an HDFS output folder
dfItemsets.write.json(outputPathItemsets)

Save the result in an HDFS output folder
dfRules.write.json(outputPathRules)

19

The result is stored in a JSON file because itemsets
and rules are stored in columns associated with the
data type Array.
Hence, CSV files cannot be used to store the result.

